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Abstract

We introduce the Realized moMents of Disjoint Increments (ReMeDI) paradigm to mea-
sure microstructure noise (the deviation of the observed asset prices from the fundamental
values caused by market imperfections). We propose consistent estimators of arbitrary fi-
nite moments of a microstructure noise process, which could be serially dependent and
nonstationary, based on high-frequency data. We characterize the limit distributions of the
proposed estimators and construct robust confidence intervals under infill asymptotics.
We further demonstrate that the ReMeDI approach also works on low-frequency, non-infill
data. It thus can be applied to many asset pricing and macroeconomic models, in which
the time series have a permanent and a transitory component.

We propose two liquidity measures that gauge the instantaneous and average bid-ask
spread with potentially autocorrelated order flows. They can be consistently estimated
within our framework. We provide an economic model to justify such measures as an inter-
mediary’s inventory risk measure when meeting serially dependent liquidity demand. Em-
pirically we find our new liquidity measures are very effective to identify liquidity drains
during the Flash Crash, when the market experienced extreme selling pressures.

KEYWORDS: Microstructure noise, liquidity measures, inventory models, order flows, in-
fill asymptotics, permanent and transitory components, Flash Crash

1 Introduction

Economic time series are often modelled as the sum of a latent process obtained from an un-
derlying economic model and another additive term that is either an error reflecting a variety
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of adjustments to the frictionless theoretical model, or a term that represents departures from
the economic model, thus

Y︸︷︷︸
observed series

= X︸︷︷︸
underlying process

+ ε︸︷︷︸
deviation

. (1)

The two processes X and ε are generated by different mechanisms, and can have quite dis-
tinct statistical properties and economic interpretations. Both quantities may be of interest as
they give interpretation to the underlying economic theory and its relevance for the observed
data, or distinguish classes of economic models. However, since only the sum process Y is
observable, this makes estimation and inference challenging.

We are concerned with applications of this framework in financial markets where the ob-
served asset price1 (Y) contains market microstructure noise (ε) that blurs the efficient price (or
fundamental value) (X). The fundamental theorem of asset pricing says that X should be a
semimartingale process (Delbaen and Schachermayer (1994)). In practice however, there are
many market frictions that may cause observed prices to deviate from this ideal price, such
as: transaction costs, price discreteness, inventory holdings, information asymmetry, measure-
ment errors. One may also allow for temporary misspricing (French and Roll (1986)) or fads
effects (Lehmann (1990)); see also O’Hara (1995), Hasbrouck (2007) and Foucault et al. (2013)
for insightful reviews. A lot of early work proceeded on the basis that the microstructure noise
process was i.i.d., but recently this assumption has been shown to be too strong; both theo-
retically and empirically the microstructure noise may exhibit rich dynamics depending on
its sources. If the microstructure effects are negligible, the observed price should be close to
the efficient price and be unpredictable. Therefore, the dispersion and persistence of the mi-
crostructure noise serve as natural measures of market quality. Market quality is of concern to
regulators and practitioners as well as academics; proxies for market quality are widely used
in empirical analysis, see Linton and Mahmoodzadeh (2018).

We next outline our contribution. We introduce a general econometric approach to mea-
suring microstructure noise in a nonparametric setting. First, we propose a new estimator of
the moments of a general dependent noise process called the Realized moMents of Disjoint Incre-
ments (ReMeDI) based on observed noisy high-frequency transaction prices. We assume that
the underlying efficient price follows a semimartingale, which may accommodate stochastic
volatility, jumps, etc. We allow the microstructure noise to be weakly dependent and to have
serially correlation (of unknown form) that may decay algebraically; this may capture, for in-
stance, the effects of clustered (or hidden) order flows (Gerig (2008)), or herding (Park and
Sabourian (2011)). The microstructure noise is allowed to have time-varying heteroskedastic-
ity, which allows for intraday variaiton in the scale of the noise. We develop the joint estimators
of arbitrary moments of microstructure noise and derive the associated limit distributions. We
provide a consistent estimator of the asymptotic variance that is carefully designed to improve
its finite sample performance. Our setting also allows for certain degrees of irregularities in

1By price it always means the logarithmic price in this paper unless stated otherwise.
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the observation schemes. Statistically, we provide a general method to separate a nonstation-
ary and serially dependent sequence from a semimartingale; from an economic point of view,
we identify the components of asset prices arising from market frictions.

A second contribution we make is to propose two new liquidity measures based on the
autocovariance function of the microstructure noise. The first measure can be considered as a
generalization of the Roll effective spread measure that is robust to autocorrelated order flow
patterns. It measures the spread associated with a single trade, whence we think of it as an
instantaneous measure. The second measure is designed to capture the average spread of multi-
ple trades, where patterns of the order flow play a role. We develop a simple inventory model
to provide economic insights about the average measure: it can be interpreted as an interme-
diary’s inventory risk when he meets a sequence of possibly autocorrelated high-frequency
liquidity demands that could reflect order splitting behavior or herding behavior, see Toth
et al. (2015) and references therein. We also show how to estimate and conduct inference about
these liquidity measures using our ReMeDI procedures.

Our third contribution is to develop several hypotheses tests about the microstructure
noise. In particular, we test for the intraday patterns by comparing the magnitudes of noise
in two intervals. We also provide tests that the microstructure noise is not autocorrelated. All
tests are model-free, and can detect alternatives with rich dynamics and model specifications.

Our fourth contribution is that the ReMeDI approach is robust to data frequencies in a sense
that it remains valid when applied to low-frequency data under long-span asymptotics. We show
that the ReMeDI estimators are able to effectively separate a process with independent incre-
ments (X) and a stationary mixing sequence (ε). It is a surprising yet intuitive property of the
ReMeDI design: the increments of X over disjoint intervals (the efficient returns) are uncorre-
lated, and what remains is attributed to ε. This property not only distinguishes the ReMeDI
approach from alternative high-frequency estimators that rely structurally on the infill asymp-
totics, but also broadens the range of potential applications in other fields of economics and
finance that utilize lower frequency data. In this setting the large sample variance is domi-
nated by the variation of the efficient price process; we obtain a CLT for the estimator but at a
slower rate than in the infill case. Finally, we provide a novel implementation rule to calculate
the asymptotic variance of the ReMeDI estimators if one feels uncertain about the underlying
asymptotic framework of his dataset.

We apply our methods to data from the E-mini stock index futures contract during the
month of May 2010. There are several interesting empirical findings. First, we find that our
liquidity measures are lower during the "European" segment of the trading day, and that these
measures are fairly stable except during the Flash Crash day, May 6th, when the liquidity
measures during the "American" segment rose dramatically. We find positive and significant
autocorrelations only for the first few lags on the non Flash Crash days, much less dependence
than for the individual stock case we discuss below. However, during the Flash Crash day this
autocorrelation became much stronger and significant for many lags. This is consistent with
for example the positive feedback loop hypothesis (Beddington et al. (2012)).
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We also apply our method to individual stock price data from 2016 (presented in the sup-
plementary materials Li and Linton (2019)). We find that the microstructure noise exhibits
strong and positive autocorrelations in the first several lags, and has minor negative autocor-
relations after many ticks. The strong and positive autocorrelations induce significant and
persistent differences between the three liquidity measures: the average measure tends to be
larger than the instantaneous one, and the classic Roll measure is further downward biased
relative to our instantaneous measure. The magnitude of noise in the first five minutes is sig-
nificantly larger than during the regular trading hours (9:35 — 15:55), but the magnitude of
noise in the last five minutes is not so statistically different.

The rest of the paper is organized as follows. Section 1.1 reviews the related literature.
Section 2 sets the continuous-time framework for the efficient price and microstructure noise.
Section 3 introduces the ReMeDI estimators and outlines the intuition of the design. Section 4
presents the asymptotic theory. Section 5 and Section 6 demonstrate the economic and sta-
tistical applications. Section 7 extends the ReMeDI approach to low-frequency settings. The
empirical studies are presented in Section 8, and Section 9 concludes. All mathematical proofs,
simulation studies, the procedures to select the tuning parameters and additional empirical
studies on an individual stock are collected in the supplementary materials Li and Linton
(2019).

1.1 Related literature

1.1.1 High-frequency econometrics

There are a number of methods for estimation of the moments of noise and the parameters
of the efficient price. Specifically: the two-scale/multi-scale realized volatility by Zhang et al.
(2005), Zhang (2006), Aït-Sahalia et al. (2011); the optimal-sampling realized variance by Bandi
and Russell (2006, 2008); the maximum likelihood estimators by Aït-Sahalia et al. (2005), Xiu
(2010); the pre-averaging method developed in Podolskij and Vetter (2009), Jacod et al. (2009);
and the realized kernel by Hansen and Lunde (2006), Barndorff-Nielsen et al. (2008). Most of
this literature only considers i.i.d. microstructure noise.

Several recent papers explore richer microstructure models by considering autocorrelated
noise. The estimators of the second moments of noise in Da and Xiu (2019) and Li et al. (2019)
are by-products of the integrated volatility estimators in the presence of autocorrelated noise.
In a recent seminal work, Jacod et al. (2017) introduce the first estimator, called local averaging
(LA) method to measure arbitrary moments of microstructure noise using high-frequency data.
They also introduce a general framework of stochastic observation scheme and microstructure
noise with a semimartingale “size process”. Our main results are derived under slightly less
general assumptions than theirs, although we generalize the consistency result to the precise
setting of Jacod et al. (2017). We differentiate our paper from Jacod et al. (2017) as follows.
First, the ReMeDI method is based on differencing, while the LA is based on deviations from
local averages, both ideas are widely used in other contexts such as panel data to eliminate nui-
sance parameters. Second, the ReMeDI approach works beyond the infill framework. It can
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be applied on low-frequency data and it has a limit distribution under the long-span asymp-
totics. This statistical property has an economically intuitive interpretation. Thus, the ReMeDI
estimators can be used by asset pricers with daily or coarser returns, or researchers in mar-
ket microstructure working on millisecond prices. The LA method, however, is inconsistent
when applied to low-frequency data. Third, we propose new measures of market liquidity
and provide economic interpretations. Next, even within the high-frequency framework, the
ReMeDI estimators are very robust. The LA estimators are more sensitive to data frequencies.
As showed by Jacod et al. (2017) that the LA estimators have a finite sample bias, which is a
fraction of the a priori unknown integrated volatility of the efficient price. The bias could dom-
inate the noise parameters in practical situations,2 and this might cause many issues in the
implementations with real data.3 The bias of the ReMeDI estimators by contrast only depends
on the slope of the microstructure autocovariance function. Last, the ReMeDI approach has
another two advantages in real implementations: it is computationally very efficient,4 and it
has a clear rule to select the tuning parameters.5

Chen and Mykland (2017) propose several tests of the intraday pattern, or stationarity of
microstructure noise. The tests are formed by comparing the TSRV developed by Zhang et al.
(2005) and a modified TSRV introduced by Kalnina and Linton (2008). We distinguish our
test of the intraday pattern from two aspects. First, our test is designed to improve the finite
sample performance. It is well established (see Hansen and Lunde (2006)) that the realized
volatility type estimators of noise variance have a finite sample bias component that is a frac-
tion of the integrated volatility of the underlying efficient price process. Such bias term, as
analysed by Li et al. (2019), could wipe out the moments of noise in practical circumstances.
Thus to investigate the intraday patterns of microstructure noise, it is essential to effectively
separate microstructure noise and volatility in a finite sample, as the latter also exhibits promi-
nent intraday patterns, see Andersen and Bollerslev (1997). Second, we explicitly incorporate
autocorrelated microstructure noise. The TSRV approach of volatility estimation allows for
certain forms of weakly dependent noise, see Aït-Sahalia et al. (2011). But the statistical tests
developed in Chen and Mykland (2017) may not be applicable then, as the asymptotic vari-
ances of the test statistics depend on other higher moments of noise.

2The detailed analysis by Li et al. (2019) reveals that the bias is determined by both the data frequency and the
noise-to-signal ratio (the ratio of the variance of noise and the integrated volatility). Empirically, they show that
even using tick by tick data without any filtration, the bias remains significant.

3In the empirical analysis by Jacod et al. (2017), the authors are puzzled about the strong dependence in the
microstructure noise. As we will show in the simulation studies that the strong and positive dependence in noise
after many lags is largely due to the finite sample bias of the LA estimators. However, correcting their bias in
practice is not trivial as one needs a proxy of the integrated volatility. Li et al. (2019) encountered a similar situation
and they propose a two/multi-step approach to make the bias correction.

4For example, the LA (ReMeDI) takes 99.77% (0.23%) of the CPU time to estimate the variance of noise using
noisy price from a random walk plus AR(1) noise model, base on 1,000 simulated samples of size 23,400.

5Jacod et al. (2017) also propose a heuristic rule to select the tuning parameters for the LA method by comparing
the LA estimates to a variant of the realized variances. However, the variant of the realized variances needs an
estimate of the integrated volatility to make a bias correction. The estimation of the integrated volatility in the
presence of serially dependent microstructure noise is not trivial (Li et al. (2019)). Moreover, the LA estimates have
a finite sample bias as well. Thus comparing two sequences of statistics both coupled with significant biases may
lack insights on the choice of the tuning parameters.
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1.1.2 Market microstructure

Our paper is also related to the market microstructure literature that seek to measure market
liquidity and study the impacts of order flow patterns on market liquidity, see Roll (1984), Has-
brouck (1993), Aït-Sahalia and Yu (2009), Corwin and Schultz (2012) and Abdi and Ranaldo
(2017). The patterns of order flows affect the measurement of market liquidity. Specifically,
Roll (1984) assumes i.i.d. order flows; Hasbrouck and Ho (1987), Choi et al. (1988) consider an
AR(1) model with positive coefficient to model the continuation of transactions; AR(1) models
with negative coefficient are studied to model the inventory costs, see Ho and Stoll (1981), Hen-
dershott and Menkveld (2014). Some recent studies on infrequent rebalancing (Bogousslavsky
(2016)), limit attention (Hendershott et al. (2018)), or the interaction of high-frequency traders
and low-frequency traders (Aït-Sahalia and Sağlam (2017a,b)) reveal that the microstructure
noise has more complicated patterns. Our setting is more general, and our empirical studies
suggest the presence of more complex dynamics that fall outside the above standard frame-
works .

Our paper introduces an econometric approach to richer microstructure models. It aims
to integrate the market microstructure and financial econometrics literature. It is, however,
not the first attempt to push towards the integration of the two fields. Diebold and Strasser
(2013) focus on the correlation of efficient price and noise in several leading microstructure
models, and study the implications for integrated volatility estimation. Li et al. (2016) model
the microstructure noise as a parametric function of the trading information and develop an
efficient volatility estimator, see also Chaker (2017) and Clinet and Potiron (2017) for similar
approaches. Bandi et al. (2017) develop a novel measure of the staleness of stock returns under
the infill asymptotic framework. Bollerslev et al. (2018) study the relationship between trading
volume and return volatility around important public news announcements using intraday
high-frequency data. The study relies critically on high-frequency econometric techniques to
identify jumps. Da and Xiu (2019) advocate the quasi-maximum likelihood approach to esti-
mate both the volatility and the autocovariances of moving-average microstructure noise.

1.1.3 Macroeconomics and asset pricing

The random walk plus stationary component decompositions are popular in macroeconomics
and finance. The random walk part carries the permanent variations of the observed time series
while the stationary component carries the temporary or transitory fluctuation. Cochrane (1988)
measures the random walk component of GNP growth, see also Cochrane (1994), Campbell
and Mankiw (1987). Beveridge and Nelson (1981) introduce a general method to decompose
time series into permanent and transitory components, and the latter is used to date the busi-
ness cycles, see recent studies by Oh et al. (2008) and Sinclair (2009). Summers (1986) spec-
ifies a random walk plus AR(1) process as an alternative hypothesis to market efficiency, see
also Poterba and Summers (1988) and Fama and French (1988).

The time series models in the above papers are essentially discrete, and estimations are
based on low-frequency data. The discrete-time model we considered in this paper is very
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general (see Section 7), nesting the popular random walk plus autoregressive processes, and
the ReMeDI approach remains effective to separate the two components in such settings.

2 Continuous-Time Framework and Assumptions

In this section we state precisely our assumptions regarding the continuous-time efficient price
process, the observation scheme, and the microstructure noise.

2.1 Efficient price process

We assume that the efficient price process X is an Itô semimartingale defined on a filtered
probability space

(
Ω(0),F (0), {Ft}t≥0, P(0)

)
with the Grigelionis representation

Xt = X0 +
∫ t

0
bsds +

∫ t

0
σsdWs +

(
ϑ1{|ϑ|≤1}

)
? (p− q)t +

(
ϑ1{|ϑ|>1}

)
? pt, (2)

where W, p are a Wiener process and a Poisson random measure on R+× E respectively. Here,
(E, E) is a measurable Polish space on

(
Ω(0),F (0), {Ft}t≥0, P(0)

)
and the predictable compen-

sator of p is q(ds, dz) = ds ⊗ λ(dz) for some given σ-finite measure on (E, E), see also Aït-
Sahalia and Jacod (2014) and Jacod and Shiryaev (2003) for detailed introduction of the last
two integrals. We assume that X satisfies the following assumption:

Assumption (H). The process b is locally bounded, the process σ is càdlàg , there is a localizing se-
quence {τn}n of stopping times and for each n a deterministic nonnegative function Γn on E satisfying∫

Γ2
n(z)λ(dz) < ∞ such that |ϑ(ω, t, z)| ∧ 1 ≤ Γn(z) for all (ω, t, z) satisfying t ≤ τn(ω).

2.2 Observation scheme

For each n, let {tn
i : i ∈N+} be a sequence of strictly increasing finite and deterministic ob-

served transaction times with 0 = tn
0 < tn

1 < . . . , where N+ is the set of nonnegative integers.
We denote

nt = ∑
i≥1

1{tn
i ≤t}, δ(n, i) = tn

i − tn
i−1. (3)

Here, nt is the number of observations recorded on the interval [0, t] for t ∈ R+, while δ(n, i)
is the ith spacing of the transaction times.

Definition 2.1 (The notation Vn
i ). Since we consider both the infill and long-span asymptotics, we

introduce a unified notation that works in both settings for any process V. First, we use nt (infill setting)
and n (long-span setting) to denote the sample size. If V is a continuous-time function or process, we
use Vn

i to denote its discretized observation upon time t, i.e., Vn
i = Vtn

i
, i = 0, . . . , nt; if {Vi}i∈Z is a

discrete process, where Z is the set of integers, we denote Vn
i = Vi, 0 ≤ i ≤ n or Vn

i = Vi, 0 ≤ i ≤ nt.

Let {δn}n be a positive sequence of real numbers satisfying δn → 0 as n→ ∞. Then, δn can
be considered as the time lag between successive observations when the transaction times are
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equally spaced. It serves as a benchmark to compare with the real observations schemes that
will be specified below. More general schemes are relegated to Section 4.5.

Assumption (O). Let α be a nonnegative deterministic càdlàg process satisfying 0 < cα ≤ αt ≤ Cα <

∞ ∀t for some positive constants cα, Cα. Further assume

∣∣αn
i−1δ(n, i)− δn

∣∣ ≤ Cδ
3
2+κ
n (4)

for some κ > 0.

Under the above assumptions, it follows that as n→ ∞,

δnnt → At :=
∫ t

0
αsds. (5)

Thus, α captures the “density” of observations. If the observation scheme is regular, i.e.,
δ(n, i) = δn for all i, thus nt = [t/δn], then αt ≡ 1 for all t satisfies (4) and At = t.

2.3 Microstructure noise

We allow the microstructure noise to be dependent according to the ρ-mixing property.6

Definition 2.2. Let {χi}i∈Z be a sequence of stationary random variables defined on a probability space
(Ω(1),G, P(1)). The probability space has discrete filtrations Gp := σ{χk : p ≥ k}, : Gq := σ{χk :
q ≤ k} satisfying G−∞ = G∞ = G. For any k ∈ N+, we define the following mixing coefficients for
k ∈N+:

ρk := sup
{
|E(VhVk+h)| : E(Vk) = E(Vk+h) = 0, ‖Vh‖2 ≤ 1, ‖Vk+h‖2 ≤ 1, Vh ∈ Gh, Vk+h ∈ Gk+h

}
. (6)

The sequence {χi}i∈Z is ρ mixing if ρk → 0 as k→ ∞.

The following assumption characterises the degree of serial dependence of {χi}i∈Z, which
is necessary to obtain limit results.

Assumption 2.1 (Polynomially mixing coefficients). There is some C > 0, v > 0 such that

ρk ≤
C
kv ∀ k ∈N+. (7)

An immediate consequence of this assumption is that the autocovariance function of {χi}i

is decaying at a polynomial rate, i.e.,

|Cov(χi, χi+k)| ≤
C
kv , (8)

6The key results in this paper also hold under a strong mixing condition, which is weaker than ρ-mixing,
see Bradley (2005). However, the moment conditions and the restrictions on the mixing coefficients will be more
involved. On the other hand, Jacod et al. (2017) employ ρ-mixing sequence to model microstructure noise. Thus it
will facilitate the comparison with their result if we stick to the same setting.
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where C > 0 is some positive constant. We shall suppose that v > 1 for consistency and
that v > 3 for the CLT, which allows for quite strong dependence close to the long memory
boundary.

There is a large literature seeking to characterize the economic mechanisms that govern the
dynamic properties of microstructure noise, for example, the continuation of order flows mod-
eled by Hasbrouck and Ho (1987), Choi et al. (1988), reversal order flows due to market maker’s
risk aversion by Grossman and Miller (1988) and Campbell et al. (1993) or inventory controls
by Ho and Stoll (1981), Hendershott and Menkveld (2014), and the presence of inattentive (or
infrequent) traders by Bogousslavsky (2016) and Hendershott et al. (2018). Econometric mod-
els of microstructure noise focus usually on the i.i.d. case, although there are some works on
the MA(q) process, see Hansen and Lunde (2006), Hansen et al. (2008), Hautsch and Podolskij
(2013) and the ARMA(p, q) case, see Barndorff-Nielsen et al. (2008), Hendershott et al. (2013).
Note that our setting incorporates all the models.

Empirical studies have documented overwhelming evidence of various intraday patterns
of microstructure noise, see, e.g., Chan and Lakonishok (1995), Hasbrouck (1993), Madhavan
et al. (1997), McInish and Wood (1992) and Wood et al. (1985). The magnitudes of microstruc-
ture noise typically exhibit a U-shape or reverse J-shape. To capture such patterns, we intro-
duce a “size function” γ to allow for time-varying microstructure noise.7

Assumption (N). Let {χi}i∈Z be a stationary ρ-mixing random sequence with mixing coefficients
{ρk}k∈N+

on some probability space (Ω(1),G, P(1)). At stage n, the noise at time tn
i is given by

εn
i = γtn

i
· χi, (9)

where γu is a (deterministic) positive Lipschitz continuous function of u. We further assume that
{χi}i∈Z is centred at 0 with variance 1 and finite moments of all orders, and G is independent of F (0).

Finally, the noisy observed price Yn
i is given by (for i = 1, . . . , nt)

Yn
i = Xn

i + εn
i . (10)

The process εn
i is consistent with the model of Engle and Rangel (2008), which allows for

stochastic volatility of the GARCH type as well as slow variation coming from γ. We may also
allow εn

i to have a slowly changing non-zero mean, which may be motivated by the "Drift burst
hypothesis" (Christensen et al. (2018)), because our method will difference this out. The as-
sumption of independence between the efficient price and the microstructure noise, however,
excludes many interesting microstructure models, in which the efficient returns are usually

7Jacod et al. (2017) model γ as a general nonnegative semimartingale process such that γ could depend on X.
Our setting is simpler and is motivated by the empirical facts we find that the magnitude of microstructure noise is
close to a constant during the trading day and some irregularity arises only in the beginning of the trading session.
If, however, the measurement of microstructure noise has a finite sample bias that depends on X, e.g., the inte-
grated volatility of X, one could conclude that the size of microstructure noise is dependent on X and the intraday
pattern he discovers may be the manifestation of the intraday pattern of X instead. Or equivalently, any estimators
designed to recover the patterns of noise should be able to distinguish the efficient price and microstructure noise
effectively.
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correlated with the microstructure noise to reflect informational effects, see, e.g., Hendershott
et al. (2013). To the best of our knowledge, we are not aware of any nonparametric method that
can separate X and ε without assuming uncorrelatedness (Kalnina and Linton (2008) allow for
a specific type of small dependence between the noise and the efficient price, Jacod et al. (2017)
and Da and Xiu (2019) allow for high-order dependence, but maintain the assumption of un-
correlatedness). However, it seems that the ReMeDI estimators are quite robust to such mis-
specification, as we show in our extensive simulation studies in the supplementary material Li
and Linton (2019). We also present a consistency result for our estimator under the weaker
conditions of Jacod et al. (2017).

3 The Design and the Intuition of the ReMeDI Estimators

3.1 The estimator of the autocovariance function

The intuition of the ReMeDI design can be best explained by considering the estimation of the
autocovariances of a stationary time series. Let {ε i}i∈Z be a mixing sequence with mean zero;
we would like to estimate r` := Cov(ε i, ε i+`). The natural estimator is the sample analogue

r̂n
` :=

1
n

n−`
∑
i=0

εn
i εn

i+`,

which is consistent and asymptotically normal under very mild conditions.
We consider instead an estimator that replaces the “observations” εn

i , εn
i+` by the “differ-

ences”, i.e.,

r̃n
` :=

1
n

n−`−kn

∑
i=k′n

(
εn

i − εn
i−k′n

) (
εn

i+` − εn
i+`+kn

)
,

where kn, k′n are integers that will grow at certain rates as the sample size increases. The estima-
tor r̃n

` follows the ReMeDI design and it provides another consistent estimator of r`, provided:
kn → ∞, k′n → ∞, kn/n→ 0, and k′n/n→ 0. The intuition of the consistency becomes immedi-
ate if one rewrites r̃n

` as

r̃n
` =

1
n

n−`−kn

∑
i=k′n

εn
i εn

i+` −
1
n

n−`−kn

∑
i=k′n

εn
i εn

i+`+kn
− 1

n

n−`−kn

∑
i=k′n

εn
i−k′n

εn
i+` +

1
n

n−`−kn

∑
i=k′n

εn
i−k′n

εn
i+`+kn

. (11)

The first average is (asymptotically) equivalent to the sample analogue, thus it converges in
probability to r`; the remaining three averages are centred at r`+kn , r`+k′n , and r`+kn+k′n , which
themselves converge to zero as n→ ∞ at a rate depending on (8).

Taking differences seems redundant if the time series {ε i}i is observable. However, in our
framework ε is masked by the efficient price X, and what is observable is Y = X + ε. Taking
differences removes the effect of the efficient price. The intuition of such removal under infill
asymptotics is that the differences of the efficient prices, say, Xn

i − Xn
i−k′n

, are much smaller
than the difference of the noise as n increases. In the absence of infill asymptotics, the method
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works because of the zero autocorrelations of the efficient returns. We provide more details on
this case in Section 7.

3.2 The general ReMeDI design

We next generalize the above approach to formally define our ReMeDI (Realized moMents of
Disjoint Increments) estimator. First, we provide some notations that will be used below. Let
J be the set of all finite sequences of integers satisfying

J =
{

j = (j1, j2, . . . , jq) : jp ∈ Z, p = 1, 2, . . . , q; q ≥ 2
}

.

In the sequel, we will assume without loss of generality that j1 = max{jp : jp ∈ j} for any
j ∈ J. The j-moments of χ, the stationary component of microstructure noise, are given by

r(j) = E

(
q

∏
p=1

χjp

)
. (12)

We are interested in such moments as target values, both in their own right, but also as they
provide information about parameters of a model for χ. For example, Hua et al. (2019) consider
an AR(1) process for χ, in which case moments E

(
χiχi−j

)
can be used to estimate the process’

parameters.8 We may also be interested in functionals of the nonparametric scale function γu.
Let k = (k1, . . . , kq) be a q-tuple of integers. For any j ∈ J and any process V, let I(k, j)n

t be
the set of observation indices on [0, t] for which the following multi-difference operator ∆k

j (·)n
i is

well defined:

∆k
j (V)n

i :=
q

∏
p=1

(
Vn

i+jp
−Vn

i+jp−kp

)
. (13)

Then the ReMeDI estimator associated with (V, j, k) is defined by

ReMeDI(V; j, k)n
t := ∑

i∈I(k,j)n
t

∆k
j (V)n

i . (14)

Remark 3.1. Using the above notations, we rewrite the estimator r̃n
` as follows

r̃n
` =

1
n

n−`−kn

∑
i=k′n

∆−kn,k′n
0,` (ε)n

i .

The general ReMeDI approach inherits two salient features of this estimator determined by the choices of
k: 1) the first entry of k will be negative whereas the remaining ones are positive, i.e., the first difference
is a forward difference and the remaining ones are backward differences; 2) ∀1 ≤ p ≤ q,

∣∣kp
∣∣→ ∞

as n→ ∞, and we will often write kn = (k1,n, . . . , kq,n) in the sequel to reflect such dependence.

We discuss a little more the intuition of the general ReMeDI design under infill asymp-

8A slightly more complicated case arises if χi satisfied a GARCH process with parameters θ; in that case, Kris-

tensen and Linton (2006) show how to use the moments E
(

χ2
i χ2

i−j

)
to estimate θ.
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Yn
i+j3−4kn

Yn
i+j2−2kn Yn

i+j2Yn
i+j3 Yn

i+j1
Yn

i+j1+kn

Figure 1: Illustration the ReMeDI estimator of j-moments with j = (j1, j2, j3) and kn = (−kn, 2kn, 4kn).

totics. For this purpose, suppose that the noise size process γ is constant and we are estimating
E
(

∏
q
p=1 εn

i+jp

)
. Suppose kn satisfies the two properties in Remark 3.1. Next, we explain how

to connect E
(

∏
q
p=1 εn

i+jp

)
and ∆kn

j (Y)n
i by ∆kn

j (ε)n
i .

To see this, we first note {i + jp − kp,n}p are the “distant” indices of the intervals on which
the backward and forward differences are taken. Figure 1 illustrates a simple example with
j = (j1, j2, j3), kn = (−kn, 2kn, 4kn) for some kn ∈ N+. The forward difference starts at the
(i + j1)-th observation and ends at the (i + j1 + kn)-th observation; for the remaining indices
in j, the associated differences start from i + j2, i + j3 and end at i + j2 − 2kn, i + j3 − 4kn, re-
spectively. The intuition of the ReMeDI approach is that the “distant” noise terms are approx-
imately independent of each other, and are also independent of the “clustered” noise {εn

i+jp
}p

(recall a special case outlined in (11)), therefore

E
(

∆kn
j (ε)n

i

)
≈ E

(
q

∏
p=1

εn
i+jp

)
.

If kp,n is still relatively small such that supp δn
∣∣kn,p

∣∣ → 0, the differences/increments of the
efficient price over the intervals are asymptotically negligible. That is,

∆kn
j (Y)n

i ≈ ∆kn
j (ε)n

i .

Thus the averages of ∆kn
j (Y)n

i will converge in probability to E
(

∏
q
p=1 εn

i+jp

)
by the law of large

numbers. This explains the intuition of the identification.
A salient feature of the ReMeDI design is that the noisy log-return Yn

i+j1 −Yn
i+j1+k1,n

, the first

factor of ∆kn
j (Y)n

i , is taken on an interval disjoint from others. As we will see in Section 7 that
such design achieves consistency out of the infill asymptotics framework.

4 The ReMeDI Estimators under Infill Asymptotics

4.1 Consistency

We next give the large sample properties of the ReMeDI (for a given choice of kn) estimator in
our general setting. Given j, the noise moments E

(
∏

q
p=1 εn

i+jp

)
= Cq

γr(j) if γu ≡ Cγ ∀u. For
a general γ function that satisfies Assumption (N), the “average size” of the noise moments
becomes

∫ t
0 γ

q
s dAs/At instead of Cq

γ, and it appears in the probability limit of the ReMeDI
estimators.
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Theorem 4.1. Let Assumptions (H, O, N) hold, assume v > 1 and kn satisfies
−k1,n → ∞, kp,n → ∞, ∀ p ≥ 2,

supp

∣∣δnkn,p
∣∣→ 0, ∀ p ≥ 1,

kp+1,n − kp,n → ∞, ∀ p ≥ 2,

(15)

as n→ ∞. For j ∈ J, we have the following convergence in probability:

ReMeDI(Y; j, kn)n
t

nt

P→ R(j)t :=

∫ t
0 γ

q
s dAs

At
r(j), (16)

where r(j) is defined in (12) and At in (5).

Remark 4.1. Let {kn}n be a sequence of integers satisfying kn → ∞, knδn → 0. Let kn be specified as
follows:

kp,n =

−kn if p = 1,

(p− 1)kn if p ≥ 2.

Then kn satisfies the conditions in (15).

The microstructure noise specified in (9) has a multiplicative structure; the following result
states that we can separate the components of microstructure noise locally.

Theorem 4.2 (A local estimator of γ). Let Assumptions (H, O, N) hold and assume v > 1. Let
{kn}n, {`n}n be two sequences of integers satisfying

kn → ∞, kn/`n → 0, `2
nδn = O(1).

Let j0 = (0, 0), kn = (−kn, kn). Let I`n(j0, kn)n
t := I(j0, kn)n

t \I(j0, kn)n
t− δn`n

αt

. A ReMeDI estimator

of γt is given by
γ̂n

t := ∑
i∈I`n (j0,kn)n

t

∆kn
j0
(Y)n

i /`n
P→ γt.

One could use this estimator to re-estimate the noise moments using the rescaled data,
thereby separating the scaling factor from the noise. We use it below to obtain consistent
estimates of the asymptotic variance of the ReMeDI estimator.

4.2 Limit distribution

In the sequel whenever we have two vectors j = (j1, . . . , jq), j′ = (j′1, . . . , j′q′) ∈ J, we suppose
without loss of generality that q ≤ q′. We denote

j⊕ j′ = (j1, j2, . . . , jq, j′1, j′2, . . . , j′q′), j−p = j\{jp},

j(+k) = (j1 + k, j2 + k, . . . , jq + k), for k ∈ Z,

jQq = (jp : p ∈ Qq) for Qq ⊂ {1, 2, . . . , q}.
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For each Qq ⊂ {1, 2, . . . , q}, there is an associated (unique) pair of subsets:

Qc
q := {1, 2, . . . , q}\Qq, Qq′ := Qq ∪ {q + 1, . . . , q′}. (17)

We denote for each k ∈ Z the following moments9

s0(j, j′; k) := r
(
j⊕
(
j′(+k)

))
− r (j) r

(
j′
)

;

s1(j, j′; k) := ∑
Qq({1,2,...,q}

r
(

jQq ⊕
(

j′Qq′
(+k)

))
∏

p∈Qc
q

r(jp, j′p + k);

s2(j, j′; k) := ∑
jp∈j,j′p′∈j′

p 6=p′

r(jp, j′p′ + k)r(j−p)r(j′−p′)− ∑
jp∈j

r({jp} ⊕ j′(+k))r(j−p)

− ∑
j′p′∈j′

r({j′p′ + k} ⊕ j)r(j′−p′).

Now we further specify the choice of kn to derive the limit distributions of the ReMeDI esti-
mators. kn will solely be determined by an integer kn, which is related to v as follows

kp,n =

−kn if p = 1,

2p−1kn if p ≥ 2,

v > 3, kn � δ
−$
n , $ ∈

(
1

2v
, δ

)
, where δ ∈

(
1

v + 2
,

1
5

)
.

(18)

The lower bound of kn is to guarantee the estimator converges faster enough to the true param-
eters than the convergence rate, while the upper bound is to satisfy a Lindeberg’s condition.

Remark 4.2. Note that (18) implies (15). In the sequel, we will omit kn and simply write ∆j(Y)n
i and

ReMeDI(Y; j)n
t instead of ∆kn

j (Y)n
i and ReMeDI(Y; j, kn)n

t when kn satisfies (18).

Let
Z(j)n

t :=
√

nt

(
ReMeDI(Y; j)n

t
nt

− R(j)t

)
.

The following theorem presents the joint limit distribution of Z(j)n
t , Z(j′)n

t .

Theorem 4.3. Let Assumptions (H), (O) and (N) hold, and kn, v satisfy (18). For any t > 0, j, j′ ∈ J,
we have the following convergence in law

(
Z(j)n

t , Z(j′)n
t
) L−→

(
Z(j)t, Z(j′)t

)
, (19)

where the limit is centred Gaussian with (co)variances:

σ(j, j′)t := E
(
Z(j)tZ(j′)t

)
= S(j, j′)

∫ t
0 γ

q+q′
s dAs

At
, (20)

9By convention we let r(∅) = 1.
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and

S(j, j′) := ∑
k∈Z

2

∑
m=0

sm(j, j′; k). (21)

This limit theory makes use of the assumption that the noise process is bounded away from
zero and so relatively large on the small time scale. One can allow a more general setting such
as Kalnina and Linton (2008) wherein the noise process shrinks to zero with sample size but
at a rate slower than

√
nt. In that case, one can obtain a self-normalized CLT. We consider this

case further in Section 7.

4.3 Estimating the autocovariances of microstructure noise

In this section we consider the special case concerning the estimation of the variance and au-
tocovariances of microstructure noise. Let j` = (0, `), ` ∈N+.

R̂n
t,` :=

1
nt

ReMeDI(Y; j`)n
t =

1
nt

nt−kn−`

∑
i=2kn

(
Yn

i+` −Yn
i+`+kn

) (
Yn

i −Yn
i−2kn

)
. (22)

The following corollary provides the limit distribution.

Corollary 4.1. Under the conditions of Theorem 4.3, we have

√
nt

(
R̂n

t,` − Rt,`

)
L−→ N

(
0,S`

∫ t
0 γ4

s dAs

At

)
,

where

Rt,` := r`

∫ t
0 γ2

s dAs

At
, S` :=

∞

∑
k=−∞

(
E((χ0χ` − r`)(χkχk+` − r`)) + 3r2

k
)

. (23)

In the special case of i.i.d. noise, the asymptotic variance reduces to E
(
χ4

0
)
+ 2r2

0 up to
a constant magnitude of noise. We detail the intuition of asymptotic variances in the next
section.

4.4 The asymptotic variance and its estimation

Like the probability limit, the asymptotic variance of the ReMeDI estimators has two com-
ponents. Specifically, S(j, j′) is the asymptotic variance of the stationary part of the ReMeDI
estimators. It has several constituents: ∑k∈Z s0(j, j′; k) is the asymptotic variance of the sample
analogue of r(j), whereas ∑k∈Z s1(j, j′; k) + s2(j, j′; k) are attributed to noise at the “distant”
indices at the ends of each intervals. Consider S` defined in (23) as an example. If {χi}i∈N

is directly observable and we estimate r` by the sample analogue ∑i χiχi+`/nt, the asymptotic
variance will be ∑∞

k=−∞ E((χ0χ` − r`)(χkχk+` − r`)). The presence of the “distant” noise in-
creases the asymptotic variance by ∑i∈Z 3r2

i , which is the asymptotic variances of the last three
terms in (11) (with k′n = 2kn).

15

 Electronic copy available at: https://ssrn.com/abstract=3423607 



Compared to the ReMeDI estimators, the local averaging (LA) estimators proposed by Ja-
cod et al. (2017) are asymptotically more efficient in our settings, as only ∑k∈Z s0(j, j′; k) ap-
pears in the asymptotic variance of the stationary part (although one can improve the effi-
ciency of ReMeDI by taking averages of estimators computed using different kn). However,
simulation studies show that the ReMeDI class works better in finite samples with realistic
sample sizes or equivalently, data frequency — it has smaller finite sample variance and is al-
most unbiased under various model specifications. Moreover, the loss of asymptotic efficiency
is compensated for by the greater computational efficiency of the ReMeDI approach, which
pays off when one is working with massive high-frequency datasets (recall Footnote 4).

We now turn to the inference question. One can just estimate term by term using ReMeDI
for diferent combinations ignoring asymptotic independence and using Parzen-Newey-West
weighting. However, we find that this approach poorly represents the finite sample variance.
We propose instead to first recenter with local ReMeDI estimator; it seems to work better in
practice.

For given integers i, vn, we define a local ReMeDI statistic

ReMeDIvn(Y; j)n
i :=

i+vn

∑
`=i+1

∆j(Y)n
` . (24)

so that v−1
n ReMeDIvn(Y; j)n

i will be a local estimate of the j-moments of noise. We also intro-
duce the Newey-West weights to improve the finite sample performance (see Newey and West
(1987)): for any i, un ∈N+,

νi,un = 1− i
1 + un

. (25)

Let Σ̂n
t be a 2× 2 matrix with components

Σ̂n
t (1, 1) := σ̂(Y; j, j)n

t , Σ̂n
t (1, 2) = Σ̂n

t (2, 1) := σ̂(Y; j′, j)n
t , Σ̂n

t (2, 2) := σ̂(Y; j′, j′)n
t ,

where

σ̂(Y; j, j′)n
t :=

1
nt

nt−v′n

∑
i=2q′−1kn

(
∆j(Y)n

i ∆j′(Y)
n
i +

in

∑
k=1

νk,in

(
∆j(Y)n

i ∆j′(Y)
n
i+k + ∆j′(Y)

n
i ∆j(Y)n

i+k

))
;

∆j(Y)n
i := ∆j(Y)n

i −v−1
n ReMeDIvn(Y; j)n

i ; ∆j′(Y)
n
i := ∆j′(Y)

n
i −v−1

n ReMeDIvn(Y; j′)n
i ;

v′n := vn + kn + in + j1 ∨ j′1.

(26)

Theorem 4.4. Assume all the conditions of Theorem 4.3 hold, let {in}n, {vn}n satisfy

in � δ−δ
n , vn � δ

−φ
n , 2δ < φ < 1/2. (27)
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We have

Ln
t

(
Z(j)n

t

Z(j′nt

)
L−→ N (0, I2) , (28)

where Ln
t is a matrix satisfying Ln

t Ln
t
> =

(
Σ̂n

t

)−1
.

Corollary 4.2 (Estimation of the autocovariance and autocorrelation function). Let j` = (0, `), ` ∈
N+. Under the conditions of Theorem 4.4, we have√

nt

σ̂(Y; j`, j`)n
t

(
R̂n

t,` − Rt,`

)
L−→ N (0, 1) , (29)√

nt

Ŝn
t,`

(
R̂n

t,`

R̂n
t,0

− r`

)
L−→ N (0, 1) , (30)

where

Ŝn
t,` :=

 1
R̂n

t,0

,−
R̂n

t,`(
R̂n

t,0

)2

 Σ̂n
t

 1
R̂n

t,0

,−
R̂n

t,`(
R̂n

t,0

)2


>

,

and Σ̂n
t is a 2×2 matrix with Σ̂n

t (1, 1) = σ̂(Y; j`, j`)n
t , Σ̂n

t (2, 2) = σ̂(Y; j0, j0)n
t , Σ̂n

t (1, 2) = Σ̂n
t (2, 1) =

σ̂(Y; j`, j0)n
t .

The local ReMeDI statistics (24) are introduced to capture the time-varying noise, and the
statistics can be replaced by a global one ReMeDI(Y; j)n

t /nt if stationarity holds; the global
estimator requires less tuning parameters and reduces the computational cost.

Corollary 4.3 (Asymptotic (co)variances estimators with stationary noise). Assume γ ≡ Cγ > 0.
Let

σ̃(Y; j, j′)n
t :=

1
nt

nt−kn−j1∨j′1−in

∑
i=2q′−1kn

(
∆̃j(Y)n

i ∆̃j′(Y)
n
i +

in

∑
k=1

νk,in

(
∆̃j(Y)n

i ∆̃j′(Y)
n
i+k + ∆̃j′(Y)

n
i ∆̃j(Y)n

i+k

))
;

∆̃j(Y)n
i := ∆j(Y)n

i −
ReMeDI(Y; j)n

t
nt

; ∆̃j′(Y)
n
i := ∆j′(Y)

n
i −

ReMeDI(Y; j′)n
t

nt
.

Then

σ̃(Y; j, j′)n
t

P→ Cq+q′
γ S(j, j′).

4.5 Extensions to the model setting

In this section, we extend the consistency of the ReMeDI estimators under a broader setting
introduced by Jacod et al. (2017) in which the observation times and the size parameters of the
noise, γ, are stochastic and possibly related to the efficient price process.
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Assumption (E-O) (Assumption (O) in Jacod et al. (2017)). α, α are two Itô semimartingales defined
on
(

Ω(0),F (0), {Ft}t≥0, P(0)
)

satisfying Assumption (H). We further assume there is a localizing
sequence {τm}m of stopping times and positive constants κm,p and κ such that:

1. For t < τm we have 1
κm,1
≤ αt− ≤ κm,1 and αt− ≤ κm,1.

2. Let (F n
t )t≥0 be the smallest filtration satisfying

(a) Ft ⊂ F n
t ,

(b) tn
i is a {F n

t }t≥0 stopping time for i = 0, 1, 2, . . . ,

(c) δ(n, i), conditional F n
t , is independent of F∞ :=

∨
t≥0 Ft for i = 0, 1, 2, . . .

3. With the restriction {tn
i−1 < τm}, and for all p > 0,∣∣∣∣∣E (δ(n, i) |F n

t )−
δn

αn
i−1

∣∣∣∣∣ ≤ κm,1δ
3
2+κ
n ,∣∣∣E((δ(n, i)αn

i−1 − δn
)2 |F n

t

)
− δ2

nαn
i−1

∣∣∣ ≤ κm,2δ2+κ
n ,

E (δ(n, i)p |F n
t ) ≤ κm,pδ

p
n .

(31)

Assumption (E-N). The process χ satisfies Assumption (N). Moreover, it is independent of F∞. As-
sume the process γ is a positive Itô semimartingale on

(
Ω(0),F (0), (Ft)t≥0 , P(0)

)
and its coefficients

satisfy Assumption (H).

Theorem 4.5. Assume Assumptions (H, E-O, E-N) hold, and kn satisfies (15). For j ∈ J, we have the
following convergence in probability:

ReMeDI(Y; j, kn)n
t

nt

P→ R(j)t. (32)

5 Economic Applications: New Measures of the Bid-Ask Spread

In this section we introduce two liquidity measures and define ReMeDI estimators of them.
The measures are based on the rationale that the dispersion of microstructure noise, the devi-
ation of the observed prices from fundamental values, serves as a natural measure of market
quality, see Hasbrouck (1993) and Aït-Sahalia and Yu (2009), among others. The first measure,
which we call the instantaneous bid-ask spread (IBAS), can be considered as a generalized and
robust Roll measure (Roll (1984)). The second liquidity measure gauges the average bid-ask
spread (ABAS). It can be interpreted as the inventory risk that an intermediary takes when he
meets a liquidity demand that may exhibit certain autocorrelation patterns.

5.1 The Roll measure and the IBAS measure

Roll (1984) proposes a simple measure of the effective bid-ask spread. In Roll’s model, the
efficient price follows a random walk, and the microstructure noise becomes the half-signed

18

 Electronic copy available at: https://ssrn.com/abstract=3423607 



bid-ask spread, i.e., ε i = Sqi/2, where qi = 1 or −1 if the trade is initiated by a buyer or seller
and S is the spread. He further assumes that the efficient price is independent of the order
flow process {qi}i, which is serially uncorrelated with P(qi = 1) = P(qi = −1) = 0.5. The
Roll measure is based on the insight that the autocovariance of the adjacent observed returns
captures the bid-ask bounce. Using our notations, the Roll measure is

Rolln
t := 2

√√√√ 1
nt

nt−1

∑
i=1

∆−1,1
0,0 (Y)n

i . (33)

In this case, the Roll measure provides a consistent estimator of the bid-ask spread, i.e.,

Rolln
t

P→ S = 2
√

Var(Sqi/2).

We consider a general setting introduced in Section 2 for the half-spread, i.e., εn
i = γtn

i
χi,

where {χi}i is a stationary mixing sequence, which could be serially dependent. The serial
dependence in ε may reflect various order flow patterns triggered by economic agents, and γ

can capture the time-varying spread. There is considerable evidence that order flow is strongly
positively autocorrelated, see, for example, Gerig (2008).

We propose an alternative liquidity measure

IBASt := 2
√

Rt,0, (34)

where Rt,0 is defined in (23). If ε i = Sqi/2, and {qi}i are uncorrelated with P(qi = 1) =

P(qi = −1) = 0.5, we are back to the Roll’s setting and we have IBASt = S. A consistent
estimator of IBASt is given by

IBASn
t := 2

√
R̂n

t,0
P→ IBASt. (35)

Compared to the Roll measure, IBASn
t is robust to autocorrelations in the half-spread ε i. In

fact, it is well known, see, e.g., Choi et al. (1988), that the Roll measure becomes biased if
the order flows are autocorrelated. One can show that Rolln

t
P→ S
√

1− 2r1 + r2, where rk =

Cov(qi, qi+k). In particular, if {qi}i is an AR(1) process with coefficient 1 > $q > 0, we have

Rolln
t

P→ S
(
1− $q

)
< S. We may apply the ReMeDI estimators to correct the bias of the Roll

measure. Let
AdjRolln

t := 2
√
(Rolln

t /2)2 + 2R̂n
t,1 − R̂n

t,2. (36)

The adjusted Roll measure has the same probability limit as the IBASn
t : AdjRolln

t
P→ IBASt,

which reduces to S if the spread is constant.10

IBASt is an instantaneous measure as it gauges the spread of a single trade. Next, we
propose an average measure that captures the spread of multiple trades.

10Empirically, we observe almost perfect matches of AdjRollnt and IBASn
t , see Figure C.2 in our supplementary

material Li and Linton (2019).
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5.2 The ABAS measure and its interpretation

We introduce a new liquidity measure that measures the average long run dispersion of the
spread,

ABASt := 2

√
Rt,0 + 2

∞

∑
`=1

Rt,`. (37)

This makes intuitive sense since Var
(
∑nt

i=1 εn
i
)
/nt → Rt,0 + 2 ∑∞

`=1 Rt,`. The ReMeDI estimator
of ABAS is given by (the choice of κn will be specified later, also recall the weights ν`,κn are
defined in (25)):

ABASn
t := 2

√
R̂n

t,0 + 2
κn

∑
`=1

R̂n
t,`. (38)

We show below that ABASn
t consistently estimates ABASt and we derive its limiting dis-

tribution.
In the next section we give a specific economic interpretation of the ABASt measure.

5.2.1 A simple model of inventory risk when order flows are autocorrelated

We introduce a simple model motivated by the pioneering work of Stoll (1978). The novelty
lies in the explicit modelling of the order flows and a simple measure of the imbalances in
order flows.

At time τ, a representative intermediary has cash cτ with a position 0 in a risky stock.
There are n trades occurred at time {Ti}n

i=1, with τ < T1 < · · · < Tn = τ + 1, which could be
clustered orders submitted by traders trading at a faster speed (Li (2017)), or orders received at
different exchanges (Menkveld (2008)). The intermediary sets a price Yτ for all trades between
τ and τ + 1, and supplies {zi}n

i=1; zi > 0(zi < 0) indicates the intermediary is willing to sell
(buy) zi(−zi) shares. The payoff is realized at time τ + 1 with price equal to the fundamental
value Xτ+1, which evolves stochastically as

Xτ+1 = Xτ + θτ,

where θτ has conditional mean 0 and variance Varτ (θτ) = σ2
τ . At time τ + 1, the intermediary

has cash

cτ+1 = cτ + Yτ

n

∑
i=1

zi,

and his aggregate wealth becomes

wτ+1 = −Xτ+1

n

∑
i=1

zi + cτ+1 = (Yτ − (Xτ + θτ))
n

∑
i=1

zi + cτ.

Thus, the conditional mean of wτ+1 is Eτ (wτ+1) = (Yτ − Xτ)∑n
i=1 zi + cτ and the conditional
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variance is Varτ (wτ+1) = (∑n
i=1 zi)

2 σ2
τ . The intermediary has mean-variance utility:

Uτ(w) = Eτ (w)− ρa

2
Varτ (w) ,

where ρa is the risk-aversion coefficient. To maximize his utility, the intermediary solves

max
{zi}n

i=1

Uτ(wτ+1).

At the optimum, the first order condition says that

n

∑
i=1

zi =
Yτ − Xτ

ρaσ2
τ

.

In equilibrium, the representative intermediary meets the (stochastic) demand {qi}n
i=1, where

we assume qi = 1 indicating a buy and qi = −1 a sell. Thus, ∑n
i=1 qi =

Yτ−Xτ

ρaσ2
τ

, which implies
that

Yτ = Xτ + ρaσ2
τ

n

∑
i=1

qi. (39)

The deviation of the transaction price Yτ from the fundamental value reflects the intermedi-
ary’s inventory risk to meet an incoming order flow {qi}i. Therefore, the spread compensates
the intermediary to provide liquidity.

When there is only one trade, i.e., n = 1, then the bid and ask prices are Yτ = Xτ − ρaσ2
τ and

Yτ = Xτ + ρaσ2
τ ; thus the instantaneous spread S1 is given by S1 = 2ρaσ2

τ . Similar to the Roll’s
model, S1 = 2

√
Varτ (ρaσ2

τ q1), twice the dispersion of the deviation ρaσ2
τ q1, if P(q1 = 1) =

P(q1 = −1) = 0.5.
When n is large, we need another measure to reflect the overall inventory risk the inter-

mediary takes. A natural measure of such risk is provided by twice the average dispersion of
ρaσ2

τ ∑n
i=1 qi, i.e.,

Sn := 2

√√√√ 1
n

Varτ

(
ρaστ2

n

∑
i=1

qi

)
.

We denote S∞ := limn→∞ Sn; S∞ is the long run average measure. Let rk = Cov(qi, qi+k), and
assume that {qi}i are independent of στ and ∑∞

k=−∞ |rk| < ∞. We have

S∞ = 2ρaσ2
τ

√
r0 + 2

∞

∑
k=1

rk.

Consider the special case where {qi}i is an AR(1) process with coefficient $q. Then, we have

S∞ = S1

√
(1 + $q)/(1− $q). When the order flow is positively autocorrelated, i.e., $q ∈ (0, 1),

the average measure S∞ is greater than the instantaneous measure S1, as the intermediary is
more likely to accumulate inventories on one side of the market, which entails a larger spread
to compensate his risk.
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5.3 The limit distribution of IBASn
t and ABASn

t

Theorem 5.1. Assume all conditions of Theorem 4.4 hold, and further assume

v > 1 + max
{

2
φ− 2δ

,
1

1− 2φ

}
, κn � δ

−ψ
n ,

1
2v− 2

< ψ < min
{

1
2

(
φ

2
− δ

)
,

1
2
− φ

}
.

(40)
Then we have the following limit distribution

√
nt (IBASn

t − IBASt)√
Σ̂n,κn

t (0, 0)/IBASn
t

L−→ N (0, 1) , (41)

√
nt (ABASn

t −ABASt)

2
√

Σ̂n,κn
t /ABASn

t

L−→ N (0, 1) , (42)

where

Σ̂n,κn
t := Σ̂n,κn

t (0, 0) + 4
κn

∑
`=1

Σ̂n,κn
t (`, 0) + 4

κn

∑
`,`′=1

Σ̂n,κn
t (`, `′),

and

Σ̂n,κn
t (`, `′) := σ̂(Y; j`, j`′)n

t . (43)

Remark 5.1. The asymptotic conditions in (40) seem quite complicated. But if the mixing coefficients
(recall ρk in Definition 2.2) are exponentially decaying, e.g., a stationary invertible ARMA(p, q) model
of microstructure noise, the conditions will hold.

6 Statistical Applications: Testing Statistical Properties of Microstruc-
ture Noise

6.1 Testing for intraday patterns

It is well documented that microstructure noise exhibits intraday patterns. This section devel-
ops a formal test of the intraday patterns by examining the difference of the average magni-
tudes of noise over two intervals. Given s ≥ 0, let ns = inf{i ∈ N : tn

i ≥ s}, ns = sup{i ∈ N :
tn
i < s}. For any 0 ≤ T1 < T2, let

ReMeDI(Y; j0)
n
T1,T2

:=
nT2−kn−j1

∑
i=nT1

+2qkn

∆j(Y)n
i ;

σ̂(Y; j0, j0)
n
T1,T2

:=
∑

nT2−vn
i=nT1

+2qkn

(
∆j(Y)n

i ∆j′(Y)n
i + ∑in

k=1 νk,in

(
∆j(Y)n

i ∆j′(Y)n
i+k + ∆j′(Y)n

i ∆j(Y)n
i+k

))
nT2
− nT1

.
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Thus the statistics ReMeDI(Y; j0)n
T1,T2

, σ̂(Y; j0, j0)n
T1,T2

are the ReMeDI estimators based on obser-
vations between time T1 and T2. The following result provides a device to compare the average
variances of microstructure noise on the intervals [T1, T2] and [T3, T4], corrected for the number
of observations.

Let 0 ≤ T1 < T2 ≤ T3 < T4.

H0 :

∫ T2
T1

γ2
s dAs

AT2
− AT1

=

∫ T4
T3

γ2
s dAs

AT4
− AT3

; HA :

∫ T2
T1

γ2
s dAs

AT2
− AT1

6=
∫ T4

T3
γ2

s dAs

AT4
− AT3

. (44)

Define the testing statistics

T(Y; T1, T2, T3, T4)n :=

√(
nT2
− nT1

) (
nT4
− nT3

) (ReMeDI(Y;j0)
n
T1,T2

nT2−nT1

− ReMeDI(Y;j0)
n
T3,T4

nT4−nT3

)
√(

nT4
− nT3

)
σ̂(Y; j0, j0)n

T1,T2
+
(
nT2
− nT1

)
σ̂(Y; j0, j0)n

T3,T4

. (45)

Theorem 6.1. Under the conditions of Theorem 4.4, we haveT(Y; T1, T2, T3, T4)n
L−→ N (0, 1) under H0,

T(Y; T1, T2, T3, T4)n
P→ ±∞ under HA.

6.2 Joint tests of zero autocorrelations

This section develops tests of the joint hypothesis of zero autocorrelations based on the dis-
tribution theory of the ReMeDI estimators. Recall that for any ` ∈ N+, j` = (0, `). Let Σ̂

n,q
t

be a q× q matrix with the (`, `′) component Σ̂
n,q
t (`, `′) = σ̂(Y; j`, j`′)n

t for all 1 ≤ `, `′ ≤ q. Let
R̂n,q

t be a q-vector with the `-th element R̂n,q
t (`) =

ReMeDI(Y;j`)n
t

nt
, 1 ≤ ` ≤ q. We first introduce a

Box-Pierce (BP) statistic:

Tn,q
BP,t := nt

(
R̂n,q

t

)> (
Σ̂

n,q
t

)−1 (
R̂n,q

t

)
.

Next, we will introduce a variance-ratio (VR) type statistic (Lo and MacKinlay (1988), Hong
et al. (2017)). Let

Σ̂n
VR(2, 2) := σ̂(Y; j0, j0)

n
t ; Σ̂n

VR(1, 2) := 2
q−1

∑
`=1

ν`,q−1σ̂(Y; j`, j0)
n
t + σ̂(Y; j0, j0)

n
t ;

Σ̂n
VR(1, 1) := 4

q−1

∑
`=1

q−1

∑
`′=1

ν`,q−1ν`′,q−1σ̂(Y; j`, j`′)n
t + 4

q−1

∑
`=1

ν`,q−1σ̂(Y; j`, j0)
n
t + σ̂(Y; j0, j0)

n
t ;

Ŝq
t := R̂n,q

t (0) + 2
q−1

∑
`=1

ν`,qR̂n,q
t (`); Σ̂n

VR :=
Σ̂n

VR(1, 1)(
R̂n,q

t (0)
)2 +

(
Ŝq

t

)2

(
R̂n,q

t (0)
)4 Σ̂n

VR(2, 2)− 2Ŝq
t Σ̂n

VR(1, 2)(
R̂n,q

t (0)
)3 .

The statistic is

Tn,q
VR,t :=

Ŝq
t

R̂n,q
t (0)

,
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and the studentized version is given by

Tn,q
VR,t :=

√
nt

(
Tn,q

VR,t − 1
)

√
Σ̂n

VR

.

We consider the following pairs of hypotheses:

H
q
0 : r1 = · · · = rq = 0; H

q
A : ∃` such that 1 ≤ ` ≤ q, r` 6= 0. (46)

H∞
0 : r` = 0 : ∀` ≥ 1; H∞

A : ∃` ≥ 1, r` 6= 0. (47)

H′
q
0 :

q

∑
`=1

ν`,q−1r` = 0; H′
q
A :

q

∑
`=1

ν`,q−1r` 6= 0. (48)

These null hypotheses are implicit in some stylized models of market microstructure such as
the Roll model.

Theorem 6.2. Assume all the conditions of Theorem 4.4 hold, for a given q ∈ N+, and a sequence
{qn}n satisfying

qn � δ
−β
n , 0 < β < min

{
2
3

(
φ

2
− δ

)
,

2
3
(1− 2φ)

}
. (49)

We have Tn,q
BP,t

L−→ χ2
q under the H

q
0;

Tn,q
BP,t

P→ ∞ under the H
q
A.

(50)


√

qn
2

(
Tn,qn

t
qn
− 1
)
L−→ N (0, 1) under the H∞

0 ;

Tn,qn
t

P→ ∞ under the H∞
A .

(51)

Tn,q
VR,t

L−→ N (0, 1) under the H′
q
0;

Tn,q
VR,t

P→ ±∞ under the H′
q
A.

(52)

7 Beyond the Infill Asymptotics and High-frequency Data

All the properties of the ReMeDI estimators introduced in previous sections are developed
under infill asymptotics, i.e., the data frequencies increase without bound within a fixed time
interval. Other approaches, e.g., the realized volatility estimators of the variance and covari-
ances of noise (see Bandi and Russell (2008), Hansen and Lunde (2006), Zhang et al. (2005), Li
et al. (2019)), the local averaging estimators proposed by Jacod et al. (2017), are also devel-
oped under the infill asymptotics. This section demonstrates that the ReMeDI approach works
well beyond the infill framework, and such robustness to data frequencies distinguishes the
ReMeDI estimators from the above alternatives. As a consequence, the two liquidity measures
developed in Section 5 can be applied to data at coarser grids, even daily data.
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7.1 The Model

Let {Yi}i∈N+ be an observed time series that can be decomposed into

Yi = Xi + ε i, (53)

where X and ε satisfy

Assumption 7.1. 1. The process {Xi}i satisfies Xi+1 = µ + Xi + ηi, where {ηi}i are centered
independent random variables with bounded second moments, i.e., supi E

(
η2

i
)
≤ C < ∞.

2. The process {ε i}i is stationary, i.e., ε i = Cγχi, where the process {χi}n
i=0 satisfies Assumption 2.1

and is independent of X.

Model (53) and Assumption 7.1 characterize a large class of time series, including any time
series with stationary first differences, see Cochrane (1988). The decomposition in (53) are
widely applied to model various economic phenomena. In financial economics, X is the effi-
cient price and ε is the pricing error (Hasbrouck (1993), Hendershott and Menkveld (2014)), or
transitory component in stock prices due to, e.g., noise trading (Poterba and Summers (1988)).
In macroeconomics, X is identified with the permanent component of the observed times series
while ε is the cyclical component (Cochrane (1994), Beveridge and Nelson (1981) and Campbell
and Mankiw (1987)). The random walk component X may also arise from a modification of
existing model, say, by adding a random walk in the technology change (King et al. (1991)).

7.2 The ReMeDI estimation

Now we show the ReMeDI approach can effectively separate the two components X and ε

under Assumption 7.1. In general, we may estimate the drift term µ root-n-consistently by
taking the sample average of the first difference of the observed process. The effect of this
initial estimation may be shown to be of smaller order, and so for simplicity here suppose that
µ is known and without loss of generality is equal to zero.

Let kn = (−kn, kn), j` = (0, `). Let

R̂n
` :=

1
n

n−kn−`

∑
i=kn

∆kn
j`
(Y)n

i .

Theorem 7.1. Let v > 0 and kn satisfies kn � nu, u ∈
( 1

3+2v , 1
3

)
. Under Assumption 7.1, we have

R̂n
`

P→ R` := C2
γr`. (54)

If X has stationary increments with E
(
η2

i
)
= σ2

X, we have

σ̂2,n
X :=

∑n
i=1 ∆1,1

0,0(Y)
n
i

n
− R̂n

0 + R̂n
1

P→ σ2
X. (55)
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Moreover, we have the following limit distribution for R̂`:

1
σ̂2,n

X

√
3n
2k3

n

(
R̂n
` − R`

)
L−→ N (0, 1) . (56)

The relative size of the differences of X and ε varies in empirical studies. In particu-
lar, Campbell and Mankiw (1987) find large random walk component (X) while Clark (1987)
find small permanent component (ε). Next, we present a result when the relative size of the
two components is asymptotically large or small.11

Corollary 7.1 (Small and large ε). Assume all conditions in Assumption 7.1 hold except ε i = n−ϕχi

with ϕ < 1/4. Let kn � nu, u ∈
(

0, 1−4ϕ
3 ∧ 1

2

)
. A consistent ReMeDI estimator of the autocorrelation

function is given by

r̂n,ϕ
` :=

∑n−kn−`
i=kn

∆kn
j`
(Y)n

i

∑n−kn
i=kn

∆kn
j0
(Y)n

i

P→ r`. (57)

We next discuss why the LA method is inconsistent under long-span asymptotics. Suppose
that Assumption 7.1 holds and that E

(
η2

i
)
= σ2

X. Then, one can show under some regularity
conditions that

1
nk̃n

U((0, `))n
t

P→ 3σ2
X

2
, E

(
1
n

U((0, `))n
t

)
=

3k̃nσ2
X

2
+ O(k̃−1

n ),

where U((0, `))n
t /n is the LA estimator applied to the efficient price and and k̃n is the tuning

parameter of the LA method.12 Thus, the LA method is inconsistent when applied to low-
frequency data under long span asymptotics, and this is in line with our observations in the
simulation studies. The ReMeDI estimator by contrast has a bias that only depends on the
microstructure noise, and so its magnitude is not affected by the sampling scheme.

7.3 The intuition and consequence of the robustness to data frequency

The results presented in Theorem 7.1 have a very clear economic intuition, which is quite dif-
ferent from the identification under infill asymptotics illustrated in Section 3. The consistency,
without any restrictions on the data frequencies, relies on the zero autocorrelations of the effi-
cient returns. Therefore, the ReMeDI estimators effectively “remove” the efficient price as the
efficient returns on non-overlapping intervals are uncorrelated. What remains is simply due to
the market microstructure, and by tuning the “distance” and “lengths” of the non-overlapping
intervals, we can freely estimate the targeted moments of noise.

11See also the studies on “small noise” by Da and Xiu (2019) and Aït-Sahalia and Xiu (2019) on high-frequency
analysis.

12The result is consistent with Equation (3.35) in Jacod et al. (2017), in which they show, under infill asymptotics
that the LA applied to the efficient price has a bias (after proper scaling) equal to 3QVt

2 , where QVt is the quadratic
variation of the efficient price process.
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Figure 2: Estimates of the variance of noise using transaction prices of E-mini S&P 500 futures on May
3, 2010 using samples at different frequencies.

Why is the robustness to data frequency crucial? First, such robustness greatly broadens the
applications of the ReMeDI estimators. They can be used by microstructure researchers using
tick by tick data, or by a macroeconomist using monthly or annual data. Second, the sampling
frequency matters in the estimation of the volatility of X, especially if one uses high-frequency
data which may be deemed “noisy” whence a de-noise procedure is essential (Jacod et al.
(2009), Zhang et al. (2005), Barndorff-Nielsen et al. (2008), Xiu (2010)). Such de-noise methods
rely on the estimation of the moments of noise, in particular, the variance of noise. Using real
transaction prices, Figure 2 compares the ReMeDI estimates of the variance of noise to two
alternatives: the realized volatility (RV) estimator and the local averaging (LA) estimators.
The estimation is performed using the transaction prices of the same stock but sampled at
different frequencies, from tick by tick data to 1 minute returns. Both the RV and LA estimators
suggest that the magnitude of noise is larger when the sampling grid is coarser. However, such
monotone correspondence is a consequence of the low-frequency bias.13 Thus, any de-noise
method using the RV or LA estimators to correct the microstructure effects will return very
different estimates when the sampling frequency varies. The ReMeDI estimators, however,
are quite robust to the sampling frequencies. Third, an economic concern arises when one
treats the magnitude of noise as a proxy of liquidity, see Hasbrouck (1993), Aït-Sahalia and Yu
(2009) and Chen and Mykland (2017). Trading frequencies have increased enormously in the

13See the analysis in Hansen and Lunde (2006), Jacod et al. (2017) and Li et al. (2019).
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past decade, in tandem with improvements in liquidity, see Hendershott et al. (2011). Figure 2
provides a warning to use such measures: the RV and LA measures suggest that the liquidity
improves as data frequency increases—this is not intuitive as the measures are obtained on
subsamples of the transaction prices generated by the same market mechanism.

7.4 Implementation: Which asymptotics?

We have shown that the ReMeDI estimator is robust to the data frequency, however the lim-
iting distribution of the ReMeDI estimator does depend on the sampling scheme. In many
practical circumstances, it is hard to decide which asymptotic distribution provides a better
approximation to a given sample of transaction prices, e.g., 5-min returns over one trading
month. In this section we introduce a practical method to construct estimators of the asymp-
totic variance for the ReMeDI estimators that are also “robust” to data frequencies.

Let R0 be the variance of ε and σ2
n = E

(
(Xn

i − Xn
i−1)

2). Define a signal-to-noise ratio14

πn :=
R0

R0 + nu′σ2
n
=

1
1 + nu′σ2

n/R0
.

R0 = Op(1) in either asymptotic framework; under infill asymptotics, σ2
n = Op(δn), thus for

u′ ∈ (0, 1), πn → 1; under long-span asymptotics σ2
n is a constant, thus πn → 0. Now we define

the following asymptotic variance estimator15

σ̂2
`,robust :=

2k3
n

3n

(
σ̂2,n

X

)2
+

πnσ̂(Y; j`, j`)n
t

nt
.

For u′ close to 1, we have

σ̂2
`,robust =


2k3

n
3n

(
σ̂2,n

X

)2
+ op(1/n), long span;

σ̂(Y;j`,j`)n
t

nt
+ Op(k3

nδ2
n), infill.

The designed estimator σ̂2
`,robust will reduce to infill estimator or long-span estimator when the

dataset tells that the noise is relatively large or small. Thus, σ̂2
`,robust will automatically decide

which asymptotic framework is proper after collecting some information (signal-to-noise ratio)
from the dataset.

8 Empirical Studies

Our empirical study relies on the E-mini S&P 500 futures contracts from Chicago Mercantile
Exchange (CME) Globex, which are futures on the S&P 500 stock market index. We use the

14To calculate πn, we need estimates of R0, σ2
n . R0 can be estimated by the ReMeDI estimator, and σ2

n can be
estimated by the likelihood approach (Aït-Sahalia et al. (2005)). Note that accurate estimates of R0, σ2

n are not
required; only the asymptotic order of the ratio is needed.

15Note that we stick to the notations introduced in previous sections. It should be clear that both nt, n denote the
number of observations of a given sample. Similarly, 1/n and δn are of the same order.
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transaction data for all 20 trading days in May, 2010, including May 6, 2010 — the day of the
“Flash Crash” — when U.S. equity indices collapsed and rebounded abruptly after a rapid ex-
ecution of a large selling program. Thus, it is of particular interest to measure market liquidity
during period of market stress using our proposed method.

Throughout the empirical studies, we select various tuning parameters via the algorithm
we developed in the supplementary material, see Li and Linton (2019).16

8.1 Liquidities in three trading zones

We focus on the trading session that spans from 18:00 of the prior day to 16:15 Eastern Standard
Time (ET). This session covers three trading zones: 18:00 to 3:00 ET, 3:00 to 9:30 ET and 9:30 to
16:15 ET are the periods of regular trading in Asia, Europe and the U.S., respectively. Table 1
reports some descriptive statistics of the trading activities for the three segments.17 It is evident
that trading in the U.S. segment is more active.

Table 1 also reports our spread measures18, the IBAS and ABAS as measures of liquidity
costs of the E-mini futures market. Among the three trading zones, the European trading
segment has relatively smaller liquidity cost, as measured by both the IBAS and ABAS. The
relatively magnitudes of liquidity costs in the three trading zones are further compared in the
top panel of Figure 3 on a daily level. Figure 6 depicts pairwise comparisons of the variances of
microstructure noise in three trading sessions. We label the paired estimates that are statistically
different using our testing devices developed in Section 6. The top and the bottom panels
illustrate that the variance of noise in the European session is significantly smaller than the
Asia (14 days out of 20) and the U.S. sessions (17 days out of 20). We also investigate other
statistics of the U.S. session that reflect the turbulent market conditions on 6 May. For example,
we find R(03)t/R3/2

t,0 equal to -0.5793 and 1.8531 for the non Flash Crash days and the Flash
Crash day, respectively; and the estimates of R(04)t/R2

t,0 are 31.2912 and 159.5389, respectively.

All days in May, 2010 (exclude 6, May) May 6, 2010
Asia Europe The U.S. Asia Europe The U.S.

Volume 1.00× 105 3.72× 105 2.43× 106 7.82× 104 4.89× 105 5.09× 106

Transactions 1.36× 104 4.20× 104 1.90× 105 7.97× 103 4.77× 104 3.83× 105

IBAS 1.55 (0.013) 1.38 (0.0026) 1.57 (0.0070) 1.38 (0.013) 1.29 (0.0073) 2.78 (0.041)
ABAS 1.61 (0.18) 1.53 (0.026) 1.69 (0.053) 1.51 (0.043) 1.33 (0.021) 4.78 (0.49)

Table 1: Statistics of trading activities and liquidity costs of E-mini S&P 500 futures in May, 2010. In the
left panel, the trading volume and the number of transactions are averages over the 20 trading days.
The two liquidity measures IBAS and ABAS are estimates based on all observations in the 20 trading
days. The standard deviations are reported in parentheses. The right panel reports the statistics using
the transactions on May 6 only.

16Typical choices of kn on the Flash Crash day are around 8 or 9, depending on the parameters to execute the
algorithm; for the remaining days, kn would be 3 or 4.

17The statistics are computed after some minor data filtration using the procedures proposed by Andersen et al.
(2018).

18The results are stated in basis points. One basis point is equivalent to 0.01% or 0.0001 in decimal form.
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8.2 Order flow patterns and autocovariances of microstructure noise

As we observe from Table 1 that the ABAS measure is statistically quite large compared with
the IBAS in all segments. We have similar observations on a daily basis — as revealed in the
bottom panel of Figure 3 — the ABAS measures are persistently larger than the IBAS measures,
which are persistently larger than the Roll measures. The discrepancy, as suggested by earlier
analysis, reflects the order imbalances induced by the (positively) autocorrelated order flows.

The autocovariances of microstructure noise provide an angle to look at the dynamics of
order flow. We estimate the autocovariances of microstructure noise on each trading day for
the U.S. trading segment. The results are presented in Figure 4. The microstructure noise ex-
hibits positive albeit weak autocorrelation patterns on most trading days. The autocovariances
usually die out after three lags. However, the (1, 4)-subplot in Figure 4 reveals that the autoco-
variance function of noise becomes extremely strong on May 6, 2010 — when the U.S. market
experienced chaotic market conditions — an episode dubbed the Flash Crash.

8.3 The intraday pattern of spread measures

To study the intraday pattern of the spread measures, we estimate IBAS and ABAS in each
15 minutes window. The top and bottom panels of Figure 5 report the estimates for the non
Flash Crash days and the Flash Crash day. In line with the statistics reported in Table 1, the
European session has smaller spreads. An interesting observation, as is evident in the top
panel of Figure 5 is that when switched from the Asia trading session to the European trading
session, both spreads exhibit significant drops, and gradually revert to a level that is close to
the spreads in the U.S. trading zone. Moreover, the trading volumes have approximately a U-
pattern in each trading session. On the Flash Crash day, we observe the simultaneous abrupt
increases in spreads measures and trading volume.

8.4 The Flash Crash: Liquidity evaporation under large selling pressure

The right panel of Table 1 suggests that May 6 is “an unusually turbulent day for the mar-
kets” CFTC-SEC (2010): trading activities and liquidity costs almost double. This is an unique
phenomenon only when the U.S. market is active, which “opened to unsettling political and
economic news from overseas concerning the European debt crisis” CFTC-SEC (2010). As the
negative market sentiment continued to grow in the afternoon, a large fundamental trader
initiated a sell program to sell rapidly a total of 75,000 E-Mini contracts at 2:32 p.m. (ET). It
triggered larger selling pressure and a positive feedback loop that drove prices down. The
positive feedback loop appears to be consistent with positively serially correlated market mi-
crostructure noise as we demonstrated in Figure 4. As a consequence, the E-mini price dropped
sharply in a short time period, and liquidity drained quickly.

Now we demonstrate how to apply our new liquidity measures to identify the liquidity
evaporation. The left bottom panel of Figure 3 shows that the three liquidity measures yield
very different estimates on the day of the Flash Crash. All three measures have peaks in impact
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during May 6, but such liquidity crisis is less likely to be picked up by the Roll measure,
whereas the IBAS and ABAS both pick it up with the ABAS giving a much higher prominence.

The effective identification of the liquidity drains by ABAS still applies when we focus
on the intraday price of May 6, 2010. Figure 7 plots ABAS on each 1-minute window.19 The
ABAS measure detects extreme liquidity drains from 14:45 (ET) till 14:53 (ET).20 This period
has the most intensive price pressure as it coincides with the segment when the large seller sold
most of his position, and it also coincides with the period where there existed large and per-
sistent price differentials between E-mini and SPY, thus a period when the price pressure can
not be transmitted from E-mini to SPY, see Menkveld and Yueshen (2018). Economic theory
rationalizes price pressures as the premium charged by risk-averse intermediaries to provide
immediacy, see, e.g., Grossman and Miller (1988) and Hendershott and Menkveld (2014), while
empirical studies (Kirilenko et al. (2017)) characterize large net position, or order imbalances
as a period of large and temporary price pressure. This is exactly the economic intuition be-
hind the design of our liquidity measure conveyed by our inventory model: ABAS captures
the price pressure caused by the imbalanced order flow, which manifests statistically as the
autocovariances of microstructure noise.

Some empirical studies have found earlier warning signs of the Flash Crash, see Easley
et al. (2012) and Menkveld and Yueshen (2018), although others including Andersen and Bon-
darenko (2014) dispute some of these findings. We propose a normalized ABAS measure to
detect imbalanced order flows, which is given by ABASn

t /IBASn
t . It reduces to 1 if the order

flow is uncorrelated; a value larger than 1 indicates a positively autocorrelated, thus a poten-
tially imbalanced order flow. Figure 8 plots the normalized liquidity measure. We observe a
cluttering of liquidity measures above 1, depicted in green, lasting from 14:15 to 15:10. Thus,
our normalize liquidity measures provide, at least some mild early warnings of the imbalanced
order flows before the Flash Crash.

9 Concluding Remarks

We introduced a nonparametric method to separate the microstructure noise from the under-
lying semimartingale efficient prices. We have concentrated on the infill setting primarily and
the univariate case. The method naturally extends to the multivariate case, although in that
case several issues arise. First, the nonsynchronous trading issue has to be faced. Second,
even when the assets trade on a common clock there are some remaining theoretical results
that need to be established for the infill case. In the long span case (with common discrete
time clock), it is possible to establish a CLT for the multivariate estimated error autocovariance
matrix under some additional assumptions. These methods permit a better understanding of
the permanent-transitory decompositions without making strong assumptions. Our methods

19We truncated four negative estimates of ABAS at zero.
20This period is identified as follows. We first calculate the mean and the standard deviation of the 405 estimates

obtained on each 1-minute window. We then pick up the ABAS measures that are 2 standard deviations larger
than the mean. In this way, we obtain 10 extreme estimates that identify the trading time from 14:45 — 14:50, 14:52,
14:53, 15:00 and 15:06. Then we consider the “liquidity evaporation period” as 14:45 — 14:53.
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also allow us to develop best linear predictors (Kalman filter) of the unobserved efficient price
given the history of observed transactions, under the assumption of stationarity, and we plan
to investigate this in the sequel. We have not discussed efficiency in great deal, but one can
improve efficiency in two ways: first, by combining the estimators associated with different
choices of kn by minimum distance, and second by doing a kind of GLS procedure using our
local estimator of γu.

In our Flash Crash application we found some evidence of the predictability of the price
declines during that episode, although that was based on ex post estimation. We also found
that many features of the microstructure noise process changed on the Flash Crash day. Clearly,
the lack of stationarity of the persistence of microstructure noise poses both theoretical and
practical questions. Why does the microstructure noise process apparently change so radically
during flash episodes? How can one best model the process to provide accurate real time
forecasts?
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lights a clustering of measures above 1, indicating imbalanced order flows. The corresponding trading period lasts
from 14:15 — 15:10.
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