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ABSTRACT: The synthesis of 1,1-dicarbonyl sulfoxonium
ylides by palladium-catalyzed carbonylation of aryl halides or
triflates with α-carbonyl sulfoxonium ylides has been
developed for the first time. This method provides a general
approach to synthetically useful 1,1-dicarbonyl sulfoxonium
ylides in high efficiency. The protocol displays a wide substrate scope, showing that the resulting 1,1-dicarbonyl sulfoxonium
ylides have been converted into the corresponding 1,3-dicarbonyl compounds.

The transition-metal-catalyzed carbonylation reaction has
now emerged as one of the most powerful methods for

the synthesis of carbonyl-containing compounds, and a variety
of value-added bulk and fine chemicals are available by this
transformation.1 Since the pioneering work of Heck and
coworkers in 1974, palladium-catalyzed carbonylative coupling
reactions of aromatic halides have undergone rapid develop-
ment during the recent years.2 Palladium-catalyzed carbon-
ylations of aryl halides, followed by the attack of different types
of nucleophiles such as alcohols, amines, and water, are known
as alkoxycarbonylation, aminocarbonylation, and hydroxycar-
bonylation.3 In particular, they have been used for the
synthesis of a wide range of valuable esters,4 amides,5

carboxylic acids,6 aldehydes,7 ketones,8 and heterocycles.9

Sulfur (sulfonium and sulfoxonium) ylides10 have served as
significant synthetic precursors in many organic trans-
formations, such as aziridinations, epoxidations, cyclopropana-
tions, olefinations, and rearrangements.11 Their synthetic
potential was demonstrated in the synthesis of various natural
products, pharmaceuticals, and chemical materials as well.12 In
addition, sulfoxonium ylides13 were used as versatile carbenoid
precursors in X−H (X = C, N, O, S) insertion reactions,14 and
transition-metal-catalyzed C−H functionalization has been
well developed.15 Consequently, it would be desirable to
develop general protocols for the preparation of sulfoxonium
ylides. Here it is important to mention that Ais̈sa and
coworkers developed an interesting palladium-catalyzed
procedure for the synthesis of bis-substituted sulfoxonium
ylides in 2018.11g By directly cross-coupling aryl halides and
aryl triflates with α-ester sulfoxonium ylides, good yields of the
desired ylides can be obtained. In 1964, König and Metzger
reported their work on the acylation of trimethylsulfoxonium
ylide with benzoic anhydride.16a However, methods to
synthesize 1,1-dicarbonyl sulfoxonium ylides were still limited.
In general, these ylides can be prepared from the generation of
carbenoids by transition-metal-catalyzed decomposition of
diazo compounds or iodonium ylides. In 1970, Dost and
Gosselck reported the decomposition of diazo compounds to
provide sulfoxonium ylides by using copper and silver salts

(Figure 1, eq 1),16b and intramolecular transformations using
rhodium catalysts were studied by the research group of

Moody.17 In 2017, Vaitla and coworkers demonstrated the
direct synthesis of 1,1-dicarbonyl sulfoxonium ylides from
malonates and sulfoxides via an iodonium ylide generated in
suit (Figure 1, eq 2).18 The groups of Nemykin and Zhdankin
developed a highly soluble iodonium ylide, which could be
transformed into sulfoxonium ylides with DMSO by using
Rh2(OAc)4 as the catalyst.19 On the basis of our continuous
interest in carbonylations, and to the best of our knowledge,
sulfoxonium ylides as the nucleophiles in the carbonylative
reactions have not been reported until recently. Herein, we
think a complementary practical approach to this interesting
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Figure 1. Synthesis of 1,1-dicarbonyl sulfoxonium ylides.
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1,1-dicarbonyl sulfoxonium ylides can be achieved by the
carbonylation of aryl halides with sulfoxonium ylides.
To verify our hypothesis, we initially chose α-estersulfoxo-

nium ylide (2a) and iodobenzene (1a) as the model substrates,
with Pd(PPh3)4 as the catalyst. We discovered that the desired
product 3a was formed in 72% yield using Cs2CO3 (2 equiv)
as the base in CH3CN under 10 bar of CO gas pressure at 100
°C (Table 1, entry 1). The yield of 3a could be increased to

80% with 5 mol % Pd(PPh3)4 (Table 1, entry 2). Gratifyingly,
the reaction could also give 3a in 48% yield and 28% yield
when the bromobenzene or phenyl triflate was used as the
substrate (Table 1, entries 3 and 4). However, product 3a was
always mixed with small amounts of triphenylphosphine oxide,
even after two applications of flash chromatography. Therefore,
we decided to identify alternative conditions to avoid the
impurity. We thus evaluated different palladium precursors in
the presence of PPh3 ligand, and Pd(OAc)2 proved to be more
efficient than Pd2(dba)3 (Table 1, entries 5 and 6).
Subsequently, the screening of various monodentate and
bidentate phosphine ligands showed that DPEphos was the
optimal ligand for this transformation (Table 1, entries 7−12).
An increase in the catalyst loading to 5 mol % Pd(OAc)2 and
10 mol % DPEphos gave 3a in 88% yield (Table 1, entry 13).
Reducing the base Cs2CO3 to 1.1 equiv furnished the product
3a in 89% isolated without any impurity (Table 1, entry 14).
Further exploration of the bases resulted only in a significant
decrease in the yield of 3a (Table S1). In particular,
bromobenzene and phenyl triflate were also well applicable
to this transformation to give the desired product 3a in high
yield (Table 1, entries 15 and 16). Therefore, the optimal
reaction conditions were defined as Pd(OAc)2 (5 mol %),

DPEphos (10 mol %), and Cs2CO3 (1.1 equiv) in CH3CN at
100 °C under CO (10 bar) for 20 h.
We then explored the substrate scope of aryl halides with

sulfoxonium 2a (Scheme 1). A variety of aryl iodides bearing
electron-donating substituents at the para positions were
successfully converted to the desired products 3a−3g and 3p

Table 1. Screening of Reaction Conditionsa

entry X [Pd] ligand (mol %) yield (%)

1 I Pd(PPh3)4 72
2 I Pd(PPh3)4 80b

3 Br Pd(PPh3)4 48
4 OTf Pd(PPh3)4 28
5 I Pd2(dba)3 PPh3 (10) 33
6 I Pd(OAc)2 PPh3 (10) 65
7 I Pd(OAc)2 PCy3 (10) trace
8 I Pd(OAc)2 BUPAd2 (10) 48
9 I Pd(OAc)2

TBu3P·HF4 (10) 63

10 I Pd(OAc)2 DPPE <5
11 I Pd(OAc)2 Xantphos 69
12 I Pd(OAc)2 DPEPhos 78
13 I Pd(OAc)2 DPEPhos 88c

14 I Pd(OAc)2 DPEPhos 89c,d

15 Br Pd(OAc)2 DPEPhos 80c,d

16 OTf Pd(OAc)2 DPEPhos 81c,d

17 I Pd(OAc)2 DPEPhos 86c,d,e

aReaction conditions: 2a (0.2 mmol), 1 (0.3 mmol), [Pd] (2.5 mol
%), ligand (5.0 mol % or 10 mol %), CH3CN (1.0 mL), Cs2CO3 (2.0
equiv), CO (10 bar), 100 °C, 20 h, isolated yield. bPd(PPh3)4 (5.0
mol %). cPd(OAc)2 (5.0 mol %), DPEphos (10 mol %). dCs2CO3
(1.1 equiv). e80 °C.

Scheme 1. Substrate Scope of Various Aryl Halides and
Triflatesa

aReaction conditions: 2a (0.2 mmol), 1 (0.3 mmol), Pd(OAc)2 (5
mol %), DPEphos (10 mol %), CH3CN (1.0 mL), Cs2CO3 (1.1
equiv), CO (10 bar), 100 °C, 20 h, isolated yield. [a] Use aryl
triflates. [b] Use aryl bromides. [c] Use 5 mol % Pd(PPh3)4 as
catalyst. [d] Use vinyl triflate.
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in good to excellent yield. The structure of 3a was confirmed
by X-ray crystallography.20 Various electron-withdrawing
substituents such as fluoro, chloro, and trifluoromethyl, esters,
as well as ketones at the para positions of aryl iodides were all
well tolerated and afforded the corresponding substituted
products 3h−3o in 70−92% yield. Ortho- or meta-substituted
aryl halides were able to give the corresponding products in
moderate yield as well (3q−3t). Moreover, disubstituted aryl
iodides and bromonaphthalenes also reacted smoothly to
furnish the desired products 3u−3z in 60−86% yield.
Fortunately, benzodioxole- and quinoline- containing sub-
strates were successfully compatible under the reaction
conditions (3aa, 3ab, 71−93% yields). Importantly, hetero-
iodides such as 2-iodothiophene and 3-iodopyridine also
worked well, furnishing 3ac and 3ad in 74−78% yield. Vinyl
triflates were also well applicable in this transformation to give
the desired products 3ae−3ag in good yield, and these vinyl
triflates could be easily prepared from the corresponding
carbonyl compounds.21 To demonstrate the potential
applications, the late-stage modification of natural products
and pharmaceutical derivatives was investigated. Camphor-,
estrone-, menthol-, and glucose-derived 3ah−3ak were all
isolated in good yield (68−90% yield, Scheme 1).
Under the optimized conditions, the scope of different α-

estersulfoxonium ylides 2 was subsequently examined (Scheme
2). The sulfoxonium ylides bearing an alkyl group gave the

expected products (3al−3ao) in excellent yield. However,
sulfoxonium ylide with an aryl group provided only the
corresponding product 3ap in 41% isolated yield.
Meanwhile, we were wondering if this catalytic system could

be extended to the β-ketosulfoxonium ylides. To our delight, in
the reactions of iodobenzene 1a with β-ketosulfoxonium ylide
2g under the above reaction conditions, the reaction could
furnish the target product 3aq in moderate yield. Unfortu-
nately, although a detailed exploration of reaction parameters,
such as catalysts, bases, temperature, ligands, and solvents, was
carried out (Tables S2−S5), the yield of 3aq was only achieved
with up to 52% NMR yield and isolated in 41% yield. Then,
the substrate scope of β-ketosulfoxonium ylide (2g−2n) was
examined (Scheme 3). The β-ketosulfoxonium ylides bearing
an alkyl or aryl group gave the expected products (3aq−3aw)

in 41−85% yield. Interestingly, intramolecular reactions could
also smoothly proceed to form 3ax in 56% yield.
The practicability of the presented methodology was

demonstrated with a 4 mmol scale of reaction in the presence
of 2.5 mol % palladium catalyst, and the desired products 3a
and 3an were obtained in 91 and 90% yields, respectively
(Scheme 4, eq 1). As an application of the ylides, some of them

were subjected to a desulfurization reaction using Raney nickel
in refluxing 2-propanol and provided respective 1,3-dicarbonyl
compounds in good yield (72−78%, Scheme 4, eq 2a).22

Furthermore, some known transformations were performed,
such as N−H and Cl−H insertions (Scheme 4, eqs 2b−d).23
The treatment of sulfoxonium yield 3 with aniline or acetamide
in the presence of [Ir(COD)Cl]2 (1 mol %) in toluene at 150
°C afforded N−H insertion products 5 or 6 successfully.
Likewise, the treatment of 3a with LiCl and MsOH in THF at
50 °C gave the Cl−H insertion product 7 in 56% isolated yield.

Scheme 2. Substrates Scope of α-Estersulfoxonium Ylidesa

aReaction conditions: 1a (0.3 mmol), 2 (0.2 mmol), Pd(OAc)2 (5
mol %), DPEphos (10 mol %), CH3CN (1.0 mL), Cs2CO3 (1.1
equiv), CO (10 bar), 100 °C, 20 h, isolated yield.

Scheme 3. Carbonylation of β-Ketosulfoxonium Ylidesa

aReaction conditions: 1a (0.3 mmol), 2 (0.2 mmol), Pd(OAc)2 (2.5
mol %), DPEphos (5 mol %), CH3CN (1.0 mL), Cs2CO3 (1.1 equiv),
CO (10 bar), 80 °C, 20 h.

Scheme 4. Gram-Scale Synthesis and Synthetic
Transformationsa

a(a) Raney nickel, IPA, reflux, 2 h. (b) Aniline, [Ir(COD)Cl]2 (2 mol
%), toluene, 150 °C. (c) Acetamide, [Ir(COD)Cl]2 (2 mol %),
toluene, 150 °C. (d) LiCl, MsOH, THF, 50 °C.
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In conclusion, we have developed the first palladium-
catalyzed carbonylation of α-estersulfoxonium ylides or β-
ketosulfoxonium ylides for the synthesis of 1,1-dicarbonyl
sulfoxonium ylides from easily available aryl halides and
triflates. This method provides a general approach to a variety
of synthetically useful 1,1-dicarbonyl sulfoxonium ylides in
good yield with ease of scale up. Additionally, the
desulfurization of representative sulfoxonium ylides success-
fully afforded the corresponding 1,3-dicarbonyl compounds.
Moreover, we also demonstrated that these ylides can be
readily diversified to other important dicarbonyl compounds of
choice.
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