Inorganica Chimica Acta 374 (2011) 79-87

Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Selectivity of attack on a Si–C(sp³) sigma bond coordinated to Ni^{II \doteqdot}

Matthew F. Laird, Nikolay P. Tsvetkov, Maren Pink, Tao He, René W. Buell, Kenneth G. Caulton*

Department of Chemistry, Indiana University, Bloomington, IN, United States

ARTICLE INFO

Article history: Available online 30 December 2010

Dedicated to Professor W. Kaim

Keywords: Nickel Pincer Si–C reactivity Alkyne reactivity

ABSTRACT

(PNP)Ni⁺ (as its $(BAr_4^{F} - salt)$ adds PhCN to Ni, but HX cleaves the Si-CH₂ bond to form Ni[$\eta^{2-}({}^{t}Bu_2PCH_2-SiMe_2)N(H)(SiMe_2X)][\eta^{2}-CH_2{}^{t}Bu_2P]^+$, for X = OMe, piperidyl, N(H)CH₂Ph, N(H)Ph, morpholinyl. The diprotic reagent H₂O gives ($\eta^{2}-{}^{t}Bu_2PCH_2SiMe_2OSiMe_2NH_2$)($\eta^{2}-{}^{t}Bu_2CH_2P$)Ni⁺. RCCH (R = Ph, SiMe₃, ${}^{t}Bu$) reacts, through three detected intermediates, to form (${}^{t}Bu_2PCH_2SiMe_2)N(H)(SiMe_2CH_2{}^{t}Bu_2PCCR)Ni^+$, a product where one P has been oxidized and Ni reduced, each by two electrons. This shows the dominant influence on reactivity of Si-C bond activation by its unconventional donation to nickel in the structure of (PNP)Ni^+.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

We have shown that the species (PNP)Ni⁺, **1**, where PNP is the anion (^tBu₂PCH₂SiMe₂)₂N⁻¹, synthesized by chloride removal from (PNP)NiCl using anhydrous NaB(C₆H₃(CF₃)₂)₄ (NaBAr_F⁴) in noncoordinating solvent, is not simply a T-shaped three coordinate species [1]. The Lewis acidity of such a structure is apparently very high, since the ground state structure of the species (Scheme 1) has one P located transoid to the amide nitrogen, and the electron density of one Si-C sigma bond donates to nickel, stretching that bond by \sim 0.2 Å. Studies with nucleophiles as weak as triflate show that its addition product to (PNP)Ni⁺ is not that from binding to nickel, but rather cleavage of the Si-C bond, to form a ^tBu₂PCH₂⁻ ligand which binds η^2 to the metal. The LUMO of structure **1** [1] is along the coordinated Si-C bond, indicating that Lewis base attack occurs perpendicular to that bond, not "back side," anti to the stretched Si-C bond. When fluoride is the attacking nucleophile, the analogous reaction happens, and it was possible to show that this Si/C cleavage product is more thermodynamically stable than the conventional isomeric (PNP)Ni-nucleophile structure. However, in its reaction with H₂, (PNP)Ni⁺ shows addition of nucleophilic H⁻ to nickel, not to the Si–C bond [2].

Both chloride and carbon monoxide bind at nickel however. In short, the unconventional (PNP)Ni⁺ structure makes this cation a multifunctional reagent, electrophilic at both Ni and Si.

We report here a more general exploration of the reactivity of (PNP)Ni⁺ with nucleophiles of a variety of types, which reveal that attack selectivity is determined by the arriving nucleophile. Using

E-mail address: caulton@indiana.edu (K.G. Caulton).

alcohols, or primary or secondary amines and even unconventional nucleophiles such as RCCH, reveals that (PNP)Ni⁺ also shows Bronsted basicity at its amide nitrogen. Efforts to systematically understand the multifunctional reactivity of (PNP)Ni⁺ are discussed. In general, this report seeks to understand which of the product structures in Scheme 1 is produced for a variety of reagents in their reactions with (PNP)Ni⁺. Will reaction occur *at nickel*, **3**, with displacement of this unique Si–C donation to the metal, or will *the Si–C bond* be directly attacked, **2**?

We will explore here OH nucleophiles and also primary amines.

2. Results

2.1. General

The reaction of (PNP)Ni⁺, as its BAr^F salt, is conventional with PhCN: a 1:1 adduct forms completely at nickel, and this adduct is unchanged by vacuum drying at 25 °C. One additional equivalent of PhCN causes no change in the spectra of (PNP)Ni(NCPh)⁺, indicating that this four coordinate planar (C_{2v}) species is not significantly Lewis acidic, nor is there any attack at the Si–C bond.

There is no reaction between (PNP)Ni⁺ and 1 atm of N₂ or N₂O, showing the limits of reactivity of this cation; ethylene, 1 atm, is likewise unreactive, as is styrene, in equimolar amount. There is no reaction (e.g., no proton transfer) between (PNP)Ni⁺ and 2,4,6^{-t}Bu₃C₆H₂(OH), nor with CO₂ or ethyl vinyl ether, all carried out in CD₂Cl₂.

2.2. Water

One reaction was discovered, apparently due to adventitious water in the unreactive reagents N_2 and N_2O . This product

 ^{*} In honor of Wolfgang Kaim, who showed us much about spin delocalization.
 * Corresponding author.

^{0020-1693/\$ -} see front matter @ 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.ica.2010.12.061

(Scheme 2) has an AX ³¹P{¹H} NMR pattern, and shows only C_s symmetry in its ¹H NMR spectrum. A crystal structure determination of **5** shows this to be the product of nucleophilic attack of water oxygen on one silicon of the PNP ligand. Rearrangement, together with two proton transfer steps, leaves one ¹Bu₂PCH₂SiMe₂–O-SiMe₂–NH₂ ligand, together with the ¹Bu₂PCH₂ ligand (Fig. 1). It is thus a cation with atom composition being that of (PNP)Ni⁺ plus one H₂O. In the solid state, this exists as an ion pair via hydrogen bonding of one of the NH protons to one F of CF₃ of the BAr⁴_F anion. The identity of this product clearly establishes that silicon shows

Fig. 1. ORTEP view (50% probabilities) of the non-hydrogen atoms of (${}^{1}Bu_{2}PCH_{2}SiMe_{2}OSiMe_{2}NH_{2}$)(${}^{1}Bu_{2}CH_{2}P$)Ni⁺ from its B(C₆H₃(CF₃)₂)₄ salt, showing selected atom labeling. Unlabelled atoms are carbons, and the two H on nitrogen are indicated. Selected structural parameters (Å, °): Ni1–C14, 1.961(5); Ni1–N1, 2.001(4); Ni1–P2, 2.1802(13); Ni1–P1, 2.2574(12); Si1–O1, 1.650(3); Si2–O1, 1.625(3); C14–Ni1–N1, 159.00(17); N1–Ni1–P2, 109.61(11); C14–Ni1–P1, 99.61(14); N1–Ni1–P1, 101.08(10); P2–Ni1–P1, 148.82(6); Si2–O1–Si1, 137.42(19); Si2–N1–Ni1, 121.3(2).

its characteristic reactivity, and the reaction does not stop at the simple adduct, (PNP)Ni(H₂O)⁺. At shorter reaction times, an intermediate is seen, then disappears; this species has the ³¹P NMR signature of the single Si/C cleavage product, **4**, with *trans* phosphorus groups, by comparison to other products reported later here.

This prompted us to consider more broadly the question of where various weakly acidic nucleophiles will attack the unusual structure of (PNP)Ni⁺, given that the Si–C bond is "activated" by being bound to the metal. We have undertaken this study with progressively more complicated analogs of water, being amines (primary and secondary) and alcohols, to evaluate the effect of different numbers of mobile protons.

2.3. MeOH [3-5]

Methanol was chosen to prevent formation of two Si/O bonds. (PNP)Ni⁺ reacts with equimolar methanol in dichloromethane within time of mixing at -78 °C to give complete conversion to a single product with an AX ³¹P{¹H} NMR spectrum whose $J_{PP'}$ value, 182 Hz, indicates the phosphorus atoms to be *trans* in the coordination sphere. Structure **6**, Scheme 3, is consistent with the ¹H NMR spectrum for this species, including an NH proton observed (very broad) at 6.1 ppm. This shows that isomerization of the ¹Bu₂PCH₂ ligand to a location with the two P mutually *trans* has already occurred, but there is no proton migration to this CH₂ on nickel.

2.4. Primary amines

Benzyl amine reveals behavior similar to that of methanol in spite of it being a primary amine, hence having two mobile protons. The reaction of equimolar reagents in dichloromethane gives an AX pattern (J_{PP} = 178 Hz); all of these chemical shifts and J values are very similar to those observed with methanol, consistent with the ring-opened product.

Reaction of (PNP)Ni⁺ with ^{$t}BuNH_2$ (chosen to simplify the ¹H NMR spectrum of the amine substituent) in CD₂Cl₂ proceeds to a</sup>

X = MeO, HO, piperidyl, NH(CH₂Ph), NH(^tBu), morpholinyl

Scheme 3.

steady state in less than 10 min to produce one major product, having an AX ${}^{31}P{}^{1}H{}$ NMR pattern. The *J* value in the AX pattern, 182 Hz, shows that these two phosphorus are mutually trans. The AX product is unchanged in solution over a period of 5 days.

Even a less nucleophilic primary amine also attacks away from the metal, to cleave the Si-C bond. Reaction with aniline is complete in less than 5 min to form a product with spectra somewhat analogous to the others reported above. The proton NMR shows a molecule with no symmetry, and ^tBu doublets indicate no strong coupling between phosphorus nuclei (hence phosphorus are not trans). The absence of any symmetry indicates that the PNP nitrogen has been protonated (i.e., chiral N), as well as its backbone ruptured. The curious feature of the room temperature ³¹P{¹H} NMR spectrum is the fact that one of the peaks (\sim 9 ppm) is very broad, and the other peak, while sharper, is broad enough to not resolve any PP' coupling of less than 200 Hz. Variable temperature ³¹P NMR spectra show reversible sharpening of this 9 ppm feature, but never sharpening to the point where $J_{PP'}$ is resolved, even at -60 °C. Thus, the product detected has inequivalent phosphorus nuclei, consistent with the other nucleophile reactions. The dynamic effects on phosphorus NMR are suggested to originate in alternate conformations of the phenyl substituent, or also perhaps hydrogen bonding involving either of the two NH protons.

2.5. Secondary amines

The secondary amine piperidine was added to (PNP)Ni⁺ in dichloromethane at 25 °C. An evident color change and ³¹P NMR were used to establish complete conversion (**7**, Scheme 4) of **1** to an AX spectrum ($J_{PP'}$ = 183 Hz), together with lesser amounts of

three other singlet signals. This AX NMR pattern immediately confirms attack on the Si–C bond, to cleave the ligand backbone. If the reaction is carried out at -78 °C, only the AX species is produced; this solution converts to one of the three singlet species slowly (2 days) at 25 °C, indicating the reaction path to involve an AX intermediate which transforms to a species **8** with one phosphorus NMR signal.

In the proton chemical shift region near 3 ppm of this final product we observe a non-first order NMR pattern due to two non-equivalent protons on the CH₂ group adjacent to piperidine N; these are well separated in chemical shift from the other CH₂CH₂CH₂ protons. This non-equivalence alone indicates that the nitrogen is four coordinate (no rapid inversion at N), hence bound to nickel. These signals undergo no change under conditions of phosphorus decoupling, so any ${}^{4}J_{PH}$ is unresolved. Extraction into pentane shows NMR spectra indicative of C_s symmetry: one 'Bu chemical shift (a doublet), 2 SiMe₂ chemical shifts, one CH₂ chemical shift and no signals for BAr⁴_F. The ESI-mass spectrum showed the presence in **8** of one (solvent-derived) chloride, and only one phosphorus in this compound, which is thus not a salt, but a neutral molecule.

In order to simplify the ¹H NMR spectral interpretation for the amine ring hydrogens, the reaction of (PNP)Ni⁺ with morpholine was studied, since then only CH₂CH₂ groups are involved. Reaction (1:1, at 25 °C) in CD₂Cl₂ shows primarily production of an AX $^{31}P{^{1}H}$ NMR pattern. The $J_{PP'}$ value in the AX pattern, 180 Hz, indicates the two phosphorus nuclei to be mutually trans. After 5 days in CD₂Cl₂, extraction of the dried residue into pentane shows this fraction to have a phosphorus NMR singlet; the proton NMR spectrum of this pentane soluble fraction, recorded in benzene, shows four chemical shifts in the 2.8-3.8 ppm region for the morpholine hydrogens, thus indicating that this ring is not rapidly inverting, consistent with the morpholine nitrogen being coordinated to Ni. Two of these protons show geminal coupling, while the other two show one additional coupling which we attribute to one resolved mutual vicinal coupling; this is characteristic of the dihedral angle dependence of these hydrogens (Karplus relationship). The proton NMR integrations are consistent with the presence of two (non-equivalent) SiMe₂ groups, but only one ^tBu₂P group (doublet) in this species, consistent with structure 8, Scheme 5. The formula, and the presence of chloride, was established by ESI-MS of the pentane soluble product; chloride was suggested to originate from CH₂Cl₂. The pentane soluble fraction showed no BAr_F⁴ ¹H NMR signals, consistent with this neutral complex identity. If the reaction is repeated in fluorobenzene solvent, the product, which now persists at 25 °C, has an AX ³¹P{¹H} NMR spectrum with the large (180 Hz) coupling constant characteristic of structure 7.

Scheme 4.

The recurrent abstraction of chloride from solvent represented an undesirable feature, but is evidence of the intrinsic electrophilicity of the primary product **7**, Scheme 5 and the need for product stabilization if the amine proton is to migrate to the NiCH₂P^rBu₂ carbon, forming PMe^rBu₂. With this in mind, we attempted to quench this product by adding MeI or benzyl bromide after the morpholine attack at silicon was completed. Benzyl bromide (equimolar) was the more effective of these two, and led to formation of neutral **8** and [^rBu₂PMe(CH₂Ph)][BAr^F_F], Scheme 5, which were separated by their distinct solubilities in pentane; the phosphonium salt was identified by comparison to an independently synthesized sample (from PMe^rBu₂ and PhCH₂Br in benzene). We interpret these results as indicating that the ammonium center is acidic enough to protonate the Ni/C bond if there is a nucleophile (better than BAr^F_F) to coordinate to nickel.

The silyl morpholine complex was identified by its distinctive ¹H and ³¹P NMR spectra and (for the bromide) by ESI-MS. We prefer coordination of nickel to the morpholine N based on the better ring size involving nickel than by morpholine oxygen.

There is no reaction between (PNP)Ni⁺ and equimolar NEt₃.

2.6. Terminal alkynes

Terminal acetylenes, HC≡CR might be expected to protonate the amide nitrogen of (PNP)Ni⁺, to form a terminal acetylide complex of the neutral ligand PN(H)P; RCCH are not nucleophiles capable of attack at silicon. In fact, in time of mixing, (PNP)Ni⁺ reacts with RCCH where $R = SiMe_3$, Me_3C and phenyl. In each case the product has C_s symmetry, but inequivalent phosphorus nuclei. The coupling constant between the two phosphorus is small (10 Hz) indicating a structure without two trans phosphorus. A single crystal structure determination of the Me₃C analog (Fig. 2 and **9**) shows that there has been P/C bond formation to the terminal acetylide carbon,[6] and the alkyne is η^2 bonded to the nickel. The presence of the former acetylene proton on N of the pincer ligand is established by the fact that this nitrogen is now pyramidal with two Si and one Ni substituents, as well as by the longer Ni/N distance than it is in related amide PNP/Ni complexes. The product is thus a phosphonium species, so this is the site of the positive charge in this monocation, and thus nickel has been reduced to oxidation state zero in this reaction. The product contains three-coordinate planar Ni(0). The source of the two reduction equivalents is identified as the phosphorus, which is now pentavalent. The best way to understand the formation of this P/C bond is to consider that an intermediate nickel acetylide is electrophilic at C_{α} , especially as P migrates to this carbon, and two electrons can "flow" to nickel. Given the similar spectroscopic properties, the same

Fig. 2. ORTEP view (50% probabilities) of the non-hydrogen atoms of (${}^{1}Bu_{2}PCH_{2}Si-Me_{2}N(H)(SiMe_{2}CH_{2}{}^{1}Bu_{2}PCC'Bu)Ni^{+}$ from its $B(C_{6}H_{3}(CF_{3})_{2})_{4}$ salt, showing selected atom labeling. Unlabelled atoms are carbons, and one H on nitrogen is shown. Selected structural parameters(Å, °): Ni1–C24, 1.887(4); Ni1–C23, 1.896(4); Ni1–N1, 2.087(3); Ni1–P1, 2.2225(10); C23–C24, 1.295(5); P2–C23, 1.729(3); C24–Ni1–N1, 104.89(14); C24–Ni1–P1, 121.36(11); C23–Ni1–P1, 159.34(11); N1–Ni1–P1, 94.28(9); P2–C23–C24, 157.73(3).

functionality is formed in the product with the other two acetylenes. It is of interest that the cations with $R = {}^{t}Bu$ and $SiMe_{3}$ both show (by ${}^{1}H$ NMR) mirror symmetry in the molecular plane: geminal ${}^{t}Bu$ are pairwise equivalent as are geminal silyl methyls; in contrast, for R = Ph, there are four ${}^{t}Bu$ chemical shifts and four SiMe chemical shifts. We attribute this to inversion of the amine proton being rapid for the former two cases and slower for R = Ph, perhaps enhanced by the ring current effect of phenyl increasing chemical shift differences of geminal groups.

Since the observed terminal acetylene products involve multiple bond making and breaking, can an intermediate (Scheme 6) be detected? In fact, the slower case, where R = ^tBu, shows, at 25 °C at intermediate reaction times, two species with singlet ³¹P{¹H} NMR signatures, but these are converted to the AX pattern species after heating; they are thus candidate intermediates. If equimolar (PNP)Ni⁺ and ^tBuCCH are combined at -80 °C in CD₂Cl₂ and monitored by ¹H and ³¹P NMR with 10° increments of temperature, one observes, from -40 to -20° , one broad ³¹P NMR peak whose chemical shift is temperature dependent, indicating a rapid equilibrium showing only one population-weighted average chemical shift. We suggest that this is an η^2 -adduct of the intact alkyne

on (PNP)Ni⁺, where the adduct may have either one or both phosphorus donors coordinated, A. The proton NMR spectrum shows two ^tBuP and one ^tBuCCH chemical shifts and three SiMe chemical shifts. Beginning at -10 °C, the above species declines in population smoothly with formation of a new species \mathbf{B} with an AX $^{31}P{^{1}H}$ NMR pattern with a small $J_{PP'}$ (5 Hz), suggesting a structure similar to the final product (hence the P/C bond has formed). The fate of the acetylenyl hydrogen is established, in **B**, as being a hydride on Ni, which couples differently to the two inequivalent P (28 and 4 Hz). Already at 0 °C, this species begins to transform into the final product: hydrogen migration thus is somewhat slow from Ni to amide N. At -20 °C, a second ¹H NMR peak seen at -2.2 ppm is a doublet (140 Hz) of doublets (15 Hz), and this we attribute (\mathbf{C}) to the acetylenic proton already on P (the larger J value indicates [7] direct P-H bonding), which is then hydrogen bonded to the metal, to give a second resolved J_{PH} value. This is now zerovalent nickel in C, so it is a good candidate for hydrogen bonding. A proton on phosphorus is an attractive mechanism for transport of this H from nickel to N, and indeed this species (as well as B) decreases in intensity as the temperature rises further, with growth of the crystallographic product. Note that in species **B** the redox change at Ni has not yet occurred, and that the redox change involves phosphorus reducing nickel by 2 e as H migrates to P, forming the pentavalent phosphorus of the phosphonium functionality.

3. Results and discussion

This and earlier work confirms (Scheme 7) some of the reactivity expected from a Si–heteroatom bond, but in a different version. In our earlier observations of this reaction, fluoride or even triflate nucleophiles gave neutral products with an ^tBu₂PCH₂ ligand η^2 coordinated to Ni. In the present cases, an active proton leads to protonation of the amide nitrogen. The case of terminal alkynes represent different behavior since the acetylide ligand on nickel is apparently sufficiently electrophilic that it succumbs to attack by phosphorus. A recent report [8] describes reactions of the phenylene-backbone-ligated (pincer)Pd(OTf), where triflate leaving group should provide a synthon for (pincer)Pd⁺, with various weak acids HX (X = OR, PR₂, CCR, SR...). That work, where the absence of silicon eliminates any pincer backbone cleavage reactivity, shows either addition of the H–X bond across the N/Pd bond, or simply coordination of the lone pair of X in HX to form (pincer)Pd(XH)⁺. The outcome is thermodynamically controlled.

4. Experimental

4.1. General considerations

All manipulations were performed using standard Schlenk techniques or in an argon-filled glovebox unless otherwise noted. Pentane and THF were purified using an Innovative Technologies solvent purification system Pure Solv 400-6-MD. Ethyl vinyl ether (CH₂=CH-OC₂H₅) was dried under molecular sieves, benzene D-6 was dried under Ph₂CO/Na, PhCN was dried under CaH₂ and each chemical was vacuum transferred and stored in the glovebox under argon. H₂O was degassed by freeze-pump-thaw technique before use. Carbon dioxide, nitrogen, N2O and ethylene were purchased through commercial vendors and used without further purification. All reactions with gases were accomplished with a gas line equipped with manometer (0-760 Torr) for accurate dosage. {[(^tBu₂PCH₂SiMe₂)₂N]Ni}B(C₆H₃(CF₃)₂)₄ was prepared following the published synthesis [1]. NMR chemical shifts are reported in ppm relative to protio impurities in the deutero solvents. Coupling constants are given in Hz. ³¹P NMR spectra are referenced to external standards of H₃PO₄. NMR spectra were recorded with a Varian Unity INOVA instrument (400 MHz¹H; 162 MHz³¹P). Infrared spectra were recorded on a Nicolet 510P FT-IR spectrometer. Mass spectra were acquired on a MAT-95-XP spectrometer (Thermo Electron Corp., Bremen, Germany). "PNP" is N(Si- $Me_2CH_2PBu_2^{t})_2$. Ar^F is 3,5-bis-trifluoromethylphenyl.

4.1.1. Synthesis of [(PNP)Ni(PhCN)](BAr_F⁴)

30.0 mg (0.022 mmol) of [(PNP)Ni](BAr⁴_f) was dissolved in 0.5 mL of CD₂Cl₂ in a J-Young NMR tube yielding a dark reddish brown solution. To this solution, 0.0022 mL of benzonitrile (2.3 mg, 0.022 mmol) was added at 25 °C via syringe. In time of mixing, the solution became brown in color. Full conversion of the starting material to the single product, [(PNP)Ni(PhCN)](BAr⁴⁻_f) was observed. ¹H NMR (25 °C, CD₂Cl₂): 0.23 (s, SiMe, 12H), 0.84 (t, J = 5.8, 4H, CH₂), 1.45 (t, J = 6.3, 36H, ¹Bu), 7.50–7.90 (m, 17H, Ar). ³¹P{¹H} NMR (25 °C, CD₂Cl₂): 58.8 (s). This solution was concentrated in vacuum and pumped for 30 min at 25 °C to give 28.4 mg (88%) of the product. The residue was dissolved in CD₂Cl₂ and NMR spectra did not show any changes. One more equivalent of benzonitrile (0.0022 mL) was added and no changes were seen in the ¹H and ³¹P NMR.

4.1.2. Reaction of (PNP)Ni⁺ (BAr_F⁴⁻) with H_2O

30.0 mg (0.022 mmol) of $[(PNP)Ni](BAr_{F}^{4})$ was dissolved in 0.5 mL of CD₂Cl₂ in a J-Young NMR tube yielding a dark reddish brown solution. To this solution, 0.0004 mL of H₂O (0.4 mg, 0.022 mmol) was added at 25 °C via syringe. In time of mixing, the solution became orange in color. Full conversion of the starting material to the mixture of two products was observed. One could see complete conversion of one of these two into another in 16 h in CD₂Cl₂. *Trans* (thermodynamic) isomer: ¹H NMR (25 °C, CD₂Cl₂): 1.29 and 1.40 (both d, 18H each, ^tBu, *J* = 13.6 and 15.2), 7.56 and 7.71 (both s, Ar, 4 and 8H), other signals (SiMe and CH₂ protons and NH₂) were not identified due to the broad nature of these peaks. ³¹P{¹H} NMR (25 °C, CD₂Cl₂): 2.0 and 38.6 (both d, *J* = 164). The intermediate, containing only one Si–O bond, was identified by ³¹P{¹H} NMR (25 °C, CD₂Cl₂): -14.9 and 51.2 (both

d, *J* = 174) as a structure similar to the "MeOH product" (see below). Crystals suitable for X-ray diffraction analysis were grown in 2 days at 25 °C after a solution of the final product in CD_2Cl_2 was layered with pentane.

4.1.3. Reaction of (PNP)Ni⁺ (BAr_F⁴⁻) with MeOH

30.0 mg (0.022 mmol) of $[(PNP)Ni](BAr_{f}^{4})$ was dissolved in 0.5 mL of CD_2Cl_2 in a J-Young NMR tube yielding a dark reddish brown solution. This solution was frozen with liquid nitrogen and 0.0009 mL of methanol (0.7 mg, 0.022 mmol) was vacuum transferred. The solution was allowed to warm and the tube was shaken and one could see a color change to orange. Full conversion of the starting material to one product was observed. ¹H NMR (25 °C, CD_2Cl_2): 1.34 and 1.40 (both d, *J* = 13.7 and 15.5, 18H, ¹Bu), 3.43 (s, 3H, OCH₃), 6.3 (br. s, 1H, N–H), 7.58 and 7.75 (both s, 4 and 8H, Ar^F); CH₂ and SiMe signals were not assigned with certainty due to strong interfering signals. ³¹P{¹H} NMR (25 °C, CD_2Cl_2): –26.5 and 49.8 (both d, *J* = 182).

4.1.5. Reaction of (PNP)Ni⁺ (BAr_F⁴⁻) with PhCH₂NH₂

30.0 mg (0.022 mmol) of [(PNP)Ni](BAr⁴_F) was dissolved in 0.5 mL of CD₂Cl₂ in a J-Young NMR tube yielding a dark reddish brown solution. To this solution, 0.0024 mL of benzylamine (2.35 mg, 0.022 mmol) was added at 25 °C via syringe. Full conversion of the starting material to the mixture of products was observed. ³¹P{¹H} NMR (25 °C, CD₂Cl₂): -32.4 and 47.0 (both d, J = 178). Other products are seen as singlets at 11.4, 58.9 and 64.5 ppm in ³¹P NMR. Ratio (AX):singlets = 2:1. There is no change in population of these products after 12 h at 25 °C.

4.1.6. Reaction of (PNP)Ni⁺ (BAr_F⁴)⁻ with PhNH₂

15.5 mg (0.0113 mmol) of [(PNP)Ni](BAr_F⁺) was dissolved in 0.5 mL of CD₂Cl₂ at room temperature in a J-Young NMR tube, yielding a dark reddish brown solution. To this solution, 1.01 µL of aniline (1.03 mg, 0.0113 mmol) was added at 25 °C via syringe. Five minutes after mixing, a reddish-purple product was observed, with compete consumption of starting material, with the following spectroscopic features.

¹H NMR (25 °C, CD₂Cl₂): 0.05 (s, 3H, SiMe), 0.16 (s, 6H, SiMe₂), 0.33 (s, 3H, SiMe), 0.78 (d, 2H, CH₂), 1.43 and 1.36 (both d, J = 16.0 for each, 18H, ^tBu), 1.48 and 1.56 (both d, J = 12.0 for each, 18H, ^tBu), 3.23 (d, J = 12.0, 1H, PhN**H**), 7.36 (m, ~4H, Ph), 7.58 and 7.71 (both s, 4 and 8H, Ar^F). The other CH₂ signal was not identified due to masking by stronger signals. ³¹P{¹H} NMR (25 °C, CD₂Cl₂): 90% of the signals are those at 12.36 (s, vb), and 69.68 (s). ³¹P{¹H} NMR (-60 °C, CD₂Cl₂): 69.5 (s) and 9.52 (s, br). HRMS (ESI⁺, CH₂Cl₂): Observed at 599.3041 (C₂₈H₅₉N₂Si₂P₂Ni, [M]⁺), calc. 599.3046.

4.1.4. Reaction of (PNP)Ni⁺ (BAr_F⁴⁻) with ^tBuNH₂

30.0 mg (0.022 mmol) of [(PNP)Ni](BAr_F⁴) was dissolved in 0.5 mL of CD₂Cl₂ in a J-Young NMR tube yielding a dark reddish brown solution. To this solution, 0.0023 mL of t-butylamine (1.6 mg, 0.022 mmol) was vacuum transferred. After the solution was allowed to warm to room temperature and shaken, the color became orange. Full conversion of the starting material to one product was observed. ¹H NMR (25 °C, CD₂Cl₂): 1.18 (s, 9H, ^{*t*}Bu), 1.36 and 1.43 (both d, 18H each, ^{*t*}Bu, *J* = 15.0 and 15.4), 7.58 and 7.75 (both s, Ar, 4 and 8H). ³¹P{¹H} NMR (25 °C, CD₂Cl₂): -31.4 and 46.2 (both d, *J* = 182).

4.1.7. Reaction of (PNP)Ni⁺ (BAr_F⁴⁻) with piperidine in CD_2Cl_2 4.1.7.1. Synthesis of NiCl(CH₂P^tBu₂)(N(SiMe₂CH₂^tBu₂)(SiMe₂- $N(CH_2)_5$]. 30.0 mg (0.022 mmol) of [(PNP)Ni](BAr_F^4) was dissolved in 0.5 mL of CD₂Cl₂ in a J-Young NMR tube forming a dark reddish brown solution. To this solution, one equivalent of piperidine (0.0021 mL) was added at 25 °C via syringe. Initial ³¹P{¹H} NMR spectra showed an AX pattern with J_{PP} = 180, as well as three other singlets. ¹H NMR after only 20 min showed complete conversion of (PNP)Ni⁺. After 30 min the CD₂Cl₂ was stripped off and replaced with pentane and filtered. The pentane-soluble portion was subjected to further characterization and a four coordinate, chloridecontaining product with only one phosphorus atom was deduced, by ¹H NMR integrations and especially by mass spectrometry. ¹H NMR (25 °C, C₆D₆): 0.13, 0.17 (both s, 6H each, SiMe), 1.47 (d, $I = 13.8, 18H, {}^{t}Bu$), 3.26 (d, I = 13.3, 2H, two C-H of two N-CH₂), 3.40 (t, J = 13.3, 2H, two C-H of two N-CH₂); other CH₂ protons on ligand and piperidine are obscured by stronger ligand resonances. ³¹P{¹H} NMR (25 °C, C₆D₆): 59.8. MS (CI, from pentane): Observed at 466.1650 $(C_{18}H_{42}N_2Cl_1Ni_1P_1Si_2, [M]^+)$, calc. 466.1666; obs. 431.1963 ($C_{18}H_{42}N_2Ni_1P_1Si_2$, [M–Cl]⁺), calc. 431.1978; obs. 383.0919 ($C_{13}H_{32}N_1Cl_1Ni_1P_1Si_2$, $[M-C_5H_{10}N+H]^+$), calc. 383.0931.

4.1.8. Reaction of $(PNP)Ni^+$ (BAr_F⁻) with morpholine in CD_2Cl_2 4.1.8.1. Synthesis of $[NiCl(N(SiMe_2CH_2^{T}Bu_2)(SiMe_2N(CH_2CH_2)_2-O))]$. Reaction was carried out as with piperidine, above, but substituting morpholine. ¹H NMR (25 °C, C₆D₆): 0.05, 0.09 (both s, 6H each, SiMe), 1.44 (d, *J* = 13.8, 18H, ^tBu), 2.89 (d, *J* = 13.7, 2H, two CH in two equivalent CH₂), 3.04 (t, *J* = 11.3, 2H, two CH in two equivalent CH₂), 3.34 (d, *J* = 11.1, 2H, two CH in two equivalent CH₂); CH₂ protons on PNP ligand are obscured by stronger resonances. ³¹P{¹H} NMR (25 °C, C₆D₆): 60.4.

4.1.9. Reaction of (PNP)Ni⁺ (BAr⁴⁻_F) with morpholine in PhF

4.1.9.1. Synthesis of $[Ni(CH_2P^tBu_2)(NH(SiMe_2CH_2 \ ^tBu_2)(SiMe_2N(CH_2-CH_2)_2O))]^+[BAr_F^4]^-$. [(PNP)Ni][BAr_F^4] (120 mg, 0.088 mmol) was partially dissolved in dry fluorobenzene (2 mL). The suspension was placed in a freezer and cooled to $-40 \ ^\circ$ C. To the suspension, morpholine (7.6 mg, 0.088 mmol) was slowly added via a pipette. The suspension was left in the freezer for another half an hour to achieve completion: all solids dissolved to produce a dark red solution. ³¹P{¹H} NMR (PhF, 25 \ ^\circC): 47.8 (d, *J* = 180), -34.3 (d, *J* = 180).

4.1.10. Reaction of (PNP)Ni⁺ (BAr_F^{4-}) with morpholine in PhF followed by addition of electrophile

4.1.10.1. Synthesis of $[NiBr(N(SiMe_2CH_2 {}^{t}Bu_2)(SiMe_2N(CH_2CH_2)_2O))]$. Pentane soluble fraction. $[(PNP)Ni][BAr_F^4]$ (120 mg, 0.088 mmol)

was partially dissolved in dry fluorobenzene (2 mL). The suspension was placed in a freezer and cooled to -40 °C. To the suspension, morpholine (7.6 mg, 0.088 mmol) was slowly added via a pipette. The suspension was left in the freezer for half an hour to produce a dark red solution. Benzyl bromide (15 mg, 0.088 mmol) was then added to the solution, and the solution was kept in freezer for another half hour. The solution was then stripped to dryness. Pentane (5 mL) was added to extract the non-polar fraction which was then filtered to yield a purple solution. The volatiles were removed in vacuo to yield a purple solid for NMR analysis. For the pentane soluble fraction: ¹H NMR (C₆D₆, 25 °C): 3.75 (t, two CH in two equivalent CH₂, J = 11.6, 2H), 3.33 (d, two CH in two equivalent CH_2 , J = 12.0, 2H), 3.05 (t, two CH in two equivalent CH₂, *J* = 11.6, 2H), 2.85 (d, two CH in two equivalent CH₂, *J* = 13.6, 2H), 1.45 (d, 18H, ^tBu, J = 13.8), 0.11 (s, 6H, SiMe₂), 0.06 (s, 6H, SiMe₂). ³¹P{¹H} NMR (C₆D₆, 25 °C): 63.9 (s). Pentane insoluble fraction: $[Me(C_6H_5CH_2)P^tBu_2][BAr_F^4]$: the pentane insoluble residue above was redissolved in CD₂Cl₂ for NMR study. ¹H NMR (CD₂Cl₂, 25 °C): 7.76 (d, J = 7.9, Ar, 2H), 7.56 (d, J = 6.0, Ar, 3H), 4.30 (d, 2H, J_{PH} = 13.8, CH₂), 2.18 (d, 3H, J_{PH} = 12.0, CH₃), 1.61 (d, 18H, two ^tBu, $J_{PH} = 15.3$). ³¹P{¹H} NMR (CD₂Cl₂, 25 °C): 46.6 (s).

4.1.10.2. Independent synthesis of phosphonium salt. One equivalent of benzyl bromide and PMe^tBu₂ were mixed in benzene, forming a colorless precipitate. After 12 h at 25 °C all volatiles were removed in vacuum and the residue was dissolved in CD₂Cl₂. ¹H and ³¹P NMR showed spectral data identical to those of the pentane insoluble product (see above).

4.1.11. Reaction of (PNP)Ni⁺ (BAr_F⁴⁻) with ^tBuC \equiv CH

30.0 mg (0.022 mmol) of [(PNP)Ni][BAr⁴_F] was dissolved in 0.5 mL of THF in a J-Young NMR tube yielding a dark reddish brown solution. To this solution, 0.0027 mL of tert-butyl acetylene (0.022 mmol) was added at 25 °C. The solution became increasingly orange in color, after which it was heated in an oil bath at 60 °C for 2 days. After the heating period, full conversion of the starting material to the single product, [(PNHP⁺C=C(t-Bu))Ni] (BAr⁴_F) was observed. The solution was dried and dissolved in dichloromethane and layered with pentane, which produced crystals suitable for X-ray diffraction analysis. ¹H NMR (25 °C, d₈THF): 0.38 (s, 6H, SiMe₂), 0.53 (s.br, 6H, SiMe₂), 1.01 (d, *J* = 9.6, 2H, CH₂), 1.33 (s, 9H, ¹Bu), 1.35 (d, *J* = 12.8, 18H, ¹Bu), 1.47 (d, *J* = 15.4, 18H, ¹Bu), 7.57 and 7.78 (both s, 4 and 8H, Ar); N–H proton was not located. ³¹P{¹H} NMR (25 °C, d₈THF): 62.2 (d, *J* = 10), 35.7 (d, *J* = 10).

4.1.12. Reaction of (PNP)Ni⁺ (BAr_F⁴⁻) with Me₃SiC \equiv CH

30.0 mg (0.022 mmol) of [(PNP)Ni][BAr⁴_F] was dissolved in 0.5 mL of CD₂Cl₂ in a J-Young NMR tube forming a dark reddish brown solution. To this solution, 0.0030 mL of Me₃SiC=CH (0.022 mmol) was added at 25 °C. In time of mixing, the solution became orange in color. Full conversion of the starting material to the product, [(PNHP⁺C=CTMS)Ni](BAr⁴_F) was confirmed by NMR after ten minutes. ¹H NMR (25 °C, CD₂Cl₂): 0.24 (s, 9H, TMS), 0.34 (s, 6H, SiMe₂), 0.48 (s, 6H, SiMe₂), 0.90 (d, *J* = 9.3, 2H, CH₂), 1.30 (d, *J* = 13.0, 18H, ¹Bu), 1.38 (d, *J* = 15.5, 18H, ¹Bu), 1.53 (d, *J* = 12.2, 2H, CH₂), 7.57 and 7.74 (both s, 4 and 8H, Ar); N–H proton was not located. ³¹P{¹H} NMR (25 °C, CD₂Cl₂): 64.9 (d, *J* = 10), 32.8 (d, *J* = 10).

4.1.13. Reaction of (PNP)Ni⁺ (BAr_F⁴⁻) with PhC \equiv CH

30.0 mg (0.022 mmol) of [(PNP)Ni][BAr⁴_F] was dissolved in 0.5 mL of CD₂Cl₂ in a J-Young NMR tube leaving a dark reddish brown solution. To this solution, 0.0024 mL of phenyl acetylene (0.022 mmol) was added at 25 °C. The solution immediately became orange in color. Full conversion of the starting material to one product, [(PNHP⁺C=CPh)Ni] (BAr⁴_F) was confirmed by NMR after 10 min. ¹H NMR (25 °C, CD₂Cl₂): 0.33, 0.43, 0.44, 0.73 (all s, 3H each, all SiMe₂), 0.94 (dd, *J* = 4.3 and 9.5, 2H, CH₂), 1.10 (d, *J* = 13.5, 9H, ^tBu), 1.18 (d, *J* = 13.1, 9H, ^tBu), 1.24 (d, *J* = 14.8, 9H, ^tBu), 1.39 (d, *J* = 13.4, 9H, ^tBu), 7.07 and 7.25 (both m, 2 and 3H, Ph), 7.58 and 7.74 (both s, 4 and 8H, B–Ar); N–H proton was not located. ³¹P{¹H} NMR (25 °C, CD₂Cl₂): 65.7 (d, *J* = 10), 34.4 (d, *J* = 10).

4.2. Low temperature NMR monitoring of the reaction of (PNP)Ni⁺ (BAr_{F}^{+}) with ${}^{t}BuC \equiv CH$

30.0 mg (0.022 mmol) of $[(PNP)Ni][BAr_{f}^{4}]$ was dissolved in 0.5 mL of CD₂Cl₂ in a J-Young NMR tube equipped with a septum,

giving a dark reddish brown solution. The tube was placed into a Dewar containing an acetone/dry ice mixture at -78 °C with special effort to cool the upper glass walls of the tube. To this solution, one equivalent of tert-butyl acetylene (0.0027 mL) was added via syringe. The tube was carefully shaken in order to mix the reagents and NMR spectra were recorded beginning at -60 °C. Species A: ³¹P{¹H} NMR (CD₂Cl₂) 63.5 (br) (-40 °C), 73.4 (br) (-30 °C), 89.0 (br) (-20 °C), 110.0 (br) (-10 °C); ¹H NMR: (-20 °C, CD₂Cl₂) 0.04, 0.07, 0.47 (s, SiMe₂), 1.02 (s, ^tBuC), 1.37–1.45 (m, ^tBuP), 7.58, 7.74 (s, Ar). Species B: ³¹P {¹H} NMR (0 °C, CD₂Cl₂) 46.2, 76.3 (both d, J = 5); ¹H NMR (0 °C, CD₂Cl₂): -11.21 (dd, $J_{HP} = 4.8$, 23, Ni-H), 0.09, 0.12, 0.21, 0.54 (s, SiMe₂), 1.27 (s, ^tBu-C), 1.33 (d, ^tBu-P, *J* = 17), 1.39 (d, ^{*t*}BuP, *J* = 16), 1.48 (d, ^{*t*}BuP, *J* = 13.6). Species C: ¹H NMR (0 °C, CD_2Cl_2): -2.2 (dd, J = 14, 140); ³¹P {¹H} NMR (CD_2Cl_2) 37.1 (d) (-40 °C), 36.6 (d) (-30 °C), 35.6 (d) (-20 °C), 34.1 (d) $(-10 \circ C)$. The second ³¹P NMR signal for **C** is considered to be exchange-broadened (H⁺ transfer) beyond detection.

Acknowledgments

We thank the National Science Foundation (NSF CHE-0544829) for financial support.

Appendix A. Supplementary material

CCDC 789986 and 789987 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ica.2010.12.061.

References

- [1] H. Fan, B.C. Fullmer, M. Pink, K.G. Caulton, Angew. Chem., Int. Ed. 47 (2008) 9112.
- [2] T. He, N.P. Tsvetkov, J.G. Andino, X.-F. Gao, B.C. Fullmer, K.G. Caulton, J. Am. Chem. Soc. 132 (2010) 910.
- [3] M.D. Fryzuk, P.A. MacNeil, J. Am. Chem. Soc. 106 (1984) 6993.
- [4] M.D. Fryzuk, P.A. MacNeil, S.J. Rettig, J. Organomet. Chem. 332 (1987) 345.
- [5] M.D. Fryzuk, P.A. MacNeil, S.J. Rettig, A.S. Secco, J. Trotter, Organometallics 1 (1982) 918.
- [6] H. Lang, M. Leise, W. Imhof, Z. Naturforsch., B: Chem. Sci. 46 (1991) 1650.
- [7] S.L. Manatt, G.L. Juvinall, D.D. Elleman, J. Am. Chem. Soc. 85 (1963) 2664.
 [8] L.C. Gregor, C.-H. Chen, C.M. Fafard, L. Fan, C. Guo, B.M. Foxman, D.G. Gusev, O.V. Ozerov, Dalton Trans. 39 (2010) 3195.