FULL PAPER

A comparative study of the behaviour of *N*-trimethylsilyl and *N*-neopentyl-anilines and 1,2-diaminobenzenes towards trimethylalane; X-ray structures of nine Al–N compounds

Jean-Philippe Bezombes, Barbara Gehrhus, Peter B. Hitchcock, Michael F. Lappert* and Philippe G. Merle

as $[C_6H_4\{N(R')A|Me_2(tmen)\}_2-1,3]$ 11. The X-ray structures of 1–7, 9 and 10 are presented.

The Chemistry Laboratory, University of Sussex, Brighton, UK BN1 9QJ. E-mail: m.f.lappert@sussex.ac.uk

Received 23rd January 2003, Accepted 20th March 2003 First published as an Advance Article on the web 2nd April 2003 Dalton www.rsc.org/dalton

The reactions of a pair each of monosubstituted anilines PhNHR¹ and disubstituted 1,2-diaminobenzenes $C_6H_4(NHR^1)_2$ -1,2 (R¹ = SiMe₃ = R, or R¹ = CH₂Bu^t = R') with 1 or 2 equivalents of trimethylalane have been investigated. The trimethylsilyl derivatives were more reactive than the neopentyl analogues. The following crystalline compounds were obtained at ambient temperature or (1) gentle heating: *trans*-[AlMe₂(µ-NRPh)]₂ 1, [AlMe₃- {NH(R')Ph}] 2, [(AlMe₂)₂{µ-(NR)₂C₆H₄-1,2}] 4, [(AlMe₂){µ-(NR')₂C₆H₄-1,2}] 5, [(AlMe){N(R)C₆H₄NR-µ-1,2}]₂ 6 and [AlMe₂{N(R'(C₆H₄N(H)R')] 7, while prolonged heating was required in order to obtain [AlMe₂(µ-NR'Ph)]₂ 3 and [(AlMe{N(R')C₆H₄NR'-µ-1,2}]₂ 8. The amine adducts 2 and 7, were identified as intermediates to 3 and 8, respectively. Treatment of C₆H₄(NHR')₂-1,2 with successively 2 LiBuⁿ and 2 AlCl₃ afforded [AlCl{N(R')C₆H₄NR'-µ-1,2}]₂ 9. The diamine adduct [C₆H₄{N(H)R'(AlMe₃)}₂-1,3] 10 was obtained from C₆H₄(NHR')₂-1,3 and 2 AlMe₃; while the same diamine with successively 2 LiBuⁿ, 2 AlClMe₂ and 2 tmen yielded a compound tentatively formulated

Introduction

We have a long standing interest in the chemistry of metal and metalloid amides.¹ Our most recent publications in this area relate to complexes of the N-mono-substituted anilides $^{-}N(R^{1})Ph$ (A: $R^{1} = SiMe_{3} = R$, or A': $R^{1} = CH_{2}Bu^{t} = R'$) and the N,N'-disubstituted 1,2-, 1,3- and 1,4-benzenediamides $\{ {}^{-}N(R^{1}) \}_{2}C_{6}H_{4} B (R^{1} = R), B' (R^{1} = R'), C (R^{1} = R) and C'$ $\begin{array}{l} (R^{1} = R') & \text{and } \mathbf{D}, \text{ including the X-ray-characterised complexes} \\ [Li(A)]_{4},^{2} & [Li\{\mu-A-trans\}(\mu-\text{tmen})]_{\infty},^{3} & [Li(\mu-A')(OEt_{2})]_{2},^{3} & [Li_{2}-(\mu-B)(\text{thf})_{2}\{\mu-\text{Li}(\text{thf})\}_{2}]_{2},^{4} & [\{Li(\text{tmen})\}_{2}(\mu-B)],^{4} & [Li(\text{thf})(\mu-B)-\text{Li}(\text{thf})_{2}],^{4} & [\{Li(\text{tmen})\}_{2}(\mu-B')],^{4} & [[Li(\mu-B')(\text{thf})_{2}(\mu-\text{Li})]_{2},^{4} & [\{Li(\mu-B')(\mu-B'),^{4}(\mu-\text{Li})\}_{2},^{4} & [\{Li(\mu-B')(\mu-B'),^{4}(\mu-\text{Li})\}_{2},^{4} & [\{Li(\mu-B'),^{4}(\mu-\text{Li})\}_{2},^{4} & [\{Li(\mu-B'),^{4}(\mu-\text{$ $(\text{thf})_{2}(\mu-C)]^{5} [Mg(\mu-B)(OEt_{2})]_{2}^{6} [{Zr(B)(NMe_{2})(\mu-NMe_{2})}_{2}]^{7}$ $[Zr(B)Cl_{2}(tmen)],^{7} [Sn(B)(tmen)],^{8} [Sn(B')]_{2},^{8} [{Zr(NMe_{2})_{3}}_{2},^{-} (\mu-C)],^{9} [{Zr(NMe_{2})_{3}}_{2},(\mu-C)_{2}],^{9} [Sn(C)]_{2},^{10} [Sn_{3}(C)_{2}],^{10} [Zr(NMe_{2})_{3},^{-} (\mu-C)],^{9} [Zr(NMe_{2})_{3},^{-} (\mu-C$ $\begin{array}{c} \sum_{j \geq 1} \sum_{j \geq 1} [Sn(C)]_{2}, \overset{10}{[Sn_{3}(C)]_{2}, 10} \\ [\{Zr(NMe_{2})_{2}\}_{2}(\mu - D)_{2}], \overset{10}{[Sn_{3}(C)_{2}], 10} \\ [\{Ze(NMe_{2})_{2}\}_{2}(\mu - D)]^{11} \\ [\{Se(C)_{2}\}_{2}(\mu - D)]^{11} \\ [\{Se(C)_{2}\}_{2}($ $(NMe_2)_3$ $_2(\mu-D)],^9$ $[{Ge(NR_2)_2}_2]_2$ - $(\mu-D)$],¹¹ [{Sn(NR₂)₂}₂(μ -D)],¹¹ [{Sn(OC₆H₂Bu^t₂-2,6-Me-4)}₂-(μ -D)],¹¹ and [{SnCl₂(NR₂)}₂(μ -D)].¹¹ The ligand **B'** has had a central role in the development of the chemistry of the first X-ray-characterised silylene $Si(\mathbf{B}')$;^{12a,b} for a review of some of its chemistry, see ref. 12c. The ligands **B** and **B'** have also featured in the following compounds: $[Ga(B)]_2$,¹³ [Ge(B)],¹⁴ $[MCln(\mathbf{B})\{\eta^{5}-C_{5}H_{3}(SiMe_{3})_{2}-1,3\}]$ (*n* = 1 and M = Zr or Hf; or n = 2 and M = Ta),¹⁵ [{Mo(B)(NPh)(\mu-NPh)}₂]¹⁶ and various complexes containing the W(B)(NPh) moiety.¹

 \overrightarrow{NR}^{1} $\overrightarrow{NR$

DOI: 10.1039/b300957m

In this paper, we focus on the amides A and A' and the diamides B, B' and C' of aluminium and on some amine–alane adducts. Amides of aluminium have long been studied,¹ but recent interest in Al–N chemistry has been regenerated in part by the disclosure of Coles and Jordan in 1997 that certain cationic amidinatoaluminium methyls are catalysts for the

polymerisation of ethylene.¹⁸ We recently reported on the synthesis and structures of neutral and cationic aluminium 1-azaallyls,¹⁹ β -diketiminates,²⁰ and on an amidinate^{21a} (see also ref. 21*b*).

Results and discussion

An objective of the present work was to prepare and characterise a range of Al–N compounds derived from the amines $HN(Ph)R^1$ and the diamines 1,2- and 1,3-C₆H₄[N(R¹)H]₂ (R¹ = SiMe₃ = R, or R¹ = CH₂Bu^t = R'). As a corollary, it was anticipated that some generalisations might emerge regarding the relative reactivities of the trimethylsilyl *versus* neopentyl derivatives.

The syntheses in good yields of the crystalline compounds 1–3 based on the anilines HA (1) or HA' (2,3) are summarised in Scheme 1. Whereas equivalent portions of trimethylalane and *N*-trimethylsilyl-²² or *N*-neopentyl³-aniline under mild conditions (gentle heating for HA, or ambient temperature for HA') yielded the crystalline dimeric *trans-N*-trimethylsilyl-anilinodi(methyl)alane 1 (see also ref. 23, in which a 23% yield was recorded and the much lower mp of 77–80 °C) from HA (i in Scheme 1), with HA' the product was the 1 : 1-adduct 2

Scheme 1 Synthesis of the crystalline compounds 1–3. *Reagents and conditions:* i, AlMe₃, n-C₆H₁₄, 0 °C and then <60 °C *in vacuo*; ii, AlMe₃, n-C₆H₁₄, 20 °C; iii, n-C₆H₁₄, reflux, 16 h.

Scheme 2 Synthesis of the crystalline compounds 4–8. Reagents and conditions: i, 4 AlMe₃, n-C₆H₁₄, 20 °C; ii, 2 AlMe₃, n-C₆H₁₄, 20 °C; iii, PhMe, 100 °C, 2 d; iv, 4 LiBuⁿ, PhMe, 20 °C, then 2 AlCl₃ at -78 to 20 °C, 16 h.

(ii in Scheme 1). Prolonged heating of **2** was required in order to complete the methane-elimination reaction leading (iii in Scheme 1) to the dimeric *cis-N*-neopentylanilinodi(methyl)-alane **3**, an analogue of **1** but of opposite stereochemistry.

The syntheses in good (4-8) or moderate (9) yields of the crystalline compounds 4-9 derived from the 1,2-diaminobenzenes H_2B (4 and 6) and H_2B' (5 and 7–9) are outlined in Scheme 2. Treatment of the appropriate diamine and two equivalents of trimethylalane vielded (i in Scheme 2) the dinuclear chelated diaminobis(dimethylalane)s 4 and 5. By contrast, with one equivalent of AlMe₃, likewise at ambient temperature, the outcome (ii in Scheme 2) for the two diamines was different, the product being the bis(amido) compound 6 from H₂B but the amido(amine) compound 7 from H_2B' . However, thermolysis of 7 yielded (iii in Scheme 2) the neopentyl analogue 8 of 6. The dimeric chloro compound 9, related to the dimeric methyl compound 8, was obtained (iv in Scheme 2) from H_2B' and successively dilithiation and reaction with AlCl₃. From 1,2- $C_6H_4(NH_2)_2$ and AlMe₃ in toluene the crystalline complex $[(Me_2Al)_2AlMe\{C_6H_4(NH)_2\}_2 \cdot AlMe_3]$ was obtained.²⁴

1,3-Di(neopentylamino)benzene H₂C' (bp 165–167 °C / 5 Torr) was obtained by Li[AlH₄] reduction of 1,3-bis(dipivaloylamino)benzene (mp 195–198 °C), prepared from 1,3diaminobenzene. Treatment of H₂C' with two equivalents of trimethylalane and brief heating in toluene afforded (i in Scheme 3) after concentration and cooling, the crystalline diamine–bis(trimethylalane) **10** in good yield. An attempt was made to gain access to a bis(amino)dialane by first converting H₂C' into Li₂C'(tmen)₂ and then adding 2 equivalents of dimethyl(chloro)alane (ii in Scheme 3). This yielded a white solid, insoluble in hydrocarbons or dichloromethane; in order to characterise it, tmen (2 equivalents) in thf was added. Removal

Scheme 3 Synthesis of the crystalline complex 10 and the oil 11. *Reagents and conditions*: i, 2 AlMe₃, n-C₆H₁₄, 20 °C, 2 h, then PhMe and heated to dissolve; ii, 2 LiBuⁿ, 2 tmen, n-C₆H₁₄, 0 °C, 1 h, then 2 AlClMe₂, n-C₆H₁₄, 20 °C; iii, 2 tmen, thf, 20 °C.

of volatiles provided (iii in Scheme 3) an orange oil in a yield appropriate to the quantitative formation of the material tentatively formulated as **11**. This assignment was consistent with ¹H NMR spectral data in C_6D_6 . The insoluble white solid may well have been a polymer or oligomer of $1,3-C_6H_4[N(R')-A|Me_2]_2$, which with 2 tmen reverted to the soluble monomer **11**.

The reactions summarised in Schemes 1–3 lead us to the following conclusions regarding the relative behaviour of the trimethylsilyl *versus* neopentyl anilines or 1,2-diaminobenzenes: (i) the neopentylamines are less prone to deprotonation than the trimethylsilyl analogues, and (ii) it may be that the latter are able to yield stereoselective products.

As for (i), we note that (a) HA' formed a 1 : 1-adduct 2 with AlMe₃ at ambient temperature which only upon prolonged heating eliminated methane to form the amide 3, whereas AlMe₃ with HA afforded the amide 1 at ambient temperature; (b) H₂B' with AlMe₃ under these conditions eliminated only one equivalent of methane to give the aminometal amide 7 (the second CH₄ loss occurred at elevated temperature to yield the diamidoaluminium compound 8), whereas H₂B lost the two equivalents of CH₄ at 20 °C yielding the (SiMe₃)₂ analogue of 8. Regarding (ii), it is inappropriate to generalise, but on the basis of the experiments leading to [AlMe₂(μ -A or μ -A')]₂ (1 or 3), we note that 1 was stereospecifically the *trans*-isomer even in benzene solution, whereas the neopentyl analogue 3 was a mixture of *cis* and *trans* (although the crystals were of the *cis*-isomer).

The ambient temperature ¹H NMR spectrum of **1** in benzene- d_6 revealed that the *trans*-structure observed in the solid state (*vide infra*) was maintained in solution. The neopentyl analogue **3**, while *cis* in the crystal, was a mixture of *ca*. 3(cis) : 2(trans) in solution (*cf.*, the ¹H NMR spectra). The NMR spectra of the compounds **2**, **4**–7, **9** and **10** were consistent with their solid state structures, which in the case of **4** and **5** was manifested by the appearance in both ¹H and ¹³C NMR spectra of two sets of AlMe₂ signals.

Crystal structures of compounds 1-7, 9 and 10

Each pair of the phenyl and trimethylsilyl groups adopts a *trans*-disposition around the Al1N1Al2N2 non-planar ring (torsion angle 18.3°) of the dinuclear, C_1 -symmetric, crystalline aluminium amide **1** (Fig. 1). The other geometric data (Table 1) are unexceptional, as may be judged by comparison with those for [AlMe₂(μ -NMe₂)]₂, in which Al–N and Al–C bond lengths range from 1.955 to 1.972 Å, respectively, the Al ··· Al' distance is 2.815 Å, and the endocyclic bond angles vary from 88.4(3) to 91.6(3)°.²⁵ A large number of complexes of formulae

Table 1 Selected b	ond lengths (A)	and angles (°) for 1	
$Al(1) \cdots Al(2)$	2.7895(12)	Al(1)–C(2)	1.957(4)
Al(1)-C(1)	1.958(3)	Al(2)-C(4)	1.963(3)
Al(2) - C(3)	1.967(3)	Al(1)-N(2)	2.002(2)
Al(1) - N(1)	2.020(2)	Al(2)-N(2)	1.987(2)
Al(2) - N(1)	2.019(2)		
C(2)–Al(1)–C(1)	110.01(16)	C(2)-Al(1)-N(2)	112.18(14)
C(1)-Al(1)-N(2)	113.22(14)	C(2) - Al(1) - N(1)	110.66(13)
C(1)-Al(1)-N(1)	120.50(14)	N(2)-Al(1)-N(1)	88.76(10)
C(4) - Al(2) - C(3)	108.42(15)	C(4) - Al(2) - N(2)	112.83(13)
C(3)-Al(2)-N(2)	114.33(13)	C(4) - Al(2) - N(1)	110.91(13)
C(3) - Al(2) - N(1)	120.19(13)	N(2)-Al(2)-N(1)	89.20(10)
Al(2)-N(1)-Al(1)	87.37(9)	Al(2)-N(2)-Al(1)	88.72(10)

$$\begin{split} & [AIR_{12}^{1}(\mu\text{-}NR^{2}R^{3})]_{2} \text{ have been crystallographically character$$
 $ised.^{26-28} Most are of <math>C_{1}$ symmetry, have an almost square $(AIN)_{2}$ ring, but in some cases this is slightly puckered, as in $[AIMe_{2}\{\mu\text{-}N(CH_{2}Ph)_{2}\}]_{2}$ which has a fold angle of 4.0° about the N–N' vector. The transoid geometry, if $R^{2} \neq R^{3}$, is largely dominant, as in $[AIMe_{2}\{\mu\text{-}N(H)Pr^{i}\}]_{2}$,^{29a} or $[AIMe_{2}\{\mu\text{-}N(SiMe_{3})(CH_{2}C_{4}H_{3}O\text{-}2)\}]_{2}$,^{29b} but *cis*-complexes are encountered, particularly for higher AIR₂ homologues, as in $[AIBu^{t}_{2}\{\mu\text{-}N(H)C_{6}H_{4}Ph\text{-}4\}]_{2}$,^{30a} but see also $[AIMe_{2}\{\mu\text{-}N(CH_{2}Ph)Pr^{i}\}]_{2}$.^{30b}

Fig. 1 Molecular structure of *trans*-[(AlMe₂)(µ-(A)]₂ 1.

The AlMe₃ group of the crystalline compound [AlMe₃· H(A')] 2 (Fig. 2) lies on the mirror plane, with the rest of the molecule disordered across this plane. The geometric parameters are unexceptional (Table 2), as evident from a comparison with those (by gas electron diffraction) for [AlMe₃(NMe₃)], having Al–N, Al–C and N–C bond lengths of 2.099(10), 1.987(5) and 1.474(3) Å, respectively and C–Al–N and C–N–Al bond angles of 102.3(3) and 109.3(3)°, respectively.³¹

Fig. 2 Molecular structure of $[(AlMe_3) \cdot H(A')]$ 2.

Table 2 Selected bond lengths (Å)	Å) and angles (°) for 2
---	--------------------------------

Al-C(1)	1.953(3)	Al-C(2)	1.978(3)
Al–N	2.067(4)	N–C(4)	1.459(9)
C(1)–Al–N	107.8(2)	Al-N-C(4)	115.1(5)
C(2)-Al-N Al-N- $C(10)$	106.14(16) 108 5(4)	C(4)–N–C(10)	115.7(4)
$m \sim (10)$	100.5(7)		

Symmetry transformations to generate equivalent atoms : ' x, -y + 1/2, z.

Table 3 Selected I	oond lengths (Å) a	nd angles (°) for 3	
$ \begin{array}{c} Al \cdots Al' \\ Al - C(12) \\ Al - N' \end{array} $	2.792(1) 1.970(2) 2.029(2)	Al-C(13) Al-N	1.968(2) 1.984(2)
C(13)–Al–C(12) C(12)–Al–N C(12)–Al–N' Al–N–Al'	109.90(11) 122.61(10) 115.02(9) 88.15(7)	C(13)–Al–N C(13)–Al–N' N–Al–N'	111.15(9) 107.71(9) 88.17(7)

Symmetry transformations used to generate equivalent atoms: ' -x, y, -z + 1/2.

The crystalline $[AIMe_2(A')]_2$ 3 molecule (Fig. 3) lies on a twofold rotation axis orthogonal to the Al–Al' vector. It also differs from 1 in its cisoid arrangement of substituents at the N- and N'- atoms of the puckered $\overline{AINAI'N'}$ ring (torsion angle 20.1°). The other geometric parameters (Table 3) are similar to those of compound 1.

Fig. 3 Molecular structure of cis-[(AlMe₂)(μ -A')]₂ 3.

The crystalline [(AlMe₂)₂(μ -**B**)] **4** molecule (Fig. 4) lies on a two-fold rotation axis, perpendicular to the Al–Al' vector. The two distorted tetrahedral nitrogen atoms N and N' of the ligand **B** are members of the strongly puckered AlNAl'N' ring

Fig. 4 Molecular structure of $[(AlMe_2)_2(\mu-B)]$ 4.

Table 4Selected bond lengths (Å) and angles (°) for 4

$\begin{array}{c} Al \cdots Al' \\ Al-C(8) \\ Al-N' \end{array}$	2.8242(12)	Al–C(7)	1.959(3)
	1.964(3)	Al–N	2.0041(19)
	2.0043(19)	N–C(1)	1.462(3)
C(7)–Al–N	115.79(10)	C(7)-Al-C(8)	114.06(12)
C(7)–Al–N'	117.94(10)	C(8)-Al-N	113.93(11)
N–Al–N'	77.62(9)	C(8)-Al-N'	112.67(10)
C(1)–N–Al'	94.05(12)	C(1)-N-Al	94.14(12)
Al–N–Si	123.70(10)	Al-N-Al'	89.59(8)
C(1)'–C(1)–N	112.20(10)	Al'-N-Si	125.56(10)
Symmetry transf $1/2$, y , $-z + 1/2$.	formations used to	generate equivalent a	toms: $' - x +$

(torsion angle 37.1°). The angles at the endocyclic aluminium atoms are more acute than those at the nitrogen atoms, Table 4. The ligand **B** is both chelating and bridging; in that respect the structure of **4** is similar to those of $[{Li(L)}_2(\mu-B)]_2 [L = (thf)_2$ **12**, L = tmen **13**], in which the Li–N distances range from 1.971(8) to 2.102(7) Å (**12**) and 2.056(7) to 2.078(7) Å (**13**).⁴ The Al ··· Al, Al–N and Al–CH₃ distances are very similar to those

There are two independent C_1 -symmetric molecules in the unit cell of crystalline [AlMe₂(μ -**B**')] **5** with essentially the same geometry (Fig. 5); hence data for only one are listed in Table 5. The structure is very similar to that of **4**, but the torsion angle of the Al1N1Al2N2 puckered ring of 39.1° is slightly wider than the corresponding angle in **4**. The spread of the four N–Al–CH₂Bu^t angles [155.32(16) to 133.04(6)°] is much greater than that of the Al(Al')–N–Si angles [123.70(10). 125.56(10)°].

Fig. 5 Molecular structure of $[(AlMe_2)_2(\mu-B')]$ 5.

The crystalline $[AlMe(\mu-B)]_2 6$ molecule (Fig. 6) lies across an inversion centre, the mid-point of the central almost square $\overline{AlNAl'N'}$ ring. It comprises an array of three aluminium-containing fused rings in a ladder-type structure with a chair-like transoid disposition of the terminal five-membered rings

$Al(1) \cdots Al(2)$	2.823(1)	Al(1)–C(18)	1.954(3)
Al(1)–C(17)	1.957(3)	Al(2)-C(19)	1.959(3)
Al(2)-C(20)	1.959(3)	Al(1)-N(2)	2.003(2)
Al(1) - N(1)	2.011(2)	Al(2)-N(1)	1.977(2)
Al(2)–N(2)	1.990(2)	N(1)-C(1)	1.450(3)
N(2)–C(2)	1.447(3)		
C(18)–Al(1)–C(17)	115.53(14)	C(19)–Al(2)–C(20)	116.63(14)
C(18)–Al(1)–N(2)	119.63(12)	C(17)-Al(1)-N(2)	115.38(12)
C(18)–Al(1)–N(1)	114.08(12)	C(17)-Al(1)-N(1)	110.10(12)
N(2)-Al(1)-N(1)	75.11(8)	N(1)-Al(2)-N(2)	76.17(9)
C(1)-N(1)-Al(2)	98.18(14)	C(1)-N(1)-Al(1)	94.81(14)
C(2)-N(2)-Al(2)	96.78(15)	C(2)-N(2)-Al(1)	95.71(14)
Al(2)–N(1)–Al(1)	90.10(9)	Al(2)-N(2)-Al(1)	89.95(9)
C(2)-C(1)-N(1)	110.5(2)	C(1)-C(2)-N(2)	111.1(2)
C(7)-N(1)-Al(2)	129.81(6)	C(12)-N(2)-Al(1)	133.04(6)
C(12)-N(2)-Al(2)	115.32(16)		

Table 6Selected bond lengths (Å) and angles (°) for	r 6
---	-----

Al–N(2) Al–N(1)' N(1)–C(1)	1.8358(19) 1.9621(18) 1.478(2)	Al-C(13) Al-N(1) N(2)-C(2)	1.948(2) 1.9799(18) 1.401(3)
N(2)-Al-C(13) N(2)-Al-N(1) C(13)-Al-N(1)' N(1)'-Al-N(1) C(1)-N(1)-Al' Al'-N(1)-Al C(2)-C(1)-N(1)	119.39(11) 91.83(8) 113.10(10) 89.62(7) 108.12(12) 90.38(7) 117.30(17)	N(2)-Al-N(1)' C(13)-Al-N(1) C(1)-N(1)-Si(1) C(1)-N(1)-Al C(2)-N(2)-Al C(1)-C(2)-C(3)	115.99(9) 121.90(11) 111.58(13) 102.76(12) 109.40(14) 116.9(2)

Symmetry transformations used to generate equivalent atoms: ' - x + 1/2, -y + 1/2, -z + 1.

Fig. 6 Molecular structure of trans-[(AlMe)(µ-B)]₂ 6.

around the central $\overline{AINAI'N'}$. The atoms Al and Al' from each of the terminal rings is *ca*. 0.2 Å out of the NCCN plane of the \overline{AINCCN} moiety. The two nitrogen atoms of the ligand **B** differ in that the four-coordinate N1 (or N1') atom bridge the two aluminium atoms Al and Al', while the three-coordinate N2 (or N2') is bonded to Al (or Al') in a terminal fashion; hence the Al–N1 and N1–C1 bonds are significantly longer than the Al–N2 and N2–C2 bonds (Table 6).

The skeletal structure of the fused trinuclear ring system of **6** is very similar to that of $[Mg(\mu-B)(OEt_2)]_2$ **14**, in which the corresponding Mg–N1, Mg–N2, N1–C1 and N2–C2 distances are 1.997(7), 2.082(7), 1.371(11) and 1.472(11) Å, respectively,⁶ and the ladder has the chair conformation. This feature has also been found in **15** and **16**, having the following geometric parameters [**16** in square brackets]: A1–N1 1.985(2) [1.966(2)],

of 1 and 5.

Table 7Selected bond lengths (Å) and angles (°) for 7

Al-N(2)	1.8655(12)	Al-C(17)	1.9590(15)
Al-C(18)	1.9643(15)	Al-N(1)	2.0234(12)
N(1) - C(1)	1.4765(16)	N(2) - C(2)	1.3782(17)
N(1) - C(7)	1.5169(17)	N(2) - C(12)	1.4555(18)
C(1)–C(6)	1.3804(19)	C(1)–C(2)	1.411(2)
N(2)–Al–N(1)	85.62(5)	C(17)–Al–C(18)	115.09(7)
C(2)-N(2)-A1	109.83(9)	C(1) - N(1) - Al	101.62(8)
N(2)-C(2)-C(1)	115.98(12)	C(2)-C(1)-N(1)	115.13(11)

Al–N 1.949(2) [1.812(2)], Al–N' 1.975(2) [1.940(2)], N1–C1 1.465(3) [1.479(3)], N2–C2 1.383(3) [1.386(3)] Å; N1–Al–N1' 86.83(8) [87.73(7)], and Al–N–Al' 93.47(8) [92.27(7)]^{o.32} By contrast, the corresponding saturated compound with X = H (*i.e.*, with –NCH₂CH₂N– in place of –NCH=CHN–) was obtained both in the chair (*trans*-) and the boat (*cis*-) form.³³ This type of isomerisation has been discussed in related gallium compounds.³⁴ The structure of [(AlMe₂)₂{ μ -*trans*-N(R)(C₆H₁₁-c)}] has recently been reported.³⁵

The 2-aminophenylamidodi(methyl)aluminium compound $[AlMe_2{\mu-H(B')}]$ 7 (Fig. 7) crystallised in a mononuclear C_1 -symmetric fashion. The chelating ligand H(B') has Al–N and contiguous N–C bonds shorter for the three-coordinate (N2) than for the four-coordinate (N1) nitrogen atoms (the NH hydrogen atom was not located), Table 7. The torsion angle between the N1–Al–N2 and the 1,2-NC₆H₄N plane is 30.24(5)°. The aluminium atom is 0.706 Å out of the latter plane. The endocyclic bond angles of the AlN1C1C2N2 ring range from 85.62(5)° at Al to 115.98(12)° at C2. The Al–CH₃ bond lengths are similar to those in 1 or 3. Compound 7 has some structural similarity to the complexes 17 and 18, which have Al–N distances of 1.968(11) and 1.897(2) Å (17) and 2.045(4) and 1.856(4) Å (18) for the dative and covalent bonds, respectively.³⁶

Fig. 7 Molecular structure of trans-[(AlMe₂)(µ-HB')] 7.

Crystals of $[AlMe(\mu-B')]_2$ 8 diffracted poorly, but the data were adequate to establish that its dimeric structure was similar to that of 6. However, X-ray quality single crystals of the corresponding C_1 -symmetric chloride $[AlCl(\mu-B')]_2$ 9 were obtained (Fig. 8). In its three fused ladder-type aluminium containing rings it resembles those of 6, but in 9 there is a boat-like cisoid disposition [*cf.* ref. 33) of the terminal five-membered rings around the almost rhomboidal (torsion angle 10.1°) (rather

Table 8 Selected b	ond lengths (A) and angles (°) for 9	
$Al(1) \cdots Al(2)$	2.721(1)	Al(1)–N(1)	1.812(2)
Al(1)-N(2)	1.925(2)	Al(1)-N(3)	1.977(2)
Al(1)-Cl(1)	2.107(1)	Al(2)-N(4)	1.811(2)
Al(2)-N(3)	1.920(2)	Al(2)-N(2)	1.973(2)
Al(2)-Cl(2)	2.105(1)	N(1) - C(1)	1.398(3)
N(1)-C(7)	1.471(3)	N(2)–C(2)	1.467(3)
N(2)-C(12)	1.507(3)	N(3)-C(17)	1.470(3)
N(3)-C(23)	1.508(3)	N(4)–C(18)	1.405(3)
N(4)-C(28)	1.469(3)	C(1)-C(2)	1.415(4)
C(17)–C(18)	1.412(4)		
N(1)-Al(1)-N(2)	90.71(10)	N(2)-Al(1)-N(3)	90.47(9)
N(4)-Al(2)-N(3)	91.10(9)	N(3)-Al(2)-N(2)	90.74(9)
N(1)-Al(1)-N(3)	115.69(10)	N(4)-Al(2)-N(2)	115.28(10)
C(1)-N(1)-Al(1)	111.58(17)	C(2)-N(2)-Al(1)	105.98(15)
Al(1)-N(2)-Al(2)	88.52(9)	C(17)–N(3)–Al(2)	106.09(16)
C(17)-N(3)-Al(1)	103.32(15)	Al(2)-N(3)-Al(1)	88.53(9)
C(18)-N(4)-Al(2)	110.98(17)	N(1)-C(1)-C(2)	116.1(2)
C(1)-C(2)-N(2)	115.3(2)	C(18)–C(17)–N(3)	115.0(2)

. .

Fig. 8 Molecular structure of $[(AlCl)(\mu-B')]_2$ 9.

than square, as in 6) central AIN2AIN3 core. The latter has endocyclic bond angles at N2 and N3 which are slightly narrower than those at the Al1 and Al2 atoms, Table 8. The aromatic rings are almost parallel and staggered. As in 6, the Al–N and contiguous N–C bonds of each AINCCN ring are longer for those involving the four- (N2, N3) rather than the three- (N1, N4) coordinate nitrogen atoms.

In the five complexes 4–7 and 9 containing a 1,2-N,N'-disubstituted ligand **B** or **B'**, the C1–C2 bond of the C₆ ring is invariably the longest, ranging from 1.407(4) Å in 4 to 1.418(4) Å in 5. The shortest bonds are the C3–C4, C4–C5 and C5–C6, which vary from 1.37 to 1.39 Å.

The crystalline C_1 -symmetric molecule [(AlMe₃)₂·H₂(C')] **10** (Fig. 9), like **2**, has a four-coordinate tetrahedral environment about each aluminium atom, with Al–CH₃ and Al–N bond lengths (Table 9) very slightly longer than those of **2** and C–Al–N angles significantly narrower (by *ca*. 2 to 6°) than those of **2** (Table 1).

Experimental

All manipulations were carried out under argon or *in vacuo* using standard Schlenk techniques. Solvents were pre-dried over sodium, distilled from sodium (toluene), sodium–potassium alloy (pentane, hexane) or sodium–benzophenone (diethyl ether, tetrahydrofuran) and stored over a potassium mirror or molecular sieves (4 Å). Deuteriated solvents were

Al(1)–C(12)	1.9714(19)	Al(1)–C(13)	1.9744(19)
Al(1)–C(14)	1.9756(18)	Al(2)-C(22)	1.9641(19)
Al(2)-C(21)	1.9670(18)	Al(2)-C(20)	1.9794(18)
Al(1) - N(1)	2.0864(13)	Al(2)-N(2)	2.0811(13)
N(1)-C(1)	1.4532(17)	N(2)–C(3)	1.4544(18)
C(13)–Al(1)–N(1)	101.43(7)	C(12)–Al(1)–N(1)	104.05(7)
C(22)-Al(2)-N(2)	103.44(7)	C(14)-Al(1)-N(1)	102.10(7)
C(20)–Al(2)–N(2)	99.84(7)	C(21)-Al(2)-N(2)	104.32(7)
C(3)–N(2)–Al(2)	110.34(9)	C(1)-N(1)-Al(1)	110.42(9)

Table 9 Selected bond lengths (Å) and angles (°) for 10

Fig. 9 Molecular structure of $[(AlMe_3)_2 \cdot H_2(C')]$ 10.

likewise stored over such molecular sieves and degassed prior to use. Triethylamine, chloro(trimethyl)silane, lithium aluminium hydride, pivaloyl chloride, AlMe₃, AlCl₃ and *n*-butyllithium in hexanes (1.6 mol dm⁻³, FMC corporation) were commercial samples used without further purification. The NMR solution spectra were recorded on Bruker DPX 300 (for ¹H and ¹³C) or AMX 500 (for ²⁹Si and ²⁷Al) instruments and referenced externally (using aqueous Al(OH)₃ with a D₂O lock for ²⁷Al or SiMe₄ for ²⁹Si) or internally (¹H, ¹³C) to the residual solvent resonances; chemical shift data in δ . Unless otherwise stated, all NMR spectra were examined at 293 K in C_6D_6 and, except for ¹H, were proton decoupled. Electron impact mass spectra were taken on a Kratos MS 80 RF instrument. Elemental analyses (empirical formulae shown) were carried out by Medac Ltd, UK., Brunel University. Melting points were taken in sealed capillaries and are uncorrected.

Preparations

1,3-Bis(pivaloylamino)benzene. A solution of pivaloyl chloride (45.0 g, 373 mmol) in thf (100 cm³) was added dropwise at *ca*. 20 °C to a solution of 1,3-diaminobenzene (20.0 g, 185 mmol) and triethylamine (38 g, 374 mmol) in thf (900 cm³). The resulting thick white suspension was stirred overnight. Volatiles were removed *in vacuo* and the resulting solid was washed several times with water, dried and crystallised from hot ethanol, to give 1,3-bis(pivaloylamino)benzene as a white solid (34.6 g, 68%) (Found: C, 69.6; H, 8.70; N, 10.14. C₁₆H₂₄N₂O₂ requires C, 69.7; H, 8.80; N, 10.07%), mp 195– 198 °C. ¹H NMR (CDCl₃): δ 1.32 (s, 18H, Me), 7.23–7.35 (m, 3H, Ph), 7.93 (s, 1H, Ph), 7.46 (br s, 2H, NH); ¹³C NMR (CDCl₃): δ 27.9 (CH₃), 40.0 (*C*CH₃), 111.7, 115.8, 129.7, 138.9 (Ph), 177.2 (CO). EI-MS (*m*/*z*, %): 276 {43, [M]⁺}, 57 {100, [Bu^t]⁺}.

1,3-Bis(neopentylamino)benzene $H_2(C')$. Solid 1,3-bis(pivaloylamino)benzene (34.3 g, 124 mmol) was added to a cooled (0 °C) suspension of Li[AlH₄] (19.0 g, 500 mmol) in thf (400 cm³). After 2 h at *ca*. 25 °C and 12 h at reflux, the grey suspension was carefully hydrolysed at 0 °C by a mixture of water and thf and filtered. The filtrate was concentrated. Distillation of the residue under reduced pressure gave H₂(**C**') as a colourless crystalline solid (22.4 g, 73%) (Found: C, 77.6; H, 11.29; N, 11.41. C₁₈H₂₈N₂ requires C, 77.4; H, 11.29; N, 11.29%), bp 165–167 °C/5 Torr. ¹H NMR (CDCl₃): δ 1.04 (s, 18H, Me), 2.92 (s, 4H, NCH₂), 3.85 (br s, 2H, NH), 6.0–7.05 (m, 4H, Ph); ¹³C NMR (CDCl₃): δ 28.2 (Me), 32.1 (CCH₃), 56.5 (NCH₂), 97.7, 103.2, 130.3, 150.4 (Ph), EI-MS (*m*/*z*, %): 248 {83, [M]⁺}, 191 {100, [M - Bu^f]⁺}.

[AlMe₂(\mu-A)]₂ 1. A solution of AlMe₃ (11 cm³ of a 2.0 mol dm⁻³ solution in hexanes, 22 mmol) was added dropwise at *ca.* 0 °C to a solution of H(A) (3.55 g, 21.5 mmol) in hexane (10 cm³). The colourless solution was stirred for 1 h at *ca.* 20 °C. Volatiles were removed *in vacuo* and the resulting oil was briefly heated *in vacuo* at <60 °C until a white solid had formed. Crystallisation from hexane at -25 °C yielded colourless needles of compound 1 (4.08 g, 92%) (Found; C, 57.6 (duplicate analyses); H, 8.80; N, 6.11. C₂₂H₄₀Al₂N₂Si₂ requires C, 59.7; H, 9.11; N, 6.33%), mp 130–132 °C. ¹H NMR: δ –0.07 (s, 6H, AlMe), 0.09 (s, 9H, SiMe), 7.0–7.33 (m, 5H, Ph); ¹³C NMR: δ 0.4 (AlMe), 2.6 (SiMe), 125.2–144.1 (Ph); ²⁷Al NMR: δ 164.5 (br s, $\Delta w_{1/2}$ 5.8 kHz); ²⁹Si NMR: δ 14.2.

[AlMe₃·H(A')] 2. A solution of AlMe₃ (5 cm³ of a 2.0 mol dm⁻³ solution in hexanes, 10.0 mmol) was added dropwise at *ca*. 0 °C to a solution of H(A') (1.58 g, 9.68 mmol) in hexane (20 cm³), then stirred for 1 h at *ca*. 20 °C. Volatiles were removed *in vacuo* and the resulting white solid was crystallised from pentane at -25 °C, yielding colourless needles of compound **2** (2.07 g, 91%) (Found: C, 68.1; H, 10.93; N, 5.80. C₁₄H₂₆AlN requires C, 71.5; H, 11.14; N, 5.95%), mp 39–40 °C. ¹H NMR: δ –0.47 (s, 9H AlMe), 0.46 (s, 9H, CMe₃), 2.96 (d, ³J_{HH} = 5.8, 2H, NCH₂), 3.80 (t, ³J_{HH} = 5.8 Hz, 1H, NH), 6.56–7.15 (m, 5H, Ph); ¹³C NMR: δ –8.7 (AlCH₃), 27.6 (CCH₃), 32.7 (CCH₃), 60.9 (NCH₂), 121.2–144.1 (m, Ph); ²⁷Al NMR: δ 183.6 (br s, Δw_{v_4} 4.5 kHz).

[AlMe₂(μ -A')]₂ (*cis* 3 + *trans*). A solution of 2 (2.06 g, 8.75 mmol) in hexane (20 cm³) was refluxed for 16 h. Upon cooling, colourless crystals of 3 were obtained (1.37 g, 71%) (Found: C, 69.5; H, 10.10; N, 6.53. C₂₆H₄₄Al₂N₂ requires C, 71.2; H, 10.11; N, 6.39%), mp 164 °C (subl.). ¹H NMR: δ -0.29 (s, 6H, AlMe of *cis*), -0.20 (s, 12H, AlMe of *trans*), -0.03 (s, 6H, AlMe of *cis*), 3.30 s, (4H, NCH₂ of *trans*), 3.36 (4H, NCH₂ of *cis*), 6.81–7.43 (m, 20H, Ph); ¹³C NMR: δ -4.1 (AlMe of *cis*), -3.5 (AlMe of *trans*), -1.7 (AlMe of *cis*), 29.9 (CCH₃ of *cis*), 30.0 (CCH₃ of *trans*), 34.0 (CCH₃), 61.8 (NCH₂ of *cis*), 63.8 (NCH₂ of *trans*), 124.5–148.2 (Ph); ²⁷Al NMR: δ 173.2 (br s, Δw_{46} 6 kHz). MS (*m*/*z*, %): 57 (84, [C(CH₃)₃⁺]), 162 (100, [PhNCH₂-But¹]+), 204 (73, [PhN(CH₂But¹)AlMe]⁺), 219 (66, [PhN(CH₂-But¹)AlMe₂]⁺), 423 (30, [{PhN(CH₂But¹)AlMe₂}₂ - Me]⁺).

[(AIMe₂)₂(µ-B)] 4. Compound H₂(B) (1.21 g, 4.80 mmol) was dissolved in hexane (100 cm³) at 0 °C and AlMe₃ (5 cm³ of a 2.0 mol dm⁻³ solution in hexanes, 10.0 mmol) was added dropwise over 5 min. The solution was set aside for 30 min at 0 °C, then 2 h at ca. 20 °C. Hexane was partially removed in vacuo and the clear solution left at 0 °C for crystallisation, yielding colourless crystals of compound 4 (1.67 g, 95%) (Found: C, 51.8 (duplicate analyses); H, 9.67; N, 7.13. C₁₆H₃₄Al₂N₂Si₂ requires C, 52.7; H, 9.40; N, 7.68%), mp 55-57 °C. ¹H NMR: $\delta - 0.97$ (s, 6H, AlMe), 0.06 (s, 6H, AlMe), 0.21 (s, 18H, SiMe₃), 6.76 (m, 2H, m-C₆H₄) 6.88 (m, 2H, o-C₆H₄); ¹³C NMR: δ -10.5 and -2.9 (AlMe), 0.3 (SiMe₃), 118.8 (m-H), 123.2 (o-H), 142.4 (*ipso-C*); ²⁷Al NMR: δ 171.1 (br $\Delta w_{1/2}$ 2.3 kHz); ²⁹Si NMR: δ -8.84. MS (*m*/*z*, %): 584 (20, [AlMe(**B**)]₂⁺) 364 (10, [Al₂-Me₄(**B**)]⁺), 349 (100, [Al₂Me₃(**B**)]⁺), 292 (100, [AlMe(**B**)]⁺), 277 $(65, [Al(B)]^+), 261 (15, [Al(B) - MeH]^+), 73(55, [SiMe_3]^+).$

 $[(AIMe_2)_2(\mu-B')]$ 5. A solution of AlMe₃ (6.1 cm³ of a 2.0 mol dm⁻³ solution in hexanes, 12.2 mmol) was added dropwise at ca. 0 °C to a solution of $H_2(\mathbf{B})$ (1.50 g, 6.05 mmol) in hexane (30 cm³). The pale orange solution was stirred for 1 h at ca. 20 °C. The volume of the reaction mixture was reduced to ca. 10 cm³. Cooling at 0 °C yielded large colourless crystals of compound 5 (1.44 g, 67%) (Found: C, 65.9; H, 10.41; N, 7.64. C20H38Al2N2 requires C, 66.6; H, 10.62; N, 7.77%), mp 78 °C (decomp.). ¹H NMR: δ -0.90 (s, 6H, AlMe), -0.08 (s, 6H, AlMe), 0.90 (s, 18H, CMe), 2.92 (s, 4H, NCH₂), 6.73-6.85 (m, 4H, Ph); ¹³C NMR: δ -11.1 (AlMe), -5.4 (AlMe), 29.4 (CCH₃), 33.7 (CCH₃), 56.6 (NCH₂), 114.1-142.8 (Ph); ²⁷Al NMR: δ 167.4 (br s, $\Delta w_{\frac{1}{2}}$ 10 kHz).

[(AIMe)(µ-B)]₂ 6. Compound H₂(B) (1.32 g, 5.23 mmol) was dissolved in hexane (100 cm³) at 0 °C and AlMe₃ (2.6 cm³, of a 2.0 mol dm⁻³ solution in hexanes, 5.2 mmol) was added dropwise over 5 min. The solution was set aside for 30 min at 0 °C, then 2 h at ca. 20 °C. Hexane was partially removed in vacuo and the clear solution left at 0 °C for crystallisation, yielding colourless crystals of compound 6 (1.32 g, 85%) (Found: C, 52.3 (duplicate analyses); H, 8.60; N, 8.89 (duplicate analyses). C₂₆H₅₀Al₂N₂Si₂ requires C, 53.4; H, 8.61; N, 9.58%), mp 95 °C (decomp.). ¹H NMR: spectrum appears to be that of a mixture of three isomers ([(AlMe)(µ-B)], I, 50%; [(AlMe)(µ-B)] II, 37% and $[\mu$ -Al(Me)(B)]₂ III, 13%): $\delta = -0.47$ (s, I), -0.42 (s, III) and 0.10 (s, II) [total 6H, AlMe], 0.11 (2d, I), 0.31 (2s, III), 0.38 (2s, II) [total 36H, SiMe₃], 6.48 (t), 6.58 (t) 6.62–6.66 (m), 6.85–7.07 (4 m) [total 8H, C_6H_4]; ¹³C NMR: δ -4.9 (m, AlMe), 1.4, 2.0 (2 s, SiMe₃), 115.4–119.3 (6s), 125.9, 126.3, 135.2, 135.6, 149.7, 150.7 (Ph); ²⁷Al NMR: δ 153.0 (br $\Delta w_{\frac{1}{2}} = 8$ kHz); ²⁹Si NMR: $\delta = -0.56, -1.4$. MS (*m*/*z*, %): 584 (35, [AlMe(**B**)]₂⁺), 569 (10, $[Al(B) - H]_{2}^{+}$, 292 (100, $[AlMe(B)]^{+}$), 277 (55, $[Al(B)]^{+}$), 261 $(15, [Al(B) - MeH]^+), 247 (50, [Al(B) - 2Me]^+), 73 (55,$ $[SiMe_3]^+$).

 $[(AIMe_2){\mu-(H)B'}]_2$ 7. A solution of AlMe₃ (4.23 cm³ of a 2 mol dm⁻³ solution in hexanes, 8.47 mmol) was added to a solution of $H_2(\mathbf{B}')$ (2.1 g, 8.47 mmol) in hexane (30 cm³), at -40 °C. The solution was slowly warmed to ambient temperature and stirred for 3 h, then reduced to about 15 cm³ and cooled to -25 °C to afford colourless crystals of compound 7 (1.98 g, 77%) (Found: C, 69.4; H, 10.82; N, 9.11. C₁₈H₃₃AlN₂ requires C, 71.0; H, 10.92, N, 9.20%), mp 55-57 °C. ¹H NMR: $\delta = 0.26, -0.21$ (2 s, 6H, AlMe), 0.69, 1.19 (2 s, 18H, Bu^t), 2.32 (d, 1H, NH), 3.29 (s, 2H, CH₂), 3.19, 3.23, 3.25 (AB-type, partly overlapped with other CH₂ signal, 2H, CH₂), 6.53-6.58, 6.76-6.79, 6.9–6.93, 7.21–7.27 (m, 4H, Ph); ¹³C NMR: δ –9.5, -8.28 (AlMe), 27.36, 28.87 (CMe₃), 30.78, 34.52 (CMe₃), 57.86, 64.67 (CH₂), 112.27, 112.5, 123.76, 129.48, 131.71, 153.69 (Ph); ²⁷Al NMR: δ 169.5, $\Delta w_{1/2}$ 6 kHz. MS (*m*/*z*, %): 304 (7, [M]⁺), 289 $(11, [M - Me]^+).$

[(AIMe)(µ-B')], 8. Compound 7 (1.6 g, 5.26 mmol) was dissolved in toluene (30 cm³) and heated for 2 d at 100 °C. The solvent was removed and the residue extracted into hexane. After filtration and cooling of the filtrate at -25 °C colourless crystals of compound 8 were obtained (1.05 g, 70%) (Found: C, 70.1; H, 10.16; N, 9.81. C₃₄H₅₈Al₂N₄ requires C, 70.8; H, 10.13; N, 9.71%), mp 163-165 °C. Alternatevely, 8 was synthesised directly from $H_2(\mathbf{B}')$ and AlMe₃ by heating an equimolar mixture in toluene for 2 d at 100 °C. ¹H NMR: δ –0.2 (br s, 3H, AlMe), 0.88 (br s, 18H, Bu^t), 2.75, 2.8, 3.12, 3.17 (AB-type, 4H, CH₂), 6.63–6.68 (m, 4H, Ph); ¹³C NMR (338 K): δ –9.4 (AlMe), 29.9 (CMe₃), 34.3 (CMe₃), 58.7 (CH₂), 116.9, 119.5, 143.0 (Ph); ²⁷Al NMR (338 K): δ 75 Δw_{1/2} 3.2 kHz. MS (*m*/*z*, %): 576 (11, [M]₂⁺), 288 (100, [M]⁺).

[(AlCl)(µ-B')], 9. A solution of LiBuⁿ (15.37 cm³ of a 1.6 mol dm⁻³ solution in hexane, 24.6 mmol) was added to a solution of

l able 10 Crystal data and re	interest for the comp	pounds 1-7, 9 and 10							
	1	7	3	4	S	6	7	6	10
Formula	C ₂₂ H ₄₀ Al ₂ N ₂ Si ₂	C ₁₄ H ₂₆ AlN	C ₂₆ H ₄₄ Al ₂ N ₂	C ₁₆ H ₃₄ Al ₂ N ₂ Si ₂	$C_{20}H_{38}Al_2N_2$	C ₂₆ H ₅₀ Al ₂ N ₄ Si ₄	C ₁₈ H ₃₃ AIN ₂	$C_{32}H_{52}Al_2Cl_2N_{42}$	C22H46
M Crustal system	442.7 Tetraconal	233.34 Orthorhombic	458.39 Monorlinic	Monoclinic M	500.48 Triclinic	Monoclinic Monoclinic	504.44 Triclinic	01/.04 Monoclinic	10.740 Triclini
Space group	P42 ₁ <i>c</i> (No.114)	Pnma (no. 62)	C2/c (no. 15)	P2/n (no. 13)	$P\bar{1}$ (no. 2)	C2/c (no. 15)	$P\bar{1}$ (no. 2)	$P2_1/n$ (no. 14)	$P\bar{1}$ (no.
alĂ	17.2628(3)	11.7498(6)	23.0800(7)	9.9516(3)	7.9936(2)	17.1014(5)	9.6526(5)	12.0101(7)	9.8445(
b/Å	17.2628(3)	15.3318(14)	9.1565(4)	10.0786(3)	10.0922(2)	11.6579(3)	9.7157(5)	14.8750(9)	10.7407
$c/\text{\AA}$	18.0235(5)	8.6902(8)	15.8407(4)	11.4394(3)	28.6783(6)	17.7117(5)	10.6710(6)	20.3163(10)	13.0190
al°	90	90	90	90	86.587(1)	90	90.773(3)	90	98.740(
Blo	90	90	126.852(2)	100.846(2)	86.748(1)	100.098(2)	96.342(3)	106.504(3)	99.440(
710	90	90	90	90	85.995(1)	90	102.991(3)	90	97.884(
U/ų	5371.1(2)	1565.5(2)	2678.7(2)	1126.86(6)	2300.6(1)	3476.4(2)	968.40(9)	3480.0(3)	1323.50
Z	8	4	4	2	4	4	2	4	0
μ (Mo-K α)/mm ⁻¹	0.21	0.11	0.12	0.24	0.13	0.24	0.10	0.26	0.12
Unique reflections, $R_{\rm int}$	4738, 0.063	1410, 0.071	3181, 0.050	1962, 0.041	8008, 0.061	4117, 0.048	4542, 0.051	4566, 0.045	6225, 0
Reflections with $I > 2\sigma(I)$	3976	1193	2625	1817	6742	3225	3879	3780	5143
Final R indices for $I > 2\sigma(I)$	$R_1 = 0.043,$	$R_1 = 0.061,$	$R_1 = 0.053,$	$R_1 = 0.043$,	$R_1 = 0.056$,	$R_1 = 0.057,$	$R_1 = 0.047$,	$R_1 = 0.045$,	$R_1 = 0.0$
	$wR_2 = 0.092$	$wR_2 = 0.124$	$wR_2 = 0.134$	$wR_2 = 0.183$	$wR_2 = 0.141$	$wR_2 = 0.143$	$wR_2 = 0.123$	$wR_2 = 0.106$	$wR_2 = 0$
R indices (all data)	$R_1 = 0.059,$	$R_1 = 0.075$,	$R_1 = 0.067$,	$R_1 = 0.046$,	$R_1 = 0.067,$	$R_1 = 0.076$,	$R_1 = 0.057,$	$R_1 = 0.057,$	$R_1 = 0.0$
	$wR_2 = 0.099$	$wR_2 = 0.129$	$wR_2 = 0.140$	$wR_2 = 0.186$	$wR_2 = 0.147$	$wR_2 = 0.158$	$wR_2 = 0.131$	$wR_2 = 0.115$	$wR_2 = 0$

 N_2N_2

388^{\$\$}8888[©]

Dalton Trans., 2003, 1821-1829

1827

H₂(**B**') (3.05 g, 12.3 mmol) in toluene (50 cm³). The suspension was stirred for 1 h, cooled to -78 °C and AlCl₃ (1.64 g, 12.3 mmol) was added. The mixture was slowly warmed to ambient temperature and stirred for 16 h. The precipitate was filtered off and the solvent removed from the filtrate *in vacuo*. The remaining solid was dissolved in hexane and first frozen in liquid N₂ and then stored at -25 °C for several days to afford **9** as a beige solid (1.85 g, 49%) (it was too labile for elemental analysis), mp 45–50 °C (decomp.). ¹H NMR: δ 0.89 (s, 9H, Bu^t), 3.05 (vbr quartet, 4H, CH₂), 6.49–6.54 (m, 4H, Ph); ¹H NMR (343 K): δ 0.92 (s, 9H, Bu^t), 2.99, 3.02, 3.12, 3.15 (AB-type, 4H, CH₂), 6.54–6.59 (m, 4H, Ph); ¹³C NMR (343 K): δ 29.83 (CMe₃), 34.17 (CMe₃), 59.52 (CH₂), 117.8, 120.75, 140.93 (Ph); ²⁷Al NMR: δ 115.2 Δw_{v_2} 3 kHz. MS (*m*/*z*, %): 273 (6%, [M - Cl]⁺).

[(AlMe₃)₂·H₂(C')] 10. A solution of AlMe₃ (8.5 cm³ of 2.0 mol dm⁻³ solution in hexanes, 17.0 mmol) was added dropwise at *ca*. 0 °C to a solution of H₂(C') (2.00 g, 8.06 mmol) in hexane (30 cm³). The pale green suspension was stirred for 2 h at ambient temperature. Toluene (40 cm³) was added and the reaction mixture was heated until complete dissolution was achieved. Upon cooling, colourless crystals of compound **10** formed (2.50 g, 79%) (Found: C, 65.9; H, 11.88; N, 7.18. C₂₂H₄₆Al₂N₂ requires C, 67.3; H, 11.81; N, 7.14%), mp 137–139 °C. ¹H NMR: δ –0.55 (s, 18H, AlMe), 0.55 (s, 18H, CMe), 3.30 (d, ³J_{HH} = 5.7, 4H, NCH₂), 3.83 (t, ³J_{HH} = 5.7 Hz, 2H, NH), 6.62–6.73 (m, 4H, Ph); ¹³C NMR: δ –8.6 (AlMe), 27.7 (CCH₃), 32.8 (CCH₃), 61.2 (NCH₂), 113.7–145.5 (Ph); ²⁷Al NMR: δ 190.6 (br s, Δw₁₄ 11 kHz).

[{AlMe₂(tmen)}₂(μ -C')] 11. A solution of LiBuⁿ (12.0 cm³ of a 1.6 mol dm⁻³ solution in hexane, 19.2 mmol) was added to a solution of H₂(C') (2.23 g, 9.0 mmol) and tmen (2.30 g, 19.8 mmol) in hexane (20 cm³). The suspension was stirred 1 h at ca. 25 °C, then added at ca. 0 °C to a solution of AlClMe₂ (19.0 cm³ of a 1.0 mol dm⁻³ solution in hexanes, 19.0 mmol). The beige suspension was stirred for 2 h at ca. 25 °C, then filtered. Volatiles were removed from the filtrate in vacuo. The residual white solid was washed with hexane and dried in vacuo to give compound 10 (3.16 g, 97%), which was not soluble in hydrocarbons or chlorinated solvents and was not characterised. Addition of 2 equivalents of tmen in thf, followed by removal of volatiles under moderate vacuum, produced the adduct 11, as an orange oil in quantitative yield. ¹H NMR: δ -0.39 (s, 12H, AlMe), 1.02 (s, 18H, CMe₃), 1.98 (s, 24H, NMe₃), 2.37 (s, 8H, NCH₂ of tmen), 3.42 (s, 4H, NCH₂), 6.59-7.20 (m, 4H, Ph).

Crystallography

Diffraction data were collected on a Enraf-Nonius Kappa-CCD diffractometer at 173(2) K, using monochromated Mo-K α radiation, $\lambda = 0.71073$ Å. Crystals were mounted on the diffractometer under a stream of cold nitrogen gas at 173 K. The structures were refined on all F^2 with H atoms in riding mode, using SHELXL-97.³⁷ Further details for are found in Table 10.

CCDC reference numbers 202056–202064.

See http://www.rsc.org/suppdata/dt/b3/b300957m/ for crystallographic data in CIF or other electronic format.

Acknowledgements

We thank the European Commission for the award of a Marie Curie fellowships for P. G. M., the Leverhulme Trust for a fellowship for J. P. B and the EPSRC for an Advanced Fellowship for B. G. and other support.

References

- 1 M. F. Lappert, P. P. Power, A. R. Sanger and R. C. Srivastava, *Metal and Metaloid Amides*, Ellis Horwood, Wiley, Chichester, 1980.
- 2 F. Antolini, P. B. Hitchcock, M. F. Lappert and P. G. Merle, *Chem. Commun.*, 2000, 1301.
- 3 J.-P. Bezombes, P. B. Hichcock, M. F. Lappert and P. G. Merle, J. Chem. Soc., Dalton Trans., 2001, 816.
- 4 S. Danièle, C. Drost, B. Gehrhus, S. M. Hawkins, P. B. Hitchcock, M. F. Lappert, P. G. Merle and S. G. Bott, J. Chem. Soc., Dalton Trans., 2001, 3179.
- 5 L. J.-M. Pierssens, D.Phil. Thesis, University of Sussex, 1997.
- 6 A. W. Duff, P. B. Hitchcock, M. F. Lappert, R. G. Taylor and J. A. Segal, *J. Organomet. Chem.*, 1985, **293**, 271.
- 7 S. Daniele, P. B. Hitchcock, M. F. Lappert and P. G. Merle, J. Chem. Soc., Dalton Trans., 2001, 13.
- 8 H. Braunschweig, B. Gehrhus, P. B. Hitchcock and M. F. Lappert, Z. Anorg. Allg. Chem., 1995, 621, 1922.
- 9 S. Danièle, P. B. Hitchcock and M. F. Lappert, *Chem. Commun.*, 1999, 1909.
- 10 H. Braunschweig, C. Drost, P. B. Hitchcock, M. F. Lappert and L. J.-M. Pierssens, *Angew. Chem., Int. Ed. Engl.*, 1997, 36, 261.
- 11 H. Braunschweig, P. B. Hitchcock, M. F. Lappert and L. J.-M. Pierssens, Angew. Chem., Int. Ed. Engl., 1994, 33, 1156.
- (a) B. Gehrhus, M. F. Lappert, J. Heinicke, R. Boese and D. Bläser, J. Chem. Soc., Chem. Commun., 1995, 1931; (b) B. Gehrhus, P. B. Hitchcock, M. F. Lappert, J. Heinicke, R. Boese and D. Bläser, J. Organomet. Chem., 1996, **521**, 211; (c) B. Gehrhus and M. F. Lappert, J. Organomet. Chem., 2001, **617–618**, 209.
- 13 D. S. Brown, A. Decker and A. H. Cowley, *Polyhedron*, 1996, **15**, 4109.
- 14 J. Pfeiffer, W. Maringgele, M. Noltemeyer and A. Meller, *Chem. Ber.*, 1989, **122**, 245.
- 15 G. J. Pindado, M. Thornton-Pett and M. Bochmann, J. Chem. Soc., Dalton Trans., 1998, 393.
- 16 (a) T. M. Cameron, I. Ghiviriga, K. A. Abboud and J. M. Boncella, Organometallics, 2001, 20, 4378; (b) T. M. Cameron, C. G. Ortiz, I. Ghiviriga, K. A. Abboud and J. M. Boncella, Organometallics, 2001, 20, 2032; (c) C. G. Ortiz, K. A. Abboud and J. M. Boncella, Organometallics, 1999, 18, 4253.
- 17 (a) D. D. VanderLende, K. A. Abboud and J. M. Boncella, Organometallics, 1994, 13, 3378; (b) R. L. Huff, S.-Y. S. Wang, K. A. Abboud and J. M. Boncella, Organometallics, 1997, 16, 1779; (c) S.-Y. S. Wang, K. A. Abboud and J. M. Boncella, J. Am. Chem. Soc., 1997, 119, 11990; (d) S.-Y. S. Wang, D. D. VanderLende, K. A. Abboud and J. M. Boncella, Organometallics, 1998, 17, 2628; (e) J. M. Boncella, D. D. VanderLende and S.-Y. S. Wang, J. Organomet. Chem., 1999, 591, 8; (f) R. C. Mills, K. A. Abboud and J. M. Boncella, Organometallics, 2000, 19, 2953.
- 18 M. P. Coles and R. F. Jordan, J. Am. Chem. Soc., 1997, 119, 8125.
- 19 L. Bourget, P. B. Hitchcock and M. F. Lappert, J. Chem. Soc., Dalton Trans., 1999, 2645.
- 20 F. Coslédan, P. B. Hitchcock and M. F. Lappert, Chem. Commun., 1999, 705.
- 21 (a) D. Doyle, Yu. K. Gun'ko, P. B. Hitchcock and M. F. Lappert, J. Chem. Soc., Dalton Trans., 2000, 4093; (b) J. A. R. Schmidt and J. Arnold, Organometallics, 2002, 21, 2306.
- 22 H. Schumann, J. Winterfeld, E. C. E. Rosenthal, H. Hemling and L. Esser, Z. Anorg. Allg. Chem., 1995, 621, 122.
- 23 T. Sakakibara, T. Hirabayashi and Y. Ishii, J. Organomet. Chem., 1972, 46, 231.
- 24 R. L. Wells, H. Rahbarnoohi, P. B. Glaser, L. M. Liable-Sands and A. L. Rheingold, *Organometallics*, 1996, 15, 3204.
- 25 H. Hess, A. Hiderer and S. Steinhauser, Z. Anorg. Allg. Chem., 1970, 327, 1.
- 26 D. C. Bradley, I. S. Harding, I. A. Maia and M. Motevalli, J. Chem. Soc., Dalton Trans., 1997, 2969 and references therein.
- 27 E. K. Styron, C. H. Lake, C. L. Watkins and L. K. Krannich, Organometallics, 1998, 17, 4319.
- 28 F. J. Craig, A. R. Kennedy and R. E. Mulvey, *Acta Crystallogr.*, Sect. C, 2000, 56, 31.
- 29 (a) S. Amirkalili, P. B. Hitchcock, A. D. Jenkins, J. Z. Nyathi and J. D. Smith, J. Chem. Soc., Dalton Trans., 1981, 377; (b) H. Sachdev, C. Wagner, C. Preis, V. Huch and M. Veith, J. Chem. Soc., Dalton. Trans., 2002 and references therein.
- 30 (a) J. J. Byers, B. Lee, W. T. Pennington and G. H. Robinson, *Polyhedron*, 1992, **11**, 967; (b) O. M. Kekia, L. K. Krannich,

- 31 G. A. Anderson, F. R. Forgaard and A. Haaland, Acta Chem. Scand., 1972, 26, 1947.
- Stand., 17/2, 20, 1947.
 D. S. Brown, A. Decker, C. A. Schnee and A. H. Cowley, *Inorg. Chem.*, 1995, 34, 6415.
 M. G. Gardiner, S. M. Lawrence and C. L. Raston, *J. Chem. Soc.*,
- Dalton. Trans., 1996, 4163.
- 34 E. S. Schmidt, A. Jockisch and H. Schmidbaur, J. Chem. Soc., Dalton Trans., 2000, 1039.
- 35 D. Chakraborty and E. Y.-X. Chen, Organometallics, 2002, 23.
- 36 D. Pappalardo, C. Tedesco and C. Pellechia, *Eur. J. Inorg. Chem.*, 2002, 621.
- 37 G. M. Sheldrick, SHELXL 97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.