Carbon Dioxide. A Reagent for the Protection of Nucleophilic Centers and the Simultaneous Activation for Electrophilic Attack. Part 4. The α -Substitution of (i) Benzyl Alcohol and (ii) Benzylamine Alan R. Katritzky,* Wei-Qiang Fan, Kunihiko Akutagawa Department of Chemistry, University of Florida, Gainesville, FL 32611, U.S.A. Benzyl alcohol is converted into a variety of α -substituted derivatives by a one-pot sequence involving lithiation of an intermediate hemicarbonate ester. Benzylamine is similarly converted by a one-pot sequence to α -substituted benzylamines: here an intermediate carbamate salt is involved. Meyer and Seebach² have shown that benzyl alcohols 1 are doubly deprotonated by excess *n*-butyllithium in N,N,N',N'-tetramethylethylenediamine (TMEDA) pentane to give lithium *ortho*-lithio alkoxides 2, which react with electrophiles to afford a variety of *ortho*-substituted products 3. Thus, the direct approach to the α -lithiated species 4 is not available, although the corresponding synthon ${}^{-}CH_2O^{-}$ derived from methanol has been reported.³ If a benzyl alcohol derivative 5 is used, the product is usually that (9) of the Wittig rearrangement⁴ of carbanion 8, although α -functionalization by an external electrophile can sometimes occur to a small extent.⁵ We now report the successful application of our method¹ of carbon dioxide protection-activation to the one-pot preparation of α -substituted benzyl alcohols (11) via the sequence $1 \rightarrow 6 \rightarrow 7 \rightarrow 10 \rightarrow 11$. α -Substitution of benzylamine has previously been achieved *via* three step sequences of protection, substitution and deprotection. Thus, Tischler and Tischler⁶ used *N*-benzylbenzamide in this way in the sequence $12 \rightarrow 13 \rightarrow 14 \rightarrow 15 \rightarrow 19$. The use of isocyanides⁴ is also well known, and other groups have been utilized,⁷ but without exception, all these previous methods require three operations. We now report the successful application of our method¹ of carbon dioxide protection-activation to achieve a convenient one-pot preparation of α -substituted benzylamines 19 *via* the sequence $12 \rightarrow 16 \rightarrow 17 \rightarrow 18 \rightarrow 19$. 416 Communications SYNTHESIS The reaction procedures are as follows. Benzyl alcohol was lithiated with n-butyllithium/tetrahydrofuran and benzylamine was lithiated with n-butyllithium/dimethoxyethane, as appropriate, at $-70\,^{\circ}\mathrm{C}$ under argon, and in each case carbon dioxide was then passed into the reaction mixture at 25 °C. The resulting lithium carboxylate salt was treated with t-butyllithium (two equivalents were used for experiments with benzylamine). The desired electrophile was added to the resulting dianion (benzyl alcohol) or trianion (benzylamine) solution at $-70\,^{\circ}\mathrm{C}$. The reaction product was decarboxylated with hydrochloric acid to give the crude product, which was purified by column chromatography or recrystallization. Results are shown in Tables 1 and 2 and demonstrate that a variety of electrophiles react with the dianion 7 to give the products 11, and with the trianion 17 to give products 19, in fair to good yields. In this way an alkyl, acyl, carbamoyl, or hydroxyalkyl group or a deuterium atom has been introduced into the α -position of benzyl alcohol or of benzylamine. ## 1,1,2-Triphenylethanediol (11b); Typical Procedure: Benzyl alcohol (1.08 g, 0.01 mol) in tetrahydrofuran (30 ml) in a Schlenk type reactor under argon is cooled to -70 °C and *n*-butyllithium (2.5 M *n*-hexane solution, 4.0 ml) is slowly added drop- Table 1. a-Substituted Benzyl Alcohols Prepared from Benzyl Alcohol | 11 | α-Substit. | Electro-
phile | Yield ^a
(%) | m.p. (°C) | | NMR (CDCl ₃ /TMS) ^b δ (ppm) | |---------|----------------------------------|--------------------|---------------------------|-----------|-----------------------|--| | | | | | found | reported | o (ppm) | | <u></u> | CO ₂ H | CO ₂ | 65 | 119–120 | 115-1178 | 5.27 (s, 1H, CH); 7.2-7.8 (m, 7H, C ₆ H ₅ , OH, CO ₂ H) | | b | $C(OH)(C_6H_5)_2$ | $(C_6H_5)_2CO$ | 47 | 165-167 | 168ª | 2.5 (br s, 1H, OH); 3.2 (br s, 1H, OH); 5.7 (s, 1H, CH); 7.1–7.9 (m, 15H _{arom}) ^c | | c | C ₆ H ₅ CO | $C_6H_5CO_2C_2H_5$ | 51 | 135–137 | 132-135 ¹⁰ | 4.5 (br s, 1 H, OH); 6.02 (s, 1 H, CH); 7.3-7.7 (m, 8 H _{arom}); 7.85-8.15 (m, 2 H _{arom}) | | d | CH ₃ | CH ₃ I | 45 ^d | NT SEP | *460.9 | 1.4 (d, 3H, $J = 6$ Hz); 4.72 (q, 1H, $J = 6$ Hz, CHCH ₁); 7.18 (s, 5H _{atom}) | | e | D | D_2O | 68 ^d | | - | 3.28 (s, 1H, OH); 4.77 (s, 1H, СНДОН); 7.47 (s, 5H _{arom}) | ^a Isolated yield after purification. Table 2. x-Substituted Benzylamines Prepared from Benzylamine | 19 | α-Substit.
E | Electro-
phile | Yield ^a
(%) | m.p. (°C) or b.p. (°C)/torr | | ¹ H-NMR (CDCl ₃ /TMS) | |-----------|--------------------------------------|-------------------------------------|---------------------------|-----------------------------|---------------------------|---| | | | | | found | reported | δ (ppm) | | <u></u> - | CO ₂ H | CO ₂ | 61 | 275-279 ^b | 256 ^{b,11} | 5.43 (br s, 1H, CH); 7.60 (s, 5H _{arom}); 7.75 (s
2H, NH ₂)° | | b | CH ₃ | CH ₃ I | 67 | 185-188/760 | 182-185/760 ¹² | 1.40 (d, 3H, CH ₃); 1.52 (s, 2H, NH ₂); 4.05 (g, 1H, CHCH ₃); 7.42 (s, 5H _{4rom}) | | c | C_6H_5CO | $C_6H_5CO_2C_2H_5$ | 54 | 105-107 | 10913 | 4.63 (d, 2H, NH ₂); 6.54-7.92 (m, 11H, CH H _{arem}) | | d | C ₆ H ₅ NHCO | C ₆ H ₅ NCO | 45 | 112–114 | 117.5–118.5 ¹⁴ | 4.42 (d, 2H, NH ₂); 6.25 (s, 1H, CH); 6.9-7.65 (m, 10 H ₂₀₀); 8.35 (br s, 1H, CONH) | | e | D | D_2O | 85 ^d | ward. | 180 | 1.95 (d, 2H, NH ₂); 4.60 (s, 1H, CHDNH ₂)
7.32 (s, 5H _{argm}) | | f | t-C ₄ H ₉ NHCO | t-C ₄ H ₉ NCO | 57 | 114115 | e | 1.25 (s, 9 H, C(CH ₃) ₃); 4.15 (d, 2 H, NH ₂)
5.00 (s, 1 H, CHNH ₂); 5.40 (s, 1 H, CONH)
7.13 (s, 5 H _{arom}) | ^a Isolated yield after purification. wise. The resulting solution is kept at $-70\,^{\circ}\text{C}$ for a few minutes, and then allowed to rise to 25 $\,^{\circ}\text{C}$. Carbon dioxide gas is passed into the reaction mixture for several minutes. The solvent is removed under reduced pressure, leaving a pale yellow residue of lithium benzyl carbonate. The atmosphere is replaced by argon, tetrahydrofuran (50 ml) added, the solution cooled to ca. -70° C, and *t*-butyllithium (1.7 M *n*-pentane solution, 6 ml) is added slowly. The cooling bath is replaced by an ice bath, and the solution is kept at -20° C for 1 h. The reaction mixture is again cooled to -70° C, and benzophenone (1.82 g, 0.01 mol) in tetrahydrofuran (3 ml) is added. The reaction mixture is allowed to regain 20°C and stirred overnight. 2 Normal aqueous hydrochloric acid (10 ml) is added at 0°C. The acidic solution is neutralized by sodium hydrogen carbonate, and extracted with chloroform (3 × 20 ml). The organic extract is dried with sodium sulfate, filtered, and the solvent evaporated to give crude product, which is recrystallized from hexane/ether to give 11 b; yield: 1.36 g (47%). ## Phenylglycine Anilide (19d); Typical Procedure: Benzylamine (1.07 g, 0.01 mol) in dimethoxyethane (40 ml) under argon is cooled to $-70\,^{\circ}$ C and *n*-butyllithium (2.5 molar *n*-hexane solution, 4.0 ml) is added dropwise. The solution temperature is allowed to rise to 25 °C. Carbon dioxide gas is added. The solvent is removed under reduced pressure, leaving a pale residue of lithium carbamate. The atmosphere is replaced again by argon, and dimethoxyethane (70 ml) followed by t-butyllithium (1.7 molar n-pentane solution, 12 ml) is added slowly at -70 °C. The cooling bath is replaced by an ice-salt bath, and the resulting solution is kept at -20 °C for 1 h and then cooled to -70 °C again. Phenyl isocyanate (1.19 g, 0.01 mol) in tetrahydrofuran (3 ml) is added at -70 °C. The reaction mixture is allowed to regain 25 °C over 3 hours. 2 Normal aqueous hydrochtoric acid (10 ml) is added at 0 °C. After neutralization with sodium hydrogen carbonate, the solution is extracted with chloroform (3 × 20 ml). The organic extract is dried with sodium sulfate, filtered, and the solvent is evaporated to give the crude product, which is recrystallized from chloroform/hexane to give 19d; yield: 0.95 g (45 %). ^b Recorded on a Varian EM 360L spectrometer. ^c ¹³C-NMR (CDCl₃): $\delta = 76.6$ (CH), 79.7 (C-CH), 126.5, 126.3, 127.4, 127.2, 128.7, 141.9, 146.0, 146.6 ppm (C_{arom}). ^d ¹H-NMR yield. b With sublimation. [°] Solvent: CF₃CO₂H. d 1H-NMR yield. New compound: C₁₂H₁₈N₂O calc. C 69.87 H 8.80 N 13.58 (206.3) found 69.93 9.18 13.44 Downloaded by: Rutgers University. Copyrighted material. - (1) For Part III, see: Katritzky, A.R., Fan, W.Q., Akutagawa, K. Tetrahedron, 1986, 42, 4027. Part II: Katritzky, A.R., Akutagawa, K. Tetrahedron, 1986, 42, 2571. Part I: Katritzky, A.R., Akutagawa, K. Tetrahedron Lett. 1985, - (2) Meyer, N., Seebach, D. Angew. Chem. 1978, 90, 553; Angew. Chem. Int. Ed. Engl. 1978, 17, 521. Meyer, N., Seebach, D. Chem. Ber. 1980, 113, 1304. - (3) Meyer, N., Seebach, D. Chem. Ber. 1980, 113, 1290. - (4) Schoellkopf, U. Angew. Chem. 1970, 82, 795; Angew. Chem. Int. Ed. Engl. 1970, 9, 763. - (5) Wright, A., West, R. J. Am. Chem. Soc. 1974, 96, 3214. - (6) Tischler, A.N., Tischler, M.H. Tetrahedron Lett. 1978, 3. - (7) For other derivatives of primary amides which have been utilized see e.g.: Tischler, A.N., Tischler, M.H. Tetrahedron Lett. 1978, - (8) Aston, J.G., Newkirk, J.D., Jenkins, D.M., Dorsky, J. Org. Synth. Coll. Vol. 3 1955, 538. - (9) Guthrie, C.A., Spencer, E.Y., Wright, G.F. Can. J. Chem. 1957, 35, 873. - (10) Kreiser, W. Ann. Chem. 1971, 745, 164. - (11) Zelinsky, N., Stadnikoff, G. Ber. Dtsch. Chem. Ges. 1906, 39, 1722. - (12) Tafel, J. Ber. Disch. Chem. Ges. 1886, 19, 1924. - (13) Pschorr, R., Brueggemann, F. Ber. Disch. Chem. Ges. 1902, 35. - (14) Moses, P., Dahlbom, R., Sjoeberg, B. Ark. Kemi. 1964, 22, 451: C.A. 1965, 62, 473.