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Figure 1. Phenytoin.
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Scheme 1. Use of ura
The di-tert-butyl-di-p-nitrophenyl ester of hydrazinetetracarboxylic acid was prepared and shown to be
useful in the preparation of urazoles (i.e., 1,2,4-triazolidine-3,5-diones), by reaction with a primary amine
using either n-BuLi or pyridine as base, depending on the desired N4 substituent. With more electroneg-
ative N4 substituents, pyridine is the preferred base. This work complements our reported urazole syn-
thesis, which introduced the N4 substituent early in the sequence and thus did not facilitate variation
at N4 for library synthesis.

� 2013 Elsevier Ltd. All rights reserved.
Since the synthesis of phenytoin (1, Fig. 1) in 1908,1 and the
subsequent recognition of its anticonvulsant properties in 1939,2

hydantoins have served as useful scaffolds for drug discovery.3,4

This heterocycle provides a rigid framework to which pharmaco-
phoric groups can be attached.5 By contrast, the five membered
ll rights reserved.
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zoles (2) in synthesis of 1,2,4-triaz
heterocycle with one of the hydantoin carbons replaced by nitro-
gen (i.e., the urazole, or 1,2,4-triazolidine-3,5-dione (2)) has re-
mained under-utilized in medicinal chemistry.6 Synthetically,
urazoles (especially N4-phenylurazole) are best known for their
ability to be oxidized to the corresponding 1,2,4-triazoline-3,5-
diones, which serve as super-dienophiles as shown in Scheme 1.

Contributing to their underuse has been the scarcity of
methodology for the rapid preparation of diverse urazoles. The
most commonly employed synthetic route to such compounds is
shown in Scheme 2,7 and involves sequential introduction of the
nitrogen atoms, with relatively little capability to vary substituents
as required for the preparation of a urazole library. Also, the neces-
sity of employing strong base at the end of the sequence does not
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oline-3,5(4H)-diones (3) and reaction with dienes.
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Scheme 2. Classic synthetic route to urazoles.
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Scheme 3. Recently reported urazole synthesis.
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Scheme 4. Reagents and conditions: (a) 2.2 equiv p-NO2C6H4OCOCl, 3.0 equiv Et3N, CH2Cl2 reflux overnight, yield, 92%; (b) 1 equiv RNH2, 2.5 equiv n-BuLi, THF �78 �C, or
1 equiv RNH2, pyridine 70–90 �C; (c) excess TFA, anhyd CH2Cl2, rt.

Table 1
Synthesis of N1,N2-di-Boc protected Urazoles Using n-BuLi10
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Entry Compound # R Yield (%)

1 10a PhCH2 42
2 10b PhCH2CH2 28
3 10c p-MeOC6H4CH2 27
4 10d Allyl 21
5 10e AllylOCO 29
6 10f t-Butyl 31
7 10g p-MeOC6H4 11

Figure 2. X-ray structure of 10a.
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permit the preparation of hydrolytically labile urazoles, including
N4-alkoxyurazoles and urazoles where one or more of the nitrogen
atoms are protected by a carbamate (e.g., Boc) group.

We recently reported the new synthetic methodology shown in
Scheme 3, which allows the preparation of some potentially hydro-
lytically labile urazoles, including the N4-alkoxyurazoles (R = OR0).8

Although this methodology avoids strong base, and permits the
synthesis of numerous substituted urazoles, it suffers from the
limitation that the N4 substituent is introduced early in the se-
quence, thereby again posing some constrains on the facile gener-
ation of urazole libraries. Thus we desired to devise methodology
which would enable expeditious modification at N4).

After exploring numerous strategies, we were able to success-
fully prepare the di-tert-butyl-di-p-nitrophenyl ester of hydrazine-
tetracarboxylic acid (9) from commercially available di-tert-butyl
hydrazodicarboxylate as shown in Scheme 4. This previously un-
known compound is a crystalline solid and is readily purified by
precipitation from the product mixture using diethyl ether.9 Subse-
quent reaction of this intermediate with primary amines, either at
�78 �C, employing n-BuLi as base, or alternatively at 75 �C in pyr-
idine as solvent, produced N1,N2 protected urazoles (10) in accept-
able yields as shown in Table 1. An X-ray structure of one of these
N1,N2-diBoc protected urazoles (10a) is shown in Figure 2. The pyr-
idine procedure seemed superior for the preparation of urazoles
containing potentially anion-stabilizing substituents (e.g., aryl,
alkoxy, etc.) at N4. As shown in Table 2, the N1, N2 Boc groups
can be removed with excess TFA in dry CH2Cl2. In most cases, these
intermediate highly electron deficient N1,N2-di-Boc protected
urazoles were unstable toward column chromatography and/or
to washing with aqueous Na2CO3 (to remove p-nitrophenol) and
thus, as shown in Table 3, without purification, they could directly
be converted into the stable parent urazoles (11) by subsequent re-
moval of the Boc protecting groups in good overall yield. The N1,N2

unsubstituted urazoles (11) are usually insoluble in CH2Cl2, but can
be purified by column chromatography using CH2Cl2/MeOH mix-
tures or by direct precipitation from the reaction medium.
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Removal of Boc protecting groups11
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Entry Compound # R Yield (%)

1 11a PhCH2 71
2 11b PhCH2CH2 80
3 11c p-MeOC6H4CH2 98
4 11d Allyl 99
5 11g p-MeOC6H4 93

Table 3
Synthesis of urazoles in pyridine as solvent12
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Entry Compound # R Yield (%)

1 11f t-Butyl 21
2 11g p-MeOC6H4 71
3 11h PhCH2O 50
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Conclusions

We have devised a second new route to the urazole scaffold.
This methodology complements our earlier reported urazole syn-
thesis in that it introduces the N4 substituent late in the sequence
and thus facilitates variation at this position. The readily available
crystalline intermediate 9 is useful in urazole preparation, and may
be of value in the preparation of other heterocycles. Two variations
of this procedure employ either n-BuLi or pyridine as base, with
pyridine being preferred for more electronegative N4 substituents.
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