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Abstract: A new methodology for metalation of aryl bromide pos-
sessing an active methylene adjacent to carbonyl groups is de-
scribed. In order to avoid self-quenching, selective deprotonation
was necessary prior to halogen-metal exchange reaction. For this
purpose, mesityllithium was found to be the best choice. Subse-
quent treatment with n-BuLi resulted in the lithium-bromine ex-
change to generate the dianion, which was successfully trapped
with some electrophiles in good yield. This method was applied to
the efficient synthesis of a novel carbapenem.
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Metal-halogen exchange reaction is an important transfor-
mation, which mediates functionalization of aryl and vi-
nyl compounds in synthetic organic chemistry. Metalation
of a variety of functionalized aryls and vinyls using Zn
and Mg have been reported to date.1 However, there is no
report on metal-halogen exchange reaction of aryl halides
possessing an acidic proton at the carbon adjacent to func-
tional groups such as carbonyl, nitrile, and sulfonyl
groups, which stabilize their �-carbanions, probably due
to the self protonation/deprotonation.2 In the course of
studies toward a practical and large scale synthesis of our
drug candidate, carbapenem 1 (Figure 1),3 we required a
clean metalation of �-(4-bromophenyl)alanine side struc-
ture 3 for an efficient synthesis of the thiol side chain 2

(Scheme 1).4 Herein we wish to report metal-halogen ex-
change reaction of aryl bromide possessing an active
methylene adjacent to carbonyl groups, and its application
to the lithiation of �-(4-bromophenyl)alanine side struc-
ture 3.

Figure 1

Reactions of tert-butyl 3-(4-bromophenyl)propionate 5a
as a representative of aryl halide having a proton � to an
ester group with various metalating agents are summa-
rized in the Table. Treatment of 5a with sec-BuLi at –78
°C, followed by quenching with water gave the protonated
product 7a in 53% yield, indicating that the bromine-lith-
ium exchange reaction certainly took place.5,6 Attack of
sec-BuLi on the ester was observed as a major side reac-
tion. To our surprise, quenching with DMF instead of wa-
ter did not give the formylated product 6a, and the
protonated product 7a was obtained (Figure 3) in a similar

N
S

HO
H H

CO2H
O

NH

XHCl

CONH2

NH2

·

1

Figure 2

Br

COR

Br

R

O-Li+

Li

R

O-Li+

n-BuLi Base

Scheme 1

COOtBu

NR2

BrHS
NH

CONH2

NH2

TBSO
NBoc

O

2 3 4

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ity

 o
f B

rit
is

h 
C

ol
um

bi
a.

 C
op

yr
ig

ht
ed

 m
at

er
ia

l.



562 Y. Yamamoto et al. LETTER

Synlett 2002, No. 4, 561–564 ISSN 0936-5214 © Thieme Stuttgart · New York

yield as above (entry 1). It is most likely that the aryllith-
ium generated from the bromine-lithium exchange reac-
tion was quenched with the acidic proton(s) on the carbon
adjacent to the ester group. Therefore, we desired a new
methodology to obviate the intramolecular quenching.
Our initial concept involved deprotonation of an acidic
proton first with a non-nucleophilic base (which is not ca-
pable of metal-halogen exchange reaction) and subse-
quent metal-halogen exchange on the aromatic ring with
n-BuLi (Figure 2).7

Lithium amides such as LDA was not valuable for this
purpose since the resulting amine can act as a proton
source (entry 2). Metal hydride such as sodium hydride
might be useful, however, evolution of hydrogen gas is
not amenable to large-scale synthesis. Alkyllithiums like
as MeLi and PhLi ended in competition with attack at the
ester group (entries 3 and 4). It has been reported that
bulky, non-nucleophilic mesityllithium is able to cleanly
produce enolates of carbonyl compounds.8 In addition, the
resulting mesitylene no longer acts as a proton source. In
this regard, the combination of mesityllithium (as a base
to generate the ester enolate) and n-BuLi (as an agent to
raise the bromine-metal exchange reaction) seemed to be
of the best choice. In fact, treatment of 5a with 1.1 equiv-
alents of mesityllithium, followed by 1 equivalent of n-
BuLi generated the dianion, which was trapped with DMF
to afford the desired the formylated product in 74% yield
(entry 5).9 Mesityllithium has been recently reported to
undergo iodine-lithium exchange reaction, but such reac-
tion was not observed in this case.10 Even when 2 equiva-
lents of mesityllithium were used, the second
mesityllithium left the bromide intact (entry 6). Mesityl-
lithium did not attack a smaller alkyl ester such as ethyl
ester 5b (entry 7) and tolerated the diethylamide 5c (entry
8). Thus, mesityllithium was found to be a very useful
base for the enolate formation, with no reaction with aryl-
bromide and regeneration of a proton donor.

Next, we applied this methodology to the synthesis of the
thiol side chain of novel carbapenem 1. �-Amino acid
fragment 11 was prepared as shown in Scheme 2. 4-Bro-
mobenzaldehyde (8) was converted to �,�-unsaturated t-
butyl ester 9 by Horner–Emmons reaction (96%). Subse-
quent asymmetric Michael reaction using (R)-N-(�-meth-
ylbenzyl)benzylamine (10) gave 11 in good yield and
selectivity (95%, 94% de).11,12

Table Reactions of tert-Butyl 3-(4-Bromophenyl)propionate 5a 
with Various Metalating Agents

Entry R Base/Metalating 
Agent

5 6 7

1 t-BuO sec-BuLi n.d.a n.d. 53

2 t-BuO LDA (1.1 equiv)/
n-BuLi (2.6 equiv)

n.d. 18 64

3 t-BuO MeLi (1.2 equiv)/ 
n-BuLi (2.2 equiv)

16 n.d. 21

4 t-BuO PhLi (1.2 equiv)/ 
n-BuLi (1.3 equiv)

10 n.d. 13

5 t-BuO Mesityllithium 
(1.1 equiv)/n-BuLi 
(1 equiv)

n.d. 74 <5

6 t-BuO Mesityllithium 
(2 equiv)

95 n.d. n.d.

7 EtO Mesityllithium 
(1.1 equiv)/n-BuLi 
(1 equiv)

n.d. 71 <5

8 NEt2 Mesityllithium 
(1.1 equiv)/n-BuLi 
(1 equiv)

n.d. 67 <5

a n.d. = not determined

Figure 3
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With the desired �-(4-bromophenyl)alanine fragment 11
in hand, we then implemented our protocol. Treatment of
11 with mesityllithium followed by treatment with n-BuLi
generated the dianion 12 (Figure 4), which was quenched
with DMF to afford the desired formylated product 13
(Figure 4) in 87% yield. 

Figure 4

As we confirmed that the mesityllithium/n-BuLi protocol
successfully produced the dianion 12, the reaction with 4-
TBSoxy-N-Boc-pyrrolidin-2-one (4) was finally attempt-
ed. Addition of the dianion 12 to 4 proceeded cleanly and
the desired coupling adduct 14 was obtained in 74% yield
(Figure 5). Compound 14 could be converted to the thiol
side chain 2 for the synthesis of a novel carbapenem 1.
The whole synthetic work will be reported elsewhere as a
full article.

In conclusion, it was found that mesityllithium could act
as a non-nucleophilic base without reaction with aryl bro-
mide and regeneration of a proton donor. Combination of
mesityllithium with n-BuLi allowed us to develop a new
synthetic technique for metalation of aryl bromides pos-
sessing active methylene adjacent to carbonyl groups.
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