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Abstract: The asymmetric deprotonation mediated by the chiral base s-butyllithium/(-)-sparteine of 
4-substituted 5-hexynyl carbamates permits the synthesis of enantioenriched carbanionic pairs which 
undergo a regioselective 5-exo-dig ring closure with the triple bond acting as an internal electrophile+ 
The functionalized five-membered rings are iormed with complete stereoselectivity in high yields. 
© 1998 Elsevier Science Ltd. All rights reserved. 

The asymmetric deprotonation of carbamate esters derived from primary alkanols with the chiral base 

s-butyllithium/(-)-sparteine (s-BuLi/1) and the subsequent stereospecific electrophilic substitution of the carb- 

anionic intermediates by external electrophiles represent a powerful tool for the synthesis of enantioenriched 

secondary alkanols. I An extension of this method is the employment of carbon-carbon multiple bonds as 

internal electrophiles corresponding to an intramolecular carbolithiation. Bailey and others have already de- 

monstrated for achiral substrates that especially double bonds 2 but also triple bonds 3 can serve as good electro- 

philes. Therefore, our interest is focussed on the fusion of the concepts of the asymmetric deprotonation and the 

i ,  tramolecular carbolithiation. In this context, we have recently reported the first example of an enantio- 

selective intramolecular carbolithiation starting from achiral 6-phenyl-5-hexenyl carbamates which cyclize 

stereoselectively in the presence of s-BuLi/1 in moderate yields to give substituted cyclopentanols in- 
corporating three defined adjacent stereocenters. 4'5 

If the same concept is applied to the corresponding alkyne 2 the relatively high thermodynamic acidity of the 

propargylic protons competes with the kinetic acidity of the protons at the carbon bearing the activating hydroxy 

group. Thus, after treatment of the 6-phenyl-5-hexynyl carbamate (2) with s-BuLi/1 not only the desired 

cyclization product 3 but also the allene 4 were isolated in poor yields (Scheme 1). 
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a) 1.5 equiv, s-BuLi/1, Et20, -78 °C, 18 h; b) 2.0 equiv. MeOH, -78 °C ~ rt. 

Scheme 1 

During our studies we recognized that the cyclization behaviour of 6-phenyl-5-hexenyl carbamates is 

dramatically enhanced if a substituent is introduced in allylic position. The chiral 4-substituted carbamate 5 

derived from (S)-glutamic acid (8) cyclizes with good stereoselectivity yielding 6 in 70 % (Scheme 2). 
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a) 1.5 equiv, s-BuLi/1, Et20, -78 °C, 18 h; b) 2.0 equiv. MeOH, -78 °C ---> rt. 

Scheme 2 

Consistently we introduced several propargylic substituents in the carbamate 2 to investigate whether this 

effect proves to be generally applicable to alkynes. The 4-amino-6-phenyl-5-hexynyl carbamate (S)-7 was 

prepared starting from (S)-glutamic acid (8) using a regioselective silylation 6 of  the intermediate diol 9. The 

terminally substituted triple bond was introduced by Corey's formyl--->ethynyl conversion 7 (10-->11) with a 

subsequent sp-sp 2 coupling reaction known as the Sonogashira reaction 8 (Scheme 3). 
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a) 4.5 equiv. BnBr, 2.25 equiv. K2CO3, 2.25 equiv. NaOH, MeOH]H20 (1:1), reflux, 80 %; b) 1.6 equiv. 
LiAIH4, THF, reflux, 97 %; c) 1.2 equiv. TBDMSCI, 0.5 equiv. DMAP, 1.0 equiv. Et3N, CH2CI2, reflux, 

76 %; d) Swern, 90 %; e) 2.0 equiv. CBr4, 4.0 equiv. PPh3, CH2CI2, 0 °C, 69 %; f) 2.0 equiv, n-BuLi, -78 °C ---> 
rt, 85 %; g) 1.0 equiv. Phi, 1.0 mol% (Ph3P)2PdCI2, 0.5 tool% CuI, EtaN, rt, 94 %; h) 3.0 equiv. TBAF, THF, 
rt, 94 %; i) 1.2 equiv. CbyCI, 1.2 equiv. Nail, THF, reflux, 88 %. 

Scheme 3 

The synthesis of several 4-hydroxy-6-phenyl-5-hexynyl carbamates 12a-b was accomplished in a straight- 

forward manner starting from 1,4-butanediol 13 with Brown's Alpine-Borane ® reduction 9 as the key step; both 

enantiomers of  12 could be synthesized with an enantiomeric excess of  90 %, determined via esterification with 

Mosher's reagent t° (Scheme 4). 

P h ~  Ph.~~..~ 
HO~o H a, b, c, d e, f ~- OCby ~" OCby 

O OPG 
13 12a-b 

a) (}.33 equiv. CbyCI, 0.35 equiv. Nail, THF, reflux, 87 %; b) Swern, 89 %; c) 1.3 equiv, phenylacetylene, 1.25 
equiv, n-BuLl, THF, -78 °C ---> -20 °C ---> rt, 95 %; d) MnO2, CH2C12, reflux, 82 %; e) 2.0 equiv. Alpine-Borane °, 
acetaldehyde, 2.2 equiv, ethanolamine, no solvent, rt, 87 %; f) PG = Tr: 1.1 equiv. TrCI, 1.5 equiv. EtaN, 0.05 
equiv. DMAP, CH2CI2, reflux, 54 %; PG = TBDPS: 1.1 equiv. TBDPSCI, 1.1 equiv. Et3N, 0.5 equiv. DMAP, 
CH2CI2, reflux, 98 %. 

Scheme 4 

When the precursor (S)-7 was analogously treated with s-BuLi/1 in Et20 the desired cyclization product cis- 
14 j la could be isolated in 70 % yield (Table 1, entry 1), again showing the enhancing effect of  a substituent in 
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the 4-position of 5,6-unsaturated alkenyl and alkynyl carbamates (Schemes 2 and 5); the formation of the allene 

was not observed. The other carbamates (S)-12a and (S)-12b also reveal this smooth cyclization behaviour 

undergoing the ring closure nearly quantitatively to yield the functionalized cyclopentylidene derivatives cis- 

15a and cis-15b (Table 1, entries 2 and 5); a crystal structure of cis-15a t2 allowed the determination of the 

relative configuration and proved that the chiral base s-BuLi/1 selectively removes the pro-S-proton in (S)-7 and 

12a-b. The cis:trans ratios of the cyclization products obviously correspond to the enantiomeric excess in the 

particular precursor; thus, the new stereocenter is formed highly stereoselectively. 

X 

(S)-7, 12a-b 

Ik  

h 

•ksyn-addition 
5-exo-dig ~ 

x ocb x  ocby 
c is-14, cis-15a-b trans-14, trans-15a-b 

t:2 

a) 1.5 equiv, s-BuLi/Lz (L2 = (-)-sparteine (1) or TMEDA (16)[a]), Et20, -78 °C, 18-22 h; b) 2.0 equiv. 
MeOH, -78 °C ---> rt. 

Scheme 5 

In order to investigate the role of the existing stereocenter the (R)-configurated precursor (R)-12a and the 

racemates rac-12a and rac-12b were cyclized by the typical procedure (Table 1, entries 3, 4 and 6). These 

experiments furnished the cyclization products trans-15a, 15a and 15b exclusively in cis:trans ratios which are 

directly related to the ratio of the enantiomers of compounds (R)-12a, rac-12a and rac-12b. The fact that the 

cyclizations of the racemic carbamates rac-12a and rac-12b gave the products with cis:trans ratios of 50:50 in 

all cases exhibits that there is no kinetic resolution of the enantiomers operating (Table 1, entries 4 and 6). 

Table 1: Stereoselective Cyclization of the Precursors (S)-7 and 12a-b ~l 

entry precursor X ratio of the configuration diamine major cis:trans ratio yield 

enantiomers at C t  product 1R,3S : IR,3R (%) 

1 (S)-7 NBn2 > 9 9 : 1  S 1 cis-14 > 99 : 1 70 

2 (S)-12a OTr 95 : 5 S 1 cis-15a 95 : 5 88 

3 (R)-12a OTr 5 : 95 R 1 trans-15a 5 : 95 99 

4 rac-12a OTr 50 : 50 R,S 1 15a 50 : 50 80 

5 (S)-12b OTBDPS 95 : 5 S 1 cis-15b 95 : 5 90 

6 rac-12b OTBDPS 50 : 50 R, S 1 15b 50 : 50 96 

7 (S)-12b OTBDPS 95 : 5 S 16 epi-15b ta] 50 : 50 89 

[al In this case the diastereomers cis-15b (IR,3S) and ent-trans-15b (1S,3S) are formed with an enantiomeric excess of 90 %, 
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If the cyclization precursor (S)-12b is treated with s-BuLi in the presence of an achiral diamine such as 

TMEDA (16), the formation of the new stereocenter proceeds not being affected by the existing one; compound 

epi-15b is obtained in high yield but with a cis:trans ratio of 50:50 (Table 1, entry 7). 

In summary, we have shown that the intramolecular addition of a chiral carbanion to a triple bond occurs in a 

syn-fashion and is completely regioselective; the 5-exo-dig cyclization product is formed exclusively. This 

method represents an extension to the intramolecular carbolithiation of alkenes 4 allowing the stereoselective 

synthesis of substituted enantiopure cyclopentanoid building blocks. 
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M.O.) and the Deutsche Forschungsgemeinschaft for generous financial support. 
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