

Synthesis, Structure, and Reactivity of a Mononuclear Organozinc Hydride Complex: Facile Insertion of CO_2 into a Zn-H Bond and CO_2 -Promoted Displacement of Siloxide Ligands

Wesley Sattler and Gerard Parkin*

Department of Chemistry, Columbia University, New York, New York 10027, United States

Supporting Information

ABSTRACT: Tris(2-pyridylthio)methane, [Tptm]H, has been employed to synthesize the mononuclear alkyl zinc hydride complex, $[\kappa^3$ -Tptm]ZnH, which has been structurally characterized by X-ray diffraction. $[\kappa^3$ -Tptm]ZnH provides access to a variety of other [Tptm]ZnX derivatives. For example, $[\kappa^3$ -Tptm]ZnH reacts with (i) R₃SiOH (R = Me, Ph) to give $[\kappa^4$ -Tptm]ZnOSiR₃, (ii) Me₃SiX (X = Cl, Br, I) to give $\lceil \kappa^4$ -Tptm \rceil ZnX, and (iii) CO₂ to give the formate complex, $[\kappa^4$ -Tptm]ZnO₂CH. The bis(trimethylsilyl)amide complex $[\kappa^3$ -Tptm]ZnN(SiMe₃)₂ also reacts with CO₂, but the product obtained is the isocyanate complex, $[\kappa^4$ -Tptm]ZnNCO. The formation of $[\kappa^4$ -Tptm]ZnNCO is proposed to involve initial insertion of CO2 into the $Zn-N(SiMe_3)_2$ bond, followed by migration of a trimethylsilyl group from nitrogen to oxygen to generate $[\kappa^4$ -Tptm]ZnOSiMe₃ and Me₃SiNCO, which subsequently undergo CO₂-promoted metathesis to give $[\kappa^4$ -Tptm]-ZnNCO and $(Me_3SiO)_2CO$.

Zinc hydride species are of considerable interest in view of their Zuse in organic transformations¹ and their role in the Cu/ZnOcatalyzed synthesis of methanol from a mixture of CO, CO₂, and H₂.² Well-defined mononuclear zinc complexes that feature terminal hydride ligands are, however, rare,³⁻⁵ due to the propensity of the hydride ligand to bridge two zinc centers.⁶ Furthermore, structurally characterized mononuclear compounds that feature both alkyl and hydride ligands are unknown.⁷⁻⁹ Here, we describe the synthesis, structural characterization, and reactivity of a mononuclear alkyl zinc hydride complex, including the facile insertion of CO₂ into the Zn–H bond. In addition, we also describe the ability of CO₂ to promote the displacement of siloxide ligands.

We previously utilized the tris(3-*tert*-butylpyrazolyl)hydroborato ligand to synthesize $[Tp^{Bu^{t}}]ZnH$, the first structurally authenticated monomeric zinc hydride complex,³ in which the multidentate nature of the $[Tp^{Bu^{t}}]$ ligand allows isolation of a compound that features a terminal hydride moiety. Using a similar approach, we have now employed a multidentate alkyl ligand derived from tris(2-pyridylthio)methane, [Tptm]H,¹⁰ to permit isolation of a monomeric alkyl hydride complex, namely $[\kappa^{3}-Tptm]ZnH$.

The key starting material for the synthesis of $[\kappa^3$ -Tptm]ZnH is the bis(trimethylsilyl)amide derivative, $[\kappa^3$ -Tptm]ZnN(SiMe_3)₂,¹¹ that is obtained via the reaction of [Tptm]H with Zn[N-(SiMe_3)₂]₂, as illustrated in Scheme 1. Subsequent treatment of $[\kappa^3$ -Tptm]ZnN(SiMe_3)₂ with Me_3SiOH yields the siloxide Scheme 1

Scheme 2

Figure 1. Molecular structure of $[\kappa^3$ -Tptm]ZnH.

 $[\kappa^4$ -Tptm]ZnOSiMe₃^{12,13} that reacts with PhSiH₃ to give the hydride complex, $[\kappa^3$ -Tptm]ZnH (Scheme 2). The molecular structure of $[\kappa^3$ -Tptm]ZnH has been determined by X-ray

 Received:
 April 18, 2011

 Published:
 June 06, 2011

Scheme 3

Figure 2. Molecular structure of $[\kappa^4$ -Tptm]ZnO₂CH.

diffraction (Figure 1), which demonstrates that the compound exists as a discrete mononuclear complex in which the [Tptm] ligand coordinates in a κ^3 -manner. The Zn–H moiety of [κ^3 -Tptm]ZnH is characterized by a Zn–H bond length of 1.51(3) Å,¹⁴ a singlet at δ 5.60 in the ¹H NMR spectrum, and an absorption at 1729 cm⁻¹ in the IR spectrum, which shifts to 1242 cm⁻¹ for the zinc deuteride isotopologue [κ^3 -Tptm]ZnD [$\nu_{\rm H}/\nu_{\rm D}$ = 1.39]. The zinc methyl counterpart, [κ^3 -Tptm]ZnMe, has also been synthesized via the reaction of [Tptm]H with Me₂Zn (Scheme 1) and has a distorted tetrahedral geometry similar to that of [κ^3 -Tptm]ZnH. For example, the C–Zn–H [132(1)°] and C–Zn–CH₃ [135.8(1)° and 134.1(1)° for two different crystalline forms] bond angles are distinctly greater than the tetrahedral value.

 $[\kappa^3$ -Tptm]ZnH serves as a precursor to a variety of other [Tptm]ZnX derivatives, as illustrated in Scheme 3. For example, the zinc hydride bond of $[\kappa^3$ -Tptm]ZnH is (i) protolytically cleaved by R_3 SiOH (R = Me, Ph) to give $[\kappa^4$ -Tptm]ZnOSiR₃ and (ii) undergoes metathesis with Me₃SiX (X = Cl, Br, I) to give $[\kappa^4$ -Tptm]ZnX.^{15,16} Of most note, however, is the fact that $[\kappa^3$ -Tptm]ZnH reacts rapidly with CO₂ to give the formate complex, $[\kappa^4$ -Tptm]ZnO₂CH (Scheme 3 and Figure 2), which may also be obtained from the reaction of $[\kappa^3$ -Tptm]ZnH with HCO₂H.¹⁷ Such reactivity is of particular interest in view of the fact that formate species are proposed intermediates in the ZnO- and Cu/ZnO-catalyzed synthesis of methanol.² The insertion of CO₂ into zinc hydride bonds is not, however, well precedented, and the only other examples involving monomeric zinc hydride complexes pertain to [TpR]ZnH derivatives.^{3,4d,18} Both the formate and siloxide derivatives, $[\kappa^4$ -Tptm]ZnO₂CH and $[\kappa^4$ -Tptm]ZnOSiR₃, can be converted to a variety of other

Figure 3. Molecular structure of $[\kappa^4$ -Tptm]ZnNCO.

Scheme 4

 $[\kappa^4$ -Tptm]ZnX derivatives upon treatment with Me₃SiX (X = Cl, Br, I, N₃, NCO, OAc), as illustrated in Scheme 3.

In addition to its role in methanol synthesis,² the abundance of CO₂ has stimulated efforts to discover other synthetic methods that employ CO_2 as a C_1 building block,¹⁹ as illustrated by the metal-catalyzed hydrogenation to formic acid and formates,²⁰ and the formation of polycarbonates by copolymerization with epoxides.²¹ The reactivity of CO_2 towards metal compounds has, therefore, been the focus of much attention.^{19,22} For example, the insertion of CO2 into M-NR2 bonds to give carbamato derivatives has been widely studied.²³ In contrast, however, there are few reports concerned with the reactivity of CO2 towards bis(trimethylsilyl)amido complexes.²⁴ It is, therefore, notable that $[\kappa^3$ -Tptm]ZnN(SiMe₃)₂ reacts with CO₂ to give the isocyanate complex, $[\kappa^4$ -Tptm]ZnNCO, which has been structurally characterized by X-ray diffraction (Figure 3). Thus, rather than undergoing only a simple insertion reaction of the type that is observed for $L_n MNR_{2}^{23}$ the reaction is accompanied by deoxygenation of CO_2 , a transformation that is made possible by the formation of strong Si–O bonds.^{25,26} The formation of the isocyanate complex $[\kappa^4$ -Tptm]ZnNCO also provides a contrast to the reaction of Zn[N(SiMe₃)(Ad)]₂ (Ad = adamantyl) with CO₂, which gives AdN=C=NAd and unidentified trimethylsiloxide species.²

The generation of $[\kappa^4$ -Tptm]ZnNCO is necessarily a multistep process, of which the initial sequence is proposed to involve insertion of CO₂ into the Zn-N(SiMe₃)₂ bond to give [Tptm]-Zn[O₂CN(SiMe₃)₂], which subsequently converts to the trimethylsiloxide derivative $[\kappa^4$ -Tptm]ZnOSiMe₃ and Me₃SiNCO (Scheme 4). In support of this proposal, both $[\kappa^4$ -Tptm]ZnO-SiMe₃ and Me₃SiNCO are observed by ¹H NMR spectroscopy during the course of the reaction. Interestingly, however, although the simplest rationalization for the formation of $[\kappa^4$ -Tptm]ZnNCO from $[\kappa^4$ -Tptm]ZnOSiMe₃ and Me₃SiNCO involves direct metathesis, additional experiments suggest that this is not the operative mechanism. Specifically, while an independent experiment indicates that $[\kappa^4-Tptm]ZnNCO$ is formed upon treatment of $[\kappa^4$ -Tptm]ZnOSiMe₃ with Me₃SiNCO, the reaction is extremely slow by comparison to the formation of [Tptm]ZnNCO upon treatment of $[\kappa^3$ -Tptm]ZnN(SiMe_3)₂ with CO₂. The formation of the isocyanate complex [Tptm]ZnNCO is, however, accelerated if CO_2 is added to a mixture of $[\kappa^4$ -Tptm]ZnOSiMe₃ and Me₃SiNCO. On this basis, it is proposed that the formation of $[\kappa^4$ -Tptm]ZnNCO is promoted by insertion of CO2 into the Zn-OSiMe3 bond to give the carbonate derivative, $[\kappa^4$ -Tptm]ZnO₂COSiMe₃, that is more susceptible towards metathesis with Me₃SiNCO than is $[\kappa^4$ -Tptm]ZnOSiMe₃.

Evidence for facile reversible insertion of CO₂ into the Zn– OSiMe₃ bond is provided by variable-temperature ¹H and ¹³C{¹H} NMR spectroscopic studies that allow for observation of $[\kappa^4\text{-}Tptm]ZnO_2COSiMe_3$ at temperatures $\leq 5 \,^{\circ}$ C, as illustrated by a signal at 157.9 ppm in the ¹³C{¹H} NMR spectrum attributable to the carbonate moiety. In addition, the reaction between $[\kappa^3\text{-}Tptm]$ -ZnN(SiMe₃)₂ and CO₂ is accompanied by formation of the carbonate (Me₃SiO)₂CO, an observation that is in accord with Me₃SiNCO undergoing metathesis with $[\kappa^4\text{-}Tptm]ZnO_2CO$ -SiMe₃ rather than with $[\kappa^4\text{-}Tptm]ZnOSiMe_3$. Two factors that may contribute to the more facile cleavage of the Zn–OC-(O)OSiMe₃ bond than the Zn–OSiMe₃ bond are (i) insertion of the CO₂ group displaces the OSiMe₃ group from the metal center, thereby reducing steric interactions, and (ii) the presence of the C(O) group allows for a six-membered transition state.

The ability of CO_2 to promote the overall displacement of a siloxide ligand has implications with respect to the fact that siloxides find frequent use as ancillary ligands.²⁸ Thus, while the insertion of CO_2 into $M-OSiR_3$ bonds has been little investigated,^{29,30} it is evident from the above studies that the presence of CO_2 could provide a general means to enhance reactivity of compounds with $M-OSiR_3$ bonds;³¹ correspondingly, it suggests that the presence of CO_2 could be detrimental for situations in which the siloxide ligand is intended to play the role of a spectator.

Finally, it is pertinent to comment on the fact that the [Tptm]ZnX complexes described herein belong to two structural classes that differ according to whether the [Tptm] ligand binds in a κ^4 or κ^3 manner. Specifically, κ^4 -coordination is observed in the solid state for $[\kappa^4$ -Tptm]ZnI, $[\kappa^4$ -Tptm]ZnNCO, $[\kappa^4$ -Tptm]ZnN₃, $[\kappa^4$ -Tptm]-ZnOSiR₃ (R = Me, Ph), $[\kappa^4$ -Tptm]ZnO₂CH, and $[\kappa^4$ -Tptm]-ZnO₂CMe,³² while κ^3 -coordination is observed for $[\kappa^3$ -Tptm]-ZnH and $[\kappa^3$ -Tptm]ZnMe. Low-temperature ¹H NMR spectroscopic studies suggest that these coordination modes are also preserved in solution. Specifically, although all [Tptm]ZnX complexes exhibit three chemically equivalent pyridyl groups at room temperature, a 2:1 pattern emerges for $[\kappa^3$ -Tptm]ZnH, $[\kappa^3$ -Tptm]ZnMe, and $[\kappa^3$ -Tptm]ZnN(SiMe₃)₂ at ca. -10 °C, consistent with κ^3 -coordination. In contrast, the low-temperature ¹H NMR spectra of $[\kappa^4$ -Tptm]ZnX [X = Cl, Br, I, NCO, N₃, OSiR₃ $(R = Me, Ph), O_2CMe, O_2CH]$ exhibit chemically equivalent pyridyl groups indicative of κ^4 -coordination.³³ This observation is in accord with density functional theory calculations which predict that the preference for κ^4 - versus κ^3 -coordination in [Tptm]ZnX for monodentate X ligands increases in the sequence Me < N- $(SiMe_3)_2 < H < I < OSiMe_3 < Br < Cl < N_3 < NCO < F.$ In view of the fact that the hydride derivative adopts κ^3 -coordination while the bulky triphenylsiloxide derivative adopts κ^4 -coordination, it is evident that steric factors do not dictate the differences in coordination mode. A consideration of [Tptm]ZnX derivatives in which X is monoatomic (X = F, Cl, Br, I, and H), however, indicates that the preference for κ^4 -coordination correlates well with the electronegativity of X, a trend which suggests that κ^4 -coordination becomes more favored with increasing charge on the zinc center.³⁴

In summary, the mononuclear alkyl zinc hydride complex, $[\kappa^3$ -Tptm]ZnH, may be synthesized via treatment of $[\kappa^4$ -Tptm]-ZnOSiMe₃ with PhSiH₃. [κ^3 -Tptm]ZnH exhibits a variety of different reaction pathways, including insertion of CO2 to give the formate complex, $[\kappa^4$ -Tptm]ZnO₂CH. The bis(trimethylsilyl)amide complex $[\kappa^3$ -Tptm]ZnN(SiMe₃)₂ also reacts with CO₂, but the product obtained is the isocyanate complex, $[\kappa^4$ -Tptm]ZnNCO, that results from a multistep sequence of which the initial steps are insertion of CO₂ into the Zn-N- $(SiMe_3)_2$ bond followed by rearrangement to $[\kappa^4$ -Tptm]ZnO-SiMe₃ and Me₃SiNCO. An important discovery, however, is that the final metathesis step to give $[\kappa^4$ -Tptm]ZnNCO is promoted by CO2, an observation which indicates that the carbonate complex $[\kappa^4$ -Tptm]ZnO₂COSiMe₃ is more susceptible towards metathesis than is the siloxide derivative, $[\kappa^4$ -Tptm]ZnOSiMe₃. As such, this finding has ramifications with respect to inducing reactivity of other siloxide compounds.

ASSOCIATED CONTENT

Supporting Information. Experimental details, computational data, crystallographic data (CIF), and complete ref 19c. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author parkin@columbia.edu

ACKNOWLEDGMENT

We thank the National Science Foundation (CHE-0749674) for support of this research and for acquisition of an NMR spectrometer (CHE-0840451).

REFERENCES

(1) (a) Uchiyama, M.; Furumoto, S.; Saito, M.; Kondo, Y.; Sakamoto, T. J. Am. Chem. Soc. **1997**, 119, 11425–11433. (b) Gao, Y.; Harada, K.; Hata, T.; Urabe, H.; Sato, F. J. Org. Chem. **1995**, 60, 290–291. (c) de Koning, A. J.; Boersma, J.; van der Kerk, G. J. M. J. Organomet. Chem. **1980**, 186, 159–172. (d) de Koning, A. J.; Boersma, J.; van der Kerk, G. J. M. J. Organomet. Chem. **1980**, 195, 1–12.

(2) (a) Strunk, J.; Kähler, K.; Xia, X.; Muhler, M. Surf. Sci. 2009, 603, 1776–1783. (b) Spencer, M. S. Top. Catal. 1999, 8, 259–266. (c) Waugh, K. C. Catal. Today 1992, 15, 51–75. (d) Spencer, M. S. Catal. Lett. 1998, 50, 37–40. (e) Chinchen, G. C.; Mansfield, K.; Spencer, M. S. CHEMTECH 1990, 20, 692–699. (f) Chinchen, G. C.; Denny, P. J.; Parker, D. G.; Spencer, M. S.; Whan, D. A. Appl. Catal. 1987, 30, 333–338. (g) Kurtz, M.; Strunk, J.; Hinrichsen, O.; Muhler, M.; Fink, K.; Meyer, B.; Wöll, C. Angew. Chem. Int. Ed. 2005, 44, 2790–2794. (h) French, S. A.; Sokol, A. A.; Bromley, S. T.; Catlow, C. R. A.; Sherwood, P. Top. Catal. 2003, 24, 161–172.

(3) (a) Han, R.; Gorrell, I. B.; Looney, A. G.; Parkin, G. J. Chem. Soc., Chem. Commun. 1991, 717–719. (b) Looney, A.; Han, R.; Gorrell, I. B.; Cornebise, M.; Yoon, K.; Parkin, G.; Rheingold, A. L. Organometallics 1995, 14, 274–288.

(4) For more recent [Tp^{RR'}]ZnH derivatives (a-d) and other well-defined mononuclear zinc hydride complexes (e,f) see: (a) Bergquist, C.; Parkin, G. Inorg. Chem. 1999, 38, 422–423. (b) Bergquist, C.; Koutcher, L.; Vaught, A. L.; Parkin, G. Inorg. Chem. 2002, 41, 625–627. (c) Kläui, W.; Schilde, U.; Schmidt, M. Inorg. Chem. 1997, 36, 1598–1601. (d) Rombach, M.; Brombacher, H.; Vahrenkamp, H. Eur. J. Inorg. Chem. 2002, 153–159. (e) Mukherjee, D.; Ellern, A.; Sadow, A. D. J. Am. Chem. Soc. 2010, 132, 7582–7583. (f) Spielmann, J.; Piesik, D.; Wittkamp, B.; Jansen, G.; Harder, S. Chem. Commun. 2009, 3455–3456.

(5) Aldridge, S.; Downs, A. J. Chem. Rev. 2001, 101, 3305-3365.

(6) For examples of complexes with Zn-H-Zn bridges, see: (a) Zhu, Z.; Fettinger, J. C.; Olmstead, M. M.; Power, P. P. Organometallics **2009**, 28, 2091-2095. (b) Hao, H.; Cui, C.; Roesky, H. W.; Bai, G.; Schmidt, H.-G.; Noltemeyer, M. Chem. Commun. **2001**, 1118-1119. (c) Coles, M. P.; El-Hamruni, S. M.; Smith, J. D.; Hitchcock, P. B. Angew. Chem. Int. Ed. **2008**, 47, 10147-10150. (d) Fedushkin, I. L.; Eremenko, O. V.; Skatova, A. A.; Piskunov, A. V.; Fukin, G. K.; Ketkov, S. Y.; Irran, E.; Schumann, H. Organometallics **2009**, 28, 3863-3868. (e) Zhu, Z.; Wright, R. J.; Olmstead, M. M.; Rivard, E.; Brynda, M.; Power, P. P. Angew. Chem. Int. Ed. **2006**, 45, 5807-5810.

(7) Cambridge Structural Database, Version 5.32. Allen, F. H.; Kennard, O. Chemical Design Automation News **1993**, 8, 31–37.

(8) For examples of multinuclear zinc hydride complexes that incorporate alkyl or aryl ligands, see ref 6c and the following: (a) Kahnes, M.; Görls, H.; González, L.; Westerhausen, M. *Organometallics* **2010**, *29*, 3098–3108. (b) Zhu, Z.; Brynda, M.; Wright, R. J.; Fischer, R. C.; Merrill, W. A.; Rivard, E.; Wolf, R.; Fettinger, J. C.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. **2007**, *129*, 10847–10857. (c) Lennartson, A.; Hakansson, M.; Jagner, S. Angew. Chem, Int. Ed. **2007**, *46*, 6678–6680. (d) de Koning, A. J.; Boersma, J.; van der Kerk, G. J. M. J. Organomet. Chem. **1978**, *155*, C5–C7.

(9) MeZnH has recently been observed in the gas phase: Flory, M. A.; Apponi, A. J.; Zack, L. N.; Ziurys, L. M. J. Am. Chem. Soc. 2010, 132, 17186–17192.

(10) de Castro, V. D.; de Lima, G. M.; Filgueiras, C. A. L.; Gambardella,
 M. T. P. J. Mol. Struct. 2002, 609, 199–203.

(11) κ^3 -Coordination of the [Tptm] ligand is indicated by the observation of a 2:1 ratio of pyridyl groups in the ¹H NMR spectrum at ≤ -10 °C.

(12) $[\kappa^4$ -Tptm]ZnOSiPh₃ may be likewise obtained by a similar procedure employing Ph₃SiOH.

(13) Trimethylsiloxide complexes of zinc are not common, and the only structurally characterized one listed in the Cambridge Structural Database is [Tp^{R,R'}]ZnOSiMe₃: Chisholm, M. H.; Eilerts, N. W.; Huffman, J. C.; Iyer, S. S.; Pacold, M.; Phomphrai, K. *J. Am. Chem. Soc.* **2000**, *122*, 11845–11854.

(14) For comparison, the mean Zn–H bond length for terminal hydride compounds listed in the Cambridge Structural Database¹³ is 1.55 Å.

(15) $[\kappa^4$ -Tptm]ZnX (X = Cl, Br) have been recently reported: Kitano, K.; Kuwamura, N.; Tanaka, R.; Santo, R.; Nishioka, T.; Ichimura, A.; Kinoshita, I. *Chem. Commun.* **2008**, 1314–1316.

(16) $[\kappa^4$ -Tptm]ZnX (X = Cl, I) can also be obtained via treatment of $[\kappa^4$ -Tptm]Li with ZnX₂ (Supporting Information).

(17) Furthermore, $[\kappa^4$ -Tptm]ZnO₂CMe can be obtained via reaction of $[\kappa^3$ -Tptm]ZnH with MeCO₂H.

(18) For CO₂ insertion reactions of multinuclear zinc hydride complexes, see: (a) Merz, K.; Moreno, M.; Löffler, E.; Khodeir, L. Rittermeier, A.; Fink, K.; Kotsis, K.; Muhler, M.; Driess, M. Chem. Commun. 2008, 73–75. (b) Schulz, S.; Eisenmann, T.; Schmidt, S.; Bläser, D.; Westphal, U.; Boese, R. Chem. Commun. 2010, 46, 7226–7228.

(19) (a) Aresta, M.; Dibenedetto, A. Dalton Trans. 2007, 2975–2992. (b) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43–81. (c) Arakawa, H.; et al. Chem. Rev. 2001, 101, 953–996. (d) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365–2387. (e) Aresta, M.; Dibenedetto, A. Catal. Today 2004,

98, 455–462. (f) Louie, J. Curr. Org. Chem. 2005, 9, 605–623. (g) Jiang, Z.; Xiao, T.; Kuznetsov, V. L.; Edwards, P. P. Philos. Trans. R. Soc. A–Math. Phys. Eng. Sci. 2010, 368, 3343–3364. (h) Darensbourg, D. J. Inorg. Chem. 2010, 49, 10765–10780.

(20) (a) Jessop, P. G.; Joó, F.; Tai, C.-C. Coord. Chem. Rev. 2004, 248, 2425–2442. (b) Himeda, Y. Eur. J. Inorg. Chem. 2007, 3927–3941.
(c) Enthaler, S.; von Langermann, J.; Schmidt, T. Energy Environ. Sci. 2010, 3, 1207–1217.

(21) (a) Darensbourg, D. J.; Mackiewicz, R. M.; Phelps, A. L.; Billodeaux, D. R. Acc. Chem. Res. 2004, 37, 836–844. (b) Coates, G. W.; Moore, D. R. Angew. Chem. Int. Ed. 2004, 43, 6618–6639. (c) Darensbourg, D. J.; Holtcamp, M. W. Coord. Chem. Rev. 1996, 153, 155–174. (d) Chisholm, M. H.; Zhou, Z. J. Mater. Chem. 2004, 14, 3081–3092.

(22) (a) Yin, X.; Moss, J. R. Coord. Chem. Rev. **1999**, 181, 27–59. (b) Leitner, W. Coord. Chem. Rev. **1996**, 153, 257–284.

(23) Dell'Amico, D. B.; Calderazzo, F.; Labella, L.; Marchetti, F.; Pampaloni, G. *Chem. Rev.* **2003**, *103*, 3857–3897.

(24) (a) Tsuda, T.; Washita, H.; Saegusa, T. J. Chem. Soc., Chem. Commun. 1977, 468–469. (b) Sita, L. R.; Babcock, J. R.; Xi, R. J. Am. Chem. Soc. 1996, 118, 10912–10913. (c) Wannagat, U.; Kuckertz, H.; Krüger, C.; Pump, J. Z. Anorg. Allg. Chem. 1964, 333, 54–61. (d) Cheng, M.; Moore, D. R.; Reczek, J. J.; Chamberlain, B. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8738–8749. (e) Andersen, R. A. Inorg. Chem. 1979, 18, 2928–2932. (f) Phull, H.; Alberti, D.; Korobkov, I.; Gambarotta, S.; Budzelaar, P. H. M. Angew. Chem. Int. Ed. 2006, 45, 5331–5334.

(25) For a recent example of isocyanate formation from the reaction of a cyclic disilylamide derivative with CO₂, see: Stewart, C. A.; Dickie, D. A.; Parkes, M. V.; Saria, J. A.; Kemp, R. A. *Inorg. Chem.* **2010**, *49*, 11133–11141.

(26) The formation of strong Si–O bonds has also been proposed to be a driving force for the conversion of CO ligands to CNR ligands by treatment with Li[Me₃SiNR]: Sattler, W.; Parkin, G. *Chem. Commun.* **2009**, 7566–7568.

(27) Tang, Y.; Felix, A. M.; Boro, B. J.; Zakharov, L. N.; Rheingold, A. L.; Kemp, R. A. *Polyhedron* **2005**, *24*, 1093–1100.

(28) (a) Marciniec, B.; Maciejewski, H. Coord. Chem. Rev. 2001, 223, 301–335. (b) Boyle, T. J.; Ottley, L. A. M. Chem. Rev. 2008, 108, 1896–1917. (c) Wolczanski, P. T. Chem. Commun. 2009, 740–757.

(29) (a) Fedotova, Y. V.; Zhezlova, E. V.; Mushtina, T. G.; Kornev, A. N.; Chesnokova, T. A.; Fukin, G. K.; Zakharov, L. N.; Domrachev, G. A. Russ. Chem. Bull. 2003, 52, 414–420. (b) Kornev, A. N.; Chesnokova, T. A.; Zhezlova, E. V.; Zakharov, L. N.; Fukin, G. K.; Kursky, Y. A.; Domrachev, G. A.; Lickiss, P. D. J. Organomet. Chem. 1999, 587, 113–121. (c) Radkov, Y. F.; Fedorova, E. A.; Khorshev, S. Y.; Kalinina, G. S.; Bochkarev, M. N.; Razuvaev, G. A. Zh. Obsh. Khim. 1986, 56, 386–389. (d) Kornev, A. N.; Chesnokova, T. A.; Zhezlova, E. V.; Fukin, G. K.; Zakharov, L. N.; Domrachev, G. A. Dokl. Chem. 1999, 369, 274–277.

(30) For examples of reversible insertion of CO_2 into M–OR bonds, see: (a) Tam, E. C. Y.; Johnstone, N. C.; Ferro, L.; Hitchcock, P. B.; Fulton, J. R. *Inorg. Chem.* **2009**, *48*, 8971–8976. (b) Simpson, R. D.; Bergman, R. G. *Organometallics* **1992**, *11*, 4306–4315. (c) Tsuda, T.; Saegusa, T. *Inorg. Chem.* **1972**, *11*, 2561–2563. (d) Aresta, M.; Dibenedetto, A.; Pastore, C. *Inorg. Chem.* **2003**, *42*, 3256–3261. (e) Mandal, S. K.; Ho, D. M.; Orchin, M. *Organometallics* **1993**, *12*, 1714–1719. (f) Ballivet-Tkatchenko, D.; Chermette, H.; Plasseraud, L.; Walter, O. *Dalton Trans.* **2006**, 5167–5175.

(31) In this regard, we have also observed that CO_2 promotes formation of [κ^4 -Tptm]ZnX (X = Cl, Br) upon treatment of [κ^4 -Tptm]-ZnOSiR₃ (R = Me, Ph) with Me₃SiX.

(32) $[\kappa^4$ -Tptm]ZnCl also exhibits κ^4 -coordination; see ref 15.

(33) The observation of equivalent pyridyl groups for $[\kappa^4$ -Tptm]-ZnO₂CR (R = H, Me) implies that access to the freely rotating κ^1 -O₂CR isomer is facile.

(34) Accordingly, DFT studies indicate that the difference in energies between $[\kappa^3$ -Tptm]ZnX and $[\kappa^4$ -Tptm]ZnX (X = F, Cl, Br, I, H) correlates well with the NBO charges on zinc (Supporting Information).