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Palladium-Catalysed Ligand-Free Reductive Heck 
Cycloisomerisation of 1,6-En-α-Chloro-Enamides 
Yangyang Hou,†a Jing Ma,†a Hongyi Yang,a Edward A. Anderson,b Andy Whitingc and Na Wu*a,c 

The first example of an intramolecular hydroarylation of 1,6-en-α-
chloro-enamides was achieved by a palladium-catalysed ligand-
free reductive Heck cycloisomerisation with no competing Heck-
cyclised by-product. 

Reductive processes in metal-catalysed organic synthesis are often 
well understood, involving common reductants such as dihydrogen, 
formates, formic acid and activated alcohols.1 Similarly, palladium-
catalysed hydroarylation (reductive Heck reactions) between 
arylhalides and alkenes, typically involve: (i) alkylamines, formates 
and activated alcohols as the hydride source in the process;2 (ii) 
neutral or anionic aryl–Pd complexes, and electron-poor olefins and 
styrene (preferred olefin substrates for insertion);2a,3 and (iii) key 
aryl-Pd species, coordinatively saturated by ligands (phosphines, N-
heterocyclic carbenes, halides and acetates) to inhibit β-H-Pd 
elimination side-reactions.4

Herein, we report a palladium-catalysed reductive Heck 
cyclisation of 1,6-enynamides. In contrast to the common features 
of reductive Heck reactions, we report here that: (i) hydroarylation 
of styrene occurred through an intramolecular hydride transfer5 
and an indolyl alkylpalladium(II)-pecies was reduced through an 
intermolecular hydride transfer likely from i-PrOH (or 1,4-dioxane6) 
as H-donor, confirmed by D-isotope exchange studies; (ii) chloride 
dissociation of an electrophilic α-chloro-enamide was realised in the 
absence of alkylammonium salts as halide abstractors and a cationic 
Pd(II)-enamide Heck coupling proceeded with both electron-neutral 
and electron-rich styrenes;7 (iii) interestingly, the key enamide-Pd 
species was free from ligands saturation;8 and (iv) no β-H-Pd 

elimination by-product was observed. 
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Scheme 1. Heck coupling and reduction of Chloro-enamides.

Ynamides and enamides are versatile functional groups that are 
finding use as fascinating building blocks for the synthesis of 
nitrogen-containing compounds.9 Recently, Sarpong reported 
intermolecular Heck coupling reactions of bench-stable α-halo 
eneformamides in DMF or 1,4-dioxane10 and Tang reported a 
reduction of the α-halo-enamide to the enamide using Et3N as a 
reductant (Scheme 1).11 In order to explore the balance of reactivity 
and stability of α-halo-enamides, we prepared more electrophilic α-
chloro tosylmides 7a and employed Sarpong’s Heck conditions to 
test the potential intramolecular cyclisation of 7a. However, our 
approach was distinct from Sarpong’s Heck, in that a reductive Heck 
cyclised 8a was obtained exclusively, rather than Heck cyclised 8a’ 
(Table 1, entries 1-3). Alternatively, using activated alcohols as the 
solvent (which was employed in alkenylpalladative reduction of 
ynamides by Anderson12), 8a was also afforded in satisfying yields 
(entries 4-13). Surprisingly, when electron-rich palladium ligands 
were employed, which were expected to prohibit β–H-Pd 
elimination according to coordinatively saturation of Pd(II) and 
Pd(0), the reductive Heck cyclisation was supressed (entries 14-18). 
In general, PdCl2 is more sustainable in 1,4-dioxane (entries 1 and 2) 
than that in i-PrOH, as the precipitation of palladium black was 
immediately observed in i-PrOH. 

Based on the optimised results, entries 2 and 3 (Table 1) were 
applied to explore the substrate scope using 2-styryl-α-chloro-
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enamide derivatives 7 (Table 2). In order to overcome the hydrolytic 
lability of α-chloro-enamides, these species were prepared from in-
situ generated HCl and addition to enynamides 6, which were used 
directly without further isolation.13

Table 1. Optimization of conditions.a

N
Ts

Ph

7a 8a

Pd (cat.)

K2CO3
(2 equiv.)

80 oC

N
Ts

Cl

Ph

N
Ts

Ph

8a' Not observed

entry catalyst (mol%) solvent yieldb (%)
1 PdCl2 (2.5) 1,4-dioxane 81
2 PdCl2 (20) 1,4-dioxane 80
3 PdCl2 (20)c 1,4-dioxane N.R.d

4 PdCl2 (20) i-PrOH 93
5 Pd(TFA)2 (10) i-PrOH 81
6 none i-PrOH N.R.d

7 PdCl2 (20) MeOH trace
8 PdCl2 (20) EtOH N.R.d

9 PdCl2 (20) t-BuOH dec.e

10 PdCl2 (20) toluene dec.e

11 PdCl2 (10) i-PrOH 60
12 PdCl2 (5) i-PrOH 44
13 PdCl2 (2.5) i-PrOH 44
14 PdCl2 (10), TMTUf (20) i-PrOH N.R.d

15 PdCl2 (10), bipyg (10) i-PrOH dec.e

16 Pd(PPh3)4 (5) 1,4-dioxane N.R.d

17 Pd(PPh3)4 (5), (n-Bu)3P (10) 1,4-dioxane N.R.d

18 Pd(PPh3)4 (5), (t-Bu)3P (10) 1,4-dioxane dec.e

19 Pd2(dba)3 (2.5) i-PrOH trace

a.7a (0.15 mmol), Pd catalyst, K2CO3 (0.3 mmol), solvent (4 mL), 80 °C, 6 h, N2. b. Isolated 
yield. c. Without K2CO3. d.N.R. = no reaction. e. dec. = decomposition. f. TMTU = 
tetramethyl thiourea. g.Bipy = 2,2’-bipyridine.  

In general, the one-pot, sequential cyclisation afforded 3-
benzylindoles 8 in higher yields in i-PrOH than that in 1,4-dioxane 
(Table 2). When the styryl group contained electron-donating 
groups (entries 2 and 3, Table 2) and mildly electron-deficient 
groups ((entry 4, Table 2), the reductive Heck process proceeded to 
deliver products 8 in moderate to good yields. As for the ynamide 
fragment, terminal and internal aryl ynamides were tolerated 
((entries 1, 5-9, Table 2). When the tosylamide was replaced by Ms- 
and Ns-amides, a better yield was obtained for Ns-variant in i-PrOH 
((entry 9, Table 2). However, the substrates 6 were restricted to 
para-substituted aryl groups, cyclisation of in-situ generated 7 
containing ortho-, meta-substituted aryl groups is more 
complicated with slow conversion (20 h), accompanied by complex 
mixtures (entries 10 and 11, Table 2). Noticeably, the substrates 6 
bearing electron-poor styrene and electron-poor ynamide moieties 
were incompatible with the reaction conditions, where complex 
mixtures were formed. Replacing styryl and ynamidyl fragments of 

6 with alkyl-substituted alkenes and alkyl ynamides respectively, 
also led to complex mixtures.14 We next assessed the benzene ring 
of indoles. The reactions (entries 12-17, Table 2) proceeded well to 
deliver products bearing electron-donating or electron-withdrawing 
groups on the aniline ring, although the yield dropped to 20% when 
C-4 was substituted (entry 17). Noticeably, when en-α,β-dichloro-
enamide 9 was employed, an unusual competing C-O coupling was 
found to give an isopropoxide 10 (entry 18).15 

Table 2. Substrate exploration.

Ar2

N R1 N

Ar2

R1

8

R

EWG EWG6

PdCl2 (20 mol%)
K2CO3 (2 equiv.)

solvent (0.1 M)
80 oC, 8 h

TMSCl

THF, 0 oC
6 h

R

2

3
4

starting material 6entry

R EWG R1 Ar2

8 yielda (%)

1 H Ts H Ph 8a 79b; 50c

2 H Ts H p-MeC6H4 8b 58b; 18c

3d H Ts H p-OMeC6H4 8c 73b; 42c

4 H Ts H p-ClC6H4 8d 56b; tracec

5 H Ts Ph Ph 8e 77b; 70c

6 H Ts p-MeC6H4 Ph 8f 47b; 50c

7 H Ts p-t-BuC6H4 Ph 8g 70b; 43c

8 H Ms H Ph 8h 49b; 10c

9 H Ns H Ph 8i 82b; 37c

10d H Ts H o-OMeC6H4 8j 23b; 10c

11 H Ts H m-furanyl 8k 24b; 10c

12d 
N
Ts

Ph 8l 67b; 23c

13d,e

N
Ts

MeO Ph 8
m

53b; 11c

14

N
Ts

PhF 8n 51b; N.R.c

15

N
Ts

Ph

F

8o 49b; N.R.c

16d

N
Ts

Cl Ph

Cl

8p 39b; N.R.c

17

N
Ts

Ph 8q 20b; N.R.c

starting material 9r 10r
18 Ph

N
Ts Cl

Cl
N
Ts

Ph

Oi-Pr

52b; tracec

a. Isolated yield. b.Isopropanol was utilized as the solvent. c.1,4-Dioxane was utilized as 

the solvent. d.The reaction was conducted at 100 ℃ for 18 hours. e.Demethylated by-

product observed.  
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Given that the configuration of 8o was confirmed by X-ray 
diffraction analysis (Figure 1),16 we are able to propose that a novel 
Pd(0)-catalysed reductive Heck cycloisomerisation mechanism 
(Scheme 2) explains these observations. This is initiated by oxidative 
addition of Pd(0), generated by β-hydride elimination and reductive 
elimination via coordination of PdCl2 with i-PrOH17 or 1,4-dioxane6. 
The intramolecular coordination of the styrene may facilitate 
dissociation of the chloride anion to form the cationic Pd(II)-
enamide species A from the highly electrophilic α-chloro-enamide 
7.7

Figure 1. X-ray crystal structure of 8o 

This is followed by an ionic Heck enamidation of the electron-rich 
styrene to afford diene C, which could be understood as arising 
from the styrene acting as a Lewis base attacking the electrophilic 
palladium(II).7 There is a driving force for aromatisation through a 
pseudo-intramolecular reversible re-addition of Pd(II)-H species to 
the dienyl indoline,18 which ligates Pd-H, to deliver the indolyl 
palladium species D. Upon alkene migration via the allylpalladium 
species, E was delivered. Then, there is a preference for Pd(II) to 
transfer methylene hydrogen from 1,4-dioxane or methinyl 
hydrogen from i-PrOH, through its coordination with the solvent / 
β-hydride elimination / reductive elimination to irreversibly afford 8. 
If the cycle is not fast enough, reversible syn-β-H-Pd elimination of 
A and subsequent hydropalladation of ynamide 6 would occur,19 
allowing the proton exchange between substrate 7 and the solvent.  

Our next focus was to seek out potential reductants and 
determine whether they contribute to the proposed reductive Heck 
cycloisomerisation sequence. Firstly, the dienyl indoline 11e, acting 
as the presumptive intermediate C in Scheme 1, was prepared via 
cycloisomerisation of enynamide 6e. When it was subjected to 
PdCl2-catalysed, ligand-free conditions in i-PrOH, no reductive 
product 8e was obtained, implying that the reductive process was 
not initiated by an intermolecular H-Pd species generated from 
PdCl2 and i-PrOH. Secondly, to determine the source of the 
incoming hydrogen atom for the hydroenamidation of the styrene, 
we conducted a labelling experiment using 12a with deuterium 
labeled at the styryl moiety. Interestingly, 13a was obtained with 
deuterium migrated to the benzylic position, which elucidates that 
in the reduction of the styrene, the hydride source comes from the 
intramolecular H-Pd species, generated by β-H-Pd elimination and 
re-addition to the styrene.

Next, from various deuterium solvent screening (1,4-dioxane-d8, 
DMF-d7),  we found that 6a was converted to the mono-deuterated 
product in 2-propanol-d8, without deuteration at the benzylic 

carbon. This indicates that before the reductive elimination of the 
C-Pd(II)-D bond, palladium is located at the methylene position, 
rather than the benzylic position, which excludes the possibility of a 
pathway to 8 via B’. Furthermore, this result confirmed that the 
solvent was indeed involved as a hydride donor in the reduction of 
the terminal alkylpalladium(II) species. 
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Scheme 2. Proposed overall mechanistic scheme. 
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+
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Scheme 3. Deuterium labelling study

Finally, isotopomer 16a, with two deuterium atoms on β-carbon 
of the α-chloro-enamide, was subjected to the reductive 
cycloisomerisation conditions. Interestingly, the indole 14a was 
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delivered with one deuterium replaced by a hydrogen atom, 
accompanied by a C-O coupled isopropoxide 17a. This reveals that 
syn-β-D-Pd elimination of A and re-addition to the ynamide 6 occurs 
reversibly, allowing D-H exchange of deuterated A with i-PrOH to 
take place.20 

In conclusion, a palladium-catalysed ligand-free reductive 
Heck cycloisomerisation of aromatic 1,6-enynamides has been 
realised using in-situ generated 1,6-en-α-chloro-enamides in a 
one-pot stepwise protocol. Deuterium isotope labeling studies 
revealed that intramolecular hydride transfer, along with 
intermolecular hydride donation from the solvent, were both 
observed. Moreover, this indicates that there was a hydride 
exchange between the chloroenamide and i-PrOH. The mild, 
straightforward experimental condition will highten valuable 
potential towards the synthesis of complex azacyclic target 
compounds from acyclic units in both academic and industrial 
research settings.
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