Silver(I), Copper(I) and Copper(II) Complex of the New N,Se-Chelate Ligand 2-Phenylselenomethyl-1*H*-benzimidazole: Electrochemistry and Structure

Markus Leboschka,^[a] Monika Sieger,^[a] Biprajit Sarkar,^[a] Mark Niemeyer,^[b] Thilo Schurr,^[a] Jan Fiedler,^[c] Stanislav Záliš,^[c] and Wolfgang Kaim^{*[a]}

Dedicated to Professor Gerd Meyer on the Occasion of His 60th Birthday

Keywords: Copper compounds; Solid-state structures; Electrochemistry; Selenoether ligand; Silver complex

Abstract. 2-Phenylselenomethyl-1*H*-benzimidazole (psbi) can form complexes in 2:1 ratio with coinage metal ions. Crystal structure analysis revealed a flattened metal coordination for $[Ag^{I}(psbi)_{2}](BF_{4})$ (1), approaching a distorted-planar arrangement with weak Ag–Se bonds (d > 2.9 Å) and confirmed as energy minimum by DFT calculations. The typical Jahn–Teller system

Introduction

Organoselenium ligands have found increasing attention in coordination chemistry [1, 2], not in the least due to the biological role of this element [3, 4]. Although the increasingly used selenomethionine [5] does not play the same important biological role as the easily deprotonated selenocysteine (the "21st essential amino acid" [4]), selenoether donors are being employed as probes for NMR spectroscopic and X-ray crystallographic investigations of biomolecules [5a]. Following recent work on copper(I), silver(I) and copper(II) complexes of small mixed imine-N and thioether-S chelate ligands such as 1-methyl-2-methylthiomethyl-1*H*-benzimidazole (mmb) [6-9] we have started to extend this approach to related imine-N/selenoether-Se species [10]. The mmb ligand did not only allow us to observe [9] the biochemically relevant [11] valence-tautomer equilibrium [Equation (1)] outside an enzyme, it also showed a remarkable ability to allow for facile CuI/II tran-

* Prof. Dr. W. Kaim Fax: +49-711-685-64165 E-Mail: kaim@iac.uni-stuttgart.de
[a] Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart, Germany
[b] Institut für Anorganische und Analytische Chemie Universität Mainz Duesbergweg 10-14 55128 Mainz, Germany
[c] J. Heyrovský Institute of Physical Chemistry, v. v. i. Academy of Sciences of the Czech Republic

Academy of Sciences of the Czech Republic Dolejškova 3 18223 Prague, Czech Republic sitions [6, 12] because of very unusual complex geometries [6] as illustrated by a "see-saw" configuration [13] around the metal in $[Cu(mmb)_2]^+$ (4) with its 2+2 coordination arrangement [6]. The analogous ion $[Ag(mmb)_2]^+$ (5) showed a much less distorted tetrahedral arrangement than the copper(I) complex due to comparatively enhanced M-S bonding [8].

Due to the electrochemically reversible electron transfer [6] such systems are not only a minimal model for partially S-ligand-coordinated copper electron transfer centers of type 1 in "blue copper proteins" [14], they have also become interesting for attempts [15] to mimic and understand the role of mixed histidine/methionine-coordinated copper in substrate-selective monooxygenases such as PHM (peptid-ylglycine hydroxylating monooxygenase) [16], which use intermediately coordinated O₂ to convert activated CH₂ groups to CHOH functions [Equation (2)].

 $-CH_{2^{-}} + O_{2} + 2 H^{+} + 2 e^{-} \xrightarrow{[Cu(NNS)_{enzym.}]} -CH(OH) - + H_{2}O$

(2)

In addition to the biochemical context related to the function of thioethers [17], molecular copper complexes of sulfur- or selenium-containing ligands [2] may be of interest as potential precursor components for obtaining copper/indium/gallium selenide or sulfide (CIGS) photovoltaic materials $CuME_2$ (M = In, Ga; E = S, Se) [18].

We now report a selenium-containing ligand related to mmb, viz., 2-phenylselenomethyl-1H-benzimidazole (psbi), and the structures of its silver(I) and copper(II) complexes 1 and 2. The copper(I) compound 3, analogous to 1 and related to 4, and its electrochemical response are also described (Scheme 1).

psbi

Due to the rather different structural results found for the selenium-containing complex 1 and the previously reported [8] sulfur analogue 5 within the four-coordination regime [13] we undertook a DFT study of that structurally puzzling ion $[Ag(psbi)_2]^+$ in order to confirm the experimental result.

Scheme 1.

The bonding of thioether and selenoether functions to transition metals has been reviewed and discussed with respect to possible π -acceptor effects [1a, 19, 20], while recent results of methionine-rich copper(I) metalloproteins with regulatory and other functions [17] also stimulate studies in the field.

Results and Discussion

Synthesis, Characterization, and Crystallization

The bidentate psbi ligand, offering a benzimidazole imino function and an aryl alkyl selenoether donor, was obtained in a straightforward way. The arylseleno function is helpful for obtaining mononuclear complexes, the analogous di*alkyl* selenoether ligand 2-methylselenomethyl-1*H*benzimidazole gave a disilver(I) species with an Ag···Ag distance of 3.156(1) Å [10].

The new crystalline materials 1 and 2 were analyzed by X-ray diffraction, Figure 1, 2 and 3 illustrate the molecular and crystal structures and Table 1, 2 and 3 summarize the crystallographic data and structure parameters.

Figure 1. Molecular structure of the complex cation in the crystal of $[Ag(psbi)_2](BF_4)$ (1).

Figure 2. Molecular structure of [Cu(psbi)₂Cl₂] (2) in the crystal.

The two new structures do not show unusual intermolecular interactions. Hydrogen bonding NH···F from the benzimidazole-NH to the counterions [1: 2.837(8) Å for N4(H)···F3(BF₄) as shortest such distance] and rather marginal [19, 21] intermolecular Se···Se contacts at $d \ge 4.0$ Å can be noted. The molecules of the copper(II) complex **2** arrange in a corrugated plane structure (Figure 3) with significant [22] intermolecular N(H)···Cl(Cu) interactions at 3.1706(6) Å. Although no pronounced $\pi - \pi$ stacking could be found, the arrangement of the aromatic benzimidazole and phenyl π systems is noteworthy. In all two cases the metal-connected benzimidazoles are approximately coplanar with the phenyl rings from the CH₂SePh substituents either above and below (**2**) or both above (**1**) that plane.

Figure 3. Arrangement of molecules 2 in the crystal.

Table	1.	Crystal	and	refinement	data	for	complexes	1	and	2
		~								

Empirical formula	$C_{28}H_{24}AgBF_4N_4Se_2$	C ₂₈ H ₂₄ Cl ₂ CuN ₄ Se ₂
Molar mass	769.11	708.88
Temperature /K	173(2)	173(2)
Wavelength /Å	0.71073	0.71073
Crystal system	triclinic	monoclinic
Space group	$P\overline{1}$	$P2_1/c$
Cell dimensions /Å	a = 10.010(2)	a = 9.572(2)
	b = 10.067(2)	b = 12.661(2)
	c = 15.628(3)	c = 11.667(3)
	$\alpha = 102.23(3)^{\circ}$	$\beta = 102.29(2)^{\circ}$
	$\beta = 108.06(3)^{\circ}$	-
	$\gamma = 100.24(3)^{\circ}$	
Cell volume $/Å^3$	1412.2(5)	1381.5(5)
Ζ	2	2
Calcd. density $/Mg \cdot m^{-3}$	1.809	1.704
Absorption coefficient /mm ⁻¹	3.344	3.644
F(000)	752	702
Measured ° region /°	2.14-52.00	2.18-55.00
Index region	$-11 \le h \le 12$	$0 \le h \le 12$
	$-12 \le k \le 12$	$0 \le k \le 16$
	$-19 \le l \le 18$	$-15 \le l \le 14$
No. of reflections	5586	3355
No. of independent reflections	$4023 [R_{int} = 0.0757]$	$3171 \ [R_{\rm int} = 0.0463]$
Absorption correction	empirical	empirical
Data/restraints/parameters	4023/0/369	3171/0/180
Goodness-of-fit on F^2	1.174	1.329
Final <i>R</i> values $[I > 2\sigma(I)]$	$R_1 = 0.0505,$	$R_1 = 0.0456,$
	$wR_2 = 0.1184$	$wR_2 = 0.0991$
R values (all data)	$R_1 = 0.0757, wR_2 = 0.1315$	$R_1 = 0.0712, wR_2 = 0.1106$
max/min electron density $/e \cdot \dot{A}^{-3}$	1.054; -0.986	1.044; -0.599

Table 2. Comparison	of selected calculate	ed and experimental bon	d
parameters in /A and	/° in the crystal of	[Ag(psbi) ₂](BF ₄) (1).	

Bond lengths	Experimental	Calculated
Bolid lengths	Experimental	Calculated
Ag-N1	2.249(4)	2.215
Ag-N3	2.252(4)	2.218
Ag-Se1	2.923(1)	2.952
Ag-Se2	3.040(1)	3.021
Sel-C9	1.955(6)	1.985
Se1-C10	1.937(6)	1.946
Se2-C29	1.968(5)	1.975
Se2-C30	1.917(8)	1.941
Bond angles	Experimental	Calculated
N1-Ag-N3	174.9(2)	175.4
N1-Ag-Se1	76.6(1)	79.1
N3-Ag-Sel	102.0(1)	102.9
N1-Ag-Se2	103.6(1)	102.8
N3-Ag-Se2	75.3(1)	77.7
Se1-Ag-Se2	151.94(3)	149.6
C9-Sel-Ag	92.0(2)	88.5
C10-Se1-Ag	104.1(2)	106.2
C29-Se2-Ag	89.6(2)	87.4
C30-Se2-Ag	90.6(2)	95.5
C9-Se1-C10	99.0(2)	100.9
C29-Se2-C30	101.3(3)	102.4

Table 3. Selected bond parameters in /Å and /° of $[Cu(psbi)_2Cl_2]$ (2).

	2
Bond lengths	
Cu-N3	1.997(3)
Cu-Cl	2.299(1)
Cu-Se	3.2944(8)
Se-C10	1.956(4)
Se-C11	1.914(5)
C2-C10	1.476(5)
N3-C2	1.352(5)
Bond angles	
N3-Cu-N3'	180.0
Se-Cu-Se'	180.0
N3-Cu-Se/Se'	73.53(8)/106.47(8)
C2-N3-Cu	125.9(3)
C10-Se-C11	100.3(2)
N3-Cu-Cl/Cl'	89.55(9)/90.45(9)
Cl-Cu-Cl	180.0

Concerning the molecular structures, the silver(I) compound 1 shows a rather distorted arrangement, approaching a square configuration. The copper(II) species 2 exhibits a planar CuN₂Cl₂ core with weak Se····Cu^{II}····Se axial ligation at 3.2944(8) Å Cu–Se distance.

The M-N bond lengths show only a slight variation on replacement of mmb by the selenium-containing ligand psbi but a large difference of about 0.32 Å on going from Cu⁺ (4) to Ag⁺ (1,5), reflecting the difference (1.26 Å-0.96 Å) of the ionic radii [22]. On the other hand, the copper(I)-N(imine) bond in 2 is typically longer than the copper(I)-N(imine) bond in 4 because of absent π back donation. The M-E distances (E = S or Se) show substantial increase between the complexes of Cu⁺ (4) or Ag⁺ (1,5) and mmb (4,5) or psbi ligands (1). Remarkably, the cations

in the crystal of $[Ag(psbi)_2](BF_4)$ exhibit two quite different Ag–Se distances at 2.923(1) and 3.040(1) Å, indicating structural flexibility of this weak bonding (shallow energy surface); the sum of the van der Waals radii of Se and Ag is about 3.60 Å [22]. The difference to the Ag–S distance of 2.7019(8) Å in 5 [8] is striking. The still longer Cu^{II}...Se distance in 2 corresponding to the sum of the van der Waals radii at 3.30 Å [22] illustrates the familiar tetragonal stretching of a Jahn–Teller distorted octahedron within a d⁹-configuration. The Cu^{II}–Cl and Cu^{II}–N bond lengths in 2 are not unusual.

The pattern among the bond angles at the metal ions is less straightforward: The N-M-N angles of the Cu/S(mmb) [169.8(1)° for 4] and Ag/Se(psbi) combinations [174.9(2)° for 1] are rather closer to linearity, especially when compared to the 144.4(1)° for the Ag/S(mmb) alternative 5.

As with the M–E distances there is also a wide variety when it comes to E–M–E angles: The copper(I)/thioether species **4** has an E–M–E angle of 109.33(3)°, the Ag/S combination **5** has 124.15(4)°, and the new Ag/Se compound **1** exhibits a rather obtuse Se–Ag–Se angle of 151.94(3)° in agreement with the flattening. Symmetry dictates the Se…Cu^{II}…Se angle in **2** to be 180° just as N–Cu–N, the smaller N–Cu–Se angle is 73.53°.

The chelate bite angles N-M-E show relatively little variation, correlating with the sums of the bond lengths, (M-N) + (M-E). Accordingly, the silver(I) and copper(II) species exhibit smaller such angles (< 80°) when compared to the Cu^I compound **4** with 82.47(6)°.

The sum of the six angles at the four-coordinate metal ions in compounds **1**, **4**, and **5** reflects the amount of flattening, the values for ideal coordination geometries are 720° (square-planar), 657° (tetrahedral) and 630° (trigonal-pyramidal). The sums of angles, Σ , as given in the following, show the exceptional situation for the [Ag(psbi)₂]⁺ ion in **1**: $\Sigma = 684.4^{\circ}$ (**1**), 651.2° (**4**), 664.3° (**5**).

The complex cation in **1** has both the N-Ag-N and Se-Ag-Se angles at rather high values $[174.9(2)^{\circ}$ and $151.94(3)^{\circ}$, respectively] which produces a significantly flattened situation. The Ag/N1/N3/Se1/Se2 best plane shows deviations of +0.328 (Ag), +0.222 (N1), +0.236 (N3), -0.400 (Se1) and -0.386 Å (Se2).

To confirm this rather rare flattened form of 2+2 fourcoordination [13a], we tried to reproduce the substantial features of the experimental structure of $[Ag(psbi)_2]^+$ by DFT calculations (Table 2). DFT slightly overestimates the Se-C distances and underestimates the Ag-N bond lengths, however, the calculation essentially confirms the unusual geometry of the cation in **1**. This result also suggests that neither intermolecular or packing effects, nor hydrogen bonding, ionic forces or Se···Se interactions are responsible for the curious structural result.

The copper(II) compound **2** makes use of the weakly binding selenoether donor atoms as built-in (intramolecular) axial ligands in an otherwise conventional planar Jahn–Teller situation. Absence of charge, low σ basicity,

Zeitschrift für anorganische und allgemeine Chemie ZAAAC General Chemistry

and poor π back donation to the metal disfavor the organoselenium substituent as a ligand for copper(II).

Electrochemistry

The reversible transition $[Cu(mmb)_2]^{+/2+}$ as observed by cyclic voltammetry [6] suggested to view this complex as a minimal model for type 1 copper atoms in blue copper proteins [12b, 17b]. The intricate electron-transfer kinetics of copper(I/II) with N and S donor containing ligands was studied in detail by *Rorabacher* et al. [12a]. The selenium compounds described here showed a variable cyclovoltammetric response, probably due to adsorption effects; optimization using a non-coordinating solvent and variations of the internal reference/mediator gave satisfactory results.

Oxidation of the copper(I) compound **3** in the presence of $Fe(C_5H_5)_2$ or $Fe(C_5Me_5)_2$ as internal standards gave a fully reversible response (Figure 4) at $E_{1/2} = +0.40$ V vs. $[Fe(C_5H_5)_2]^{+/\circ}$ in $CH_2Cl_2/0.1$ M Bu₄NBF₄ with $i_a/i_c = 1.0$ and ΔE values increasing from 90 mV at 10 mV/s scan rate to 200 mV at 500 mV/s. The potential is thus slightly more positive when compared to the result at +0.31 V under comparable circumstances for the related sulfur-containing compound **4** [6], indicating a somewhat more stable copper(I) state in **3** due the presence of the "softer" selenium. It has been discussed by *Samuelson* et al. that the optimum balance of copper(I) for harder (e.g.; N) and softer donors (e.g.; P) is not easily predictable [23].

Figure 4. Cyclic voltammogram of compound $[Cu(psbi)_2](BF_4)$ in dichloromethane/0.1 M Bu₄NBF₄ at 50 mV · s⁻¹ scan rate (*: decamethylferrocene as internal standard).

Although the silver(I) compound 1 with its approximately planar coordination arrangement at the d¹⁰-configured metal looked like a suitable candidate for reversible oxidation to the 4d⁹ system silver(II) [24], even low-temperature cyclic voltammetry at 213 K in dichloromethane or *n*-butyronitrile/0.1 M Bu₄NPF₆ did not show any sign of reversible electron loss but only an irreversible oxidation wave at about 1.0 V vs. Fc^{+/o}, possibly because of the labile Ag-Se bonds. Expectedly, the dichloridocopper(II) compound 2 was not reduced reversibly due to chloride dissociation.

Concluding, the structural data presented here with M-Se distances longer than 2.9 Å confirm that the phenyl selenoether function shows only weak binding to Ag^I and Cu^{II} in relation to comparable thioether species. For the copper(II) compound 2 the result is a very pronounced Jahn-Teller situation, i.e. elongation of the coordination octahedron along the Se-Cu-Se axis, whereas the silver(I) system 1 shows a highly distorted four-coordination with a tendency towards flattening. Compound 1 is mononuclear unlike the dinuclear Ag.Ag bonded species $[Ag_2(msb)_2(CH_3CN)_2](BF_4)_2$ formed with the dialkyl selenoether ligand msb = 2-methylselenomethyl-1*H*-benzimidazole [10], and it does not show any sign of reversible oxidation despite the partially planar arrangement of the AgNNSe atoms. In contrast, the oxidation of the analogous $[Cu(psbi)_2](BF_4)$ (3) is still reversible just as similar thioether analogues [6], but only a future structure determination of this or related copper(I) complexes will indicate whether there is a structural basis for this difference and whether the π acceptor effect of selenium is operating.

Experimental Section

Instrumentation: ¹H NMR spectra were taken with Bruker AC 250 and 400 spectrometers. UV/Vis absorption spectra were obtained using a J&M Tidas spectrophotometer. Cyclic voltammetry was carried out in $0.1 \text{ M Bu}_4\text{NPF}_6$ solutions using a three-electrode configuration (glassy carbon working electrode, platinum counter electrode, Ag/AgCl reference) and a PAR 273 potentiostat and function generator. The ferrocene/ferrocenium or decamethylferrocene/decamethylferrocenium couple served as internal reference.

Crystal Structure Determination: Single crystals were obtained by slow evaporation of an acetonitrile solution in the dark (1) and by overlying a methanol solution with diethyl ether and slow diffusion at 255 K (2). The X-ray data were collected at 188(2) K with a Siemens P4 diffractometer, using graphite-monochromated Mo- K_{α} radiation ($\lambda = 0.71073$ Å) and employing Wyckoff scans. Further details are given in Table 1. All structures were solved by the Patterson method using the SHELXTL package while refinement was carried out with SHELXL97 employing full-matrix least-squares methods on F^2 with $F\sigma^2 > -2\sigma(F\sigma^2)$ [25]. All non-hydrogen atoms were refined anisotropically, hydrogen atoms were introduced using appropriate riding models. CCDC-718866 and CCDC-718867 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Phenylselenomethyl-1*H***-Benzimidazole (psbi):** Diphenyl diselenide (1.7 g, 5.5 mmol) was dissolved in dry ethanol under argon and was reduced by adding sodium borohydride (0.50 g, 13 mmol). After one hour the solution had turned colorless and the hydrogen gas evolution had ceased. Then a suspension of 2-chloromethyl-1*H*-benzimidazole (1.82 g, 11.0 mmol) in ethanol was added and the reaction mixture stirred for 10 h. After removal of the solvent the product was isolated by column chromatography (silica, ethyl acetate/petroleum ether, 1:2). 3.2 g (7.4 mmol, 57 %) of the color-

less psbi were isolated. $C_{14}H_{12}N_2Se$ (287.22): calcd. C 58.54, H 4.21, N 9.75; found C 58.29, H 4.46, N 9.57. ¹H NMR (CD₃CN): δ = 4.30 (s, J_{Se-H} = 6.9 Hz), 7.18–7.10 (m), 7.30–7.18 (m), 7.60–7.40 (m). ¹³C NMR (CD₃CN): δ = 24 (J_{Se-C} = 30 Hz), 115.7, 122.9, 128.3, 130.1, 133.7, 143.3, 153.1, 153.8. ⁷⁷Se NMR (CD₃CN): δ = 351.7.

[Ag(psbi)₂](BF₄) (1): AgBF₄ (17.0 mg, 0.087 mmol) and psbi (50.0 mg, 0.174 mmol) were dissolved in acetonitrile (5 mL). Colorless crystals were obtained by storing the solution in a dark place until the solvent had evaporated. 53 mg (79 %) were isolated. C₂₈H₂₄AgBF₄N₄Se₂·H₂O (787.12): calcd. C 42.73, H 3.33, N 7.12; found C 42.20, H 3.65, N 7.42. ¹H NMR (CD₃CN): δ = 4.43 (s, $J_{\text{Se-H}} = 6.9$ Hz), 7.32–7.28 (m), 7.36–7.32 (m), 7.6–7.5 (m), 7.85 s. ¹³C NMR (CD₃CN): δ = 25.9 ($J_{\text{Se-C}} =$ 30 Hz), 118.6, 124.4, 127.7, 129.1, 129.5, 130.1, 130.3, 132.5, 133.9, 153.4, 182.7. ⁷⁷Se NMR (CD₃CN): δ = 330.1.

[CuCl₂(psbi)₂] (2): CuCl₂ (11.5 mg, 0.087 mmol) was dissolved in methanol (3 mL) and mixed with psbi (50.0 mg, 0.174 mmol), also dissolved in methanol (3 mL). Green crystals (42 mg, 70 %) were obtained by overlaying the solution with of ethyl ether (15 mL) at -18 °C. C₂₈H₂₄Cl₂CuN₄Se₂ (708.89): calcd. C 47.44, H 3.41, N 7.90; found C 46.33, H 3.41, N 7.75. UV/Vis (CH₃CN): $\lambda_{max} =$ 760 nm. EPR (MeOH, 110 K): $g_{\parallel} = 2.31$, $g_{\perp} = 2.065$, $A_{\parallel} =$ 14.8 mT.

[Cu(psbi)₂](BF₄) (3): [Cu(CH₃CN)₄](BF₄) (27.3 mg, 0.087 mmol) and psbi (50.0 mg, 0.174 mmol) were dissolved under argon in acetonitrile (5 mL). Hexane (15 mL) was added to precipitate 51 mg (0.07 mmol, 80 %) of colorless [Cu(psbi)₂](BF₄). C₂₈H₂₄BCuF₄N₄Se₂ · 0.5H₂O (733.97): calcd. C 45.83, H 3.44, N 7.64; found C 45.71, H 3.75, N 8.01. ¹H NMR (CD₃CN): δ = 4.36 s (*J*_{Se-H} = 6.9 Hz), 7.28-7.17 (m), 7.35-7.28 (m), 7.47-7.39 (m), 7.60-7.53 (m). ¹³C NMR (CD₃CN): δ = 26.0 (*J*_{Se-C} = 30 Hz), 117.8, 124.4, 129.0, 129.6, 130.0, 133.5, 163.5, 186.0.

DFT Calculation of $[Ag(psbi)_2]^+$: The ground state electronic structure calculation has been done by the density-functional theory (DFT) method using the ADF2007.01 program package [26–28]. Slater type orbital (STO) basis sets of triple- ζ quality with two polarization functions for C, N, Se and Ag and double- ζ quality with one polarization function for H were employed. The inner shells were represented by the frozen core approximation (1s for C, N, 1s–3p for Se and 1s–3d for Ag were kept frozen). The calculations were done with the functional including Becke's gradient correction [29] to the local exchange expression in conjunction with Perdew's gradient correction [30] to the local correlation (ADF/BP). The scalar relativistic (SR) zero order regular approximation (ZORA) was used within this study. Geometry optimization was done without any symmetry constraints.

Acknowledgement

This work was supported by the *Deutsche Forschungsgemeinschaft* (SFB 706), the *Fonds der Chemischen Industrie*, the *European Union* (EU) (COST D35), the *Grant Agency of the Academy of Sciences* of the Czech Republic (KAN 100400702) and the *Ministry of Education of the Czech Republic* (Grant COST OC 139).

References

a) S. G. Murray, F. R. Hartley, *Chem. Rev.* **1981**, *81*, 365; b)
 A. Panda, S. C. Menon, H. B. Singh, C. P. Morley, R. Bach-

man, T. M. Cocker, R. J. Butcher, Eur. J. Inorg. Chem. 2005, 1114.

- [2] a) S. Dey, V. K. Jain, S. Chaudhury, A. Knoedler, F. Lissner, W. Kaim, J. Chem. Soc., Dalton Trans. 2001, 723; b) S. Dey, V. K. Jain, A. Knödler, A. Klein, W. Kaim, S. Zalis, Inorg. Chem. 2002, 41, 2864; c) S. Dey, L. B. Kumbhare, V. K. Jain, T. Schurr, W. Kaim, A. Klein, F. Belaj, Eur. J. Inorg. Chem. 2004, 4510.
- [3] a) C. Jacob, G. I. Giles, N. M. Giles, H. Sies, Angew. Chem.
 2003, 115, 4890; Angew. Chem. Int. Ed. 2003, 42, 4742;
 b) W.-W. du Mont, G. Mugesh, C. Wismach, P. G. Jones, Angew. Chem. 2001, 113, 2547; Angew. Chem. Int. Ed. 2001, 40, 2486.
- [4] H. Engelberg-Kulka, R. Schoulaker-Schwarz, *Trends Biochem. Sci.* 1988, 13, 419.
- [5] a) G. Roelfes, D. Hilvert, Angew. Chem. 2003, 115, 2377; Angew. Chem. Int. Ed. 2003, 42, 2275; b) G. N. Schrauzer, Adv. Food Nutr. Res. 2003, 47, 73.
- [6] M. Albrecht, K. Hübler, S. Zalis, W. Kaim, *Inorg. Chem.* 2000, 39, 4731.
- [7] a) J. Rall, E. Waldhör, B. Schwederski, M. Schwach, S. Kohlmann, W. Kaim, in *Bioinorganic Chemistry: Transition Metals in Biology and their Coordination Chemistry* (Ed.: A. X. Trautwein), VCH, Weinheim (Germany), **1997**, p. 476; b) M. Albrecht, K. Hübler, T. Scheiring, W. Kaim, *Inorg. Chim. Acta* **1999**, 287, 204; c) W. Kaim, M. Wanner, A. Knödler, S. Zalis, *Inorg. Chim. Acta* **2002**, 337, 163.
- [8] M. Albrecht, K. Hübler, W. Kaim, Z. Anorg. Allg. Chem. 2000, 626, 1033.
- [9] J. Rall, M. Wanner, M. Albrecht, F. M. Hornung, W. Kaim, *Chem. Eur. J.* 1999, 5, 2802.
- [10] M. Leboschka, M. Sieger, M. Niemeyer, S. Záliš, W. Kaim, Z. Anorg. Allg. Chem. 2008, 634, 2343.
- [11] a) M. Mure, Acc. Chem. Res. 2004, 37, 131; b) R. Medda, A. Padiglia, A. Bellelli, J. Z. Pedersen, A. Finazzi Agro, G. Floris, FEBS Lett. 1999, 453, 1; c) R. Medda, A. Mura, S. Longu, R. Anedda, A. Padiglia, M. Casu, G. Floris, Biochimie 2006, 88, 827.
- [12] For the effect of thioethers in stabilizing the Cu^I/Cu^{II} transition see: a) D. B. Rorabacher, *Chem. Rev.* 2004, *104*, 651; b) S. Torelli, C. Belle, C. Philouze, J.-L. Pierre, W. Rammal, E. Saint-Aman, *Eur. J. Inorg. Chem.* 2003, 2452.
- [13] a) S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell, D. Avnir, *Coord. Chem. Rev.* 2005, *249*, 1693; b) I. Persson, K. B. Nilsson, *Inorg. Chem.* 2006, *45*, 7428; c) S. Ekici, M. Nieger, R. Glaum, E. Niecke, *Angew. Chem.* 2003, *115*, 451; *Angew. Chem. Int. Ed.* 2003, *42*, 435.
- [14] K. Paraskevopoulos, M. Sundararajan, R. Surendran, M. A. Hough, R. R. Eady, I. H. Hillier, S. S. Hasnain, *Dalton Trans.* 2006, 3067.
- [15] a) L. Zhou, D. Powell, K. M. Nicholas, *Inorg. Chem.* **2006**, *45*, 3840; b) L. Q. Hatcher, D.-H. Lee, M. A. Vance, A. E. Milligan, R. Sarangi, K. O. Hodgson, B. Hedman, E. I. Solomon, K. D. Karlin, *Inorg. Chem.* **2006**, *45*, 10055; c) N. W. Aboelella, B. F. Gherman, L. M. R. Hill, J. T. York, N. Holm, V. G. Young Jr., C. J. Cramer, W. B. Tolman, *J. Am. Chem. Soc.* **2006**, *128*, 3445.
- [16] S. T. Prigge, B. A. Eipper, R. E. Mains, L. M. Amzel, Science 2004, 304, 864.
- [17] a) A. V. Davis, T. O'Halloran, *Nat. Chem. Biol.* 2008, *4*, 148;
 b) C. Belle, W. Rammal, J.-L. Pierre, *J. Inorg. Biochem.* 2005, 99, 1929.
- [18] a) M. Afzaal, D. J. Crouch, P. O'Brien, J. Raftery, P. J. Skabara,
 A. J. P. White, D. J. Williams, *J. Mater. Chem.* 2004, *14*, 233;
 b) D. L. Castro, S. G. Bailey, R. P. Rafaelle, K. K. Banger, A. F. Hepp, *Chem. Mater.* 2003, *15*, 3142; c) J. J. Vittal, M. T. Ng, *Acc. Chem. Res.* 2006, *39*, 869.
- [19] H.-B. Kraatz, H. Jacobsen, T. Ziegler, P. M. Boorman, Organometallics 1993, 12, 76.
- [20] W. Kaim, J. Biol. Inorg. Chem. 2007, 12, 121 (Suppl. I, 2007).

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

- [21] M. R. Bryce, A. Chesney, S. Yoshida, A. J. Moore, A. S. Batsanov, A. J. Howard, J. Mater. Chem. 1997, 7, 391.
- [22] J. E. Huheey, E. A. Keiter, R. L. Keiter, *Inorganic Chemistry*, 4th ed., Harper Collins, New York, **1993**, p. 292.
- [23] C. Sivasankar, N. Sadhukhan, J. K. Bera, A. G. Samuelson, *New J. Chem.* 2007, *31*, 385.
- [24] J. A. McMillan, B. Smaller, J. Chem. Phys. 1961,46, 4992.
- [25] a) G. M.Sheldrick, Program for Crystal Structure Solution and Refinement, University of Göttingen, 1997; b) G. M. Sheldrick, SHELXTL, version 5.10; Bruker AXS Inc., Madison, Wisconsin, 1998.
- [26] a) "Chemistry with ADF" G. te Velde, F. M. Bickelhaupt, S. J. A. van Gisbergen, C. Fonseca Guerra, E. J. Baerends, J. G.

Snijders, T. Ziegler, *J. Comput. Chem.* **2001**, *22*, 931; b) ADF2007.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.

- [27] C. Fonseca Guerra, J. G. Snijders, G. Te Velde, E. J. Baerends, *Theor. Chem. Acc.* 1998, 99, 391.
- [28] S. J. A. van Gisbergen, J. G. Snijders, E. J. Baerends, Comput. Phys. Commun. 1999, 118, 119.
- [29] A. D. Becke, Phys. Rev. A 1988, 38, 3098.
- [30] J. P. Perdew, Phys. Rev. A 1986, 33, 8822.

Received: February 9, 2009 Published Online: March 25, 2009