Titanacycles Derived from Reductive Coupling of Nitriles, Alkynes, Acetaldehyde, and Carbon Dioxide with Bis(pentamethylcyclopentadienyl)(ethylene)titanium(II)[‡]

Steven A. Cohen and John E. Bercaw*

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125

Received October 3, 1984

The reactions of bis(pentamethylcyclopentadienyl)(ethylene)titanium(II), $(\eta - C_5Me_5)_2Ti(\eta - C_2H_4)$ (1), with alkynes, nitriles, carbon dioxide, and acetaldehyde have been examined and the products characterized spectroscopically. The most common reaction pathway observed is the addition of 1 equiv of substrate to 1 affording the respective monomeric metallacyclopentene $(\eta - C_5Me_5)_2TiC(R) = CMeCH_2CH_2$ (R = H and Me), metallacycloimine $(\eta - C_5 Me_5)_2 TiN = C(R)CH_2CH_2$ (R = CH₃, C₂H₅, t-C₄H₉, and p-CH₃C₆H₄), metallalactone $(\eta - C_5Me_5)_2 TiOC(O)CH_2CH_2$, and oxymetallacyclopentane $(\eta - C_5Me_5)_2 TiOCH(CH_3)$ -CH₂CH₂ products. In each case, the preferred (often exclusive) product from the reaction has the sterically least-hindered substituent adjacent to the titanium atom. Depending upon the reaction conditions and the particular substrate chosen, insertion into a C-H bond or substitution of the C₂H₄ ligand in 1 by the substrate may be observed, as evidenced by the formation of $(\eta$ -C₅Me₅)₂Ti(C=CR)(C₂H₅), where R = CH₃ and t-C₄H₉, and $(\eta$ -C₅Me₅)₂Ti $(\eta$ -RC=CR), where R = CH₃ and C₆H₅. Many of the Ti(IV) products are found to undergo further reactions under relatively mild conditions. For example, carbonylation of the $metallacyclopentene \ (\eta - C_5 Me_5)_2 TiC(CH_3) = C(CH_3) CH_2 CH_2 \ quantitatively \ yields \ (\eta - C_5 Me_5)_2 Ti(CO)_2 \ and \ results \ res$ corresponding dimethylcyclopentenone while the metallacycloimine compounds the (ŋ- $C_5Me_5_2TiN = C(R)CH_2CH_2$ undergo a 1,3 hydrogen shift to generate metallacycloenamine species (η - $C_5Me_5)_2TiNHC(R) = CHCH_2$, where $R = CH_3$ and C_2H_5 . The latter rearrangement has been found to occur via an intramolecular pathway and is sensitive to the steric bulk of the R group.

Introduction

We recently reported the synthesis and structure of bis(pentamethylcyclopentadienyl)(ethylene)titanium(II), $(\eta$ -C₅Me₅)₂Ti(η -C₂H₄) (1), together with some preliminary studies of its reactivity.¹ Displacement of the ethylene from 1 by good π -acceptor ligands such as CO and CH₃NC is observed, whereas treatment of 1 with H₂ or HCl results in the liberation of ethane. Incorporation of ethylene in the organotitanium product was observed only in the case of the reversible reductive coupling of a second ethylene molecule, affording the titanacyclopentane (η -C₅Me₅)₂TiCH₂(CH₂)₂CH₂ (2) (eq 1). The instability of 2

$$(\eta - C_5Me_5)_2Ti(\eta - C_2H_4) + C_2H_4 \longrightarrow (\eta - C_5Me_5)_2Ti(1)$$

1
2

has precluded further study of this titanacyclopentane species, however. Since substrates having more reactive carbon-carbon multiple bonds or those with carbon-nitrogen or carbon-oxygen multiple bonds were expected to provide greater stability for the titanacyclic products derived from reductive coupling with the ethylene ligand, we have examined the reactions of 1 with alkynes, nitriles, acetaldehyde, and carbon dioxide. The results of these studies are reported herein.

Results

Reactions of $(\eta$ -C₅Me₅)₂Ti $(\eta$ -C₂H₄) with Alkynes. Compound 1 reacts rapidly with 1 equiv of propyne at -50 °C, affording approximately equal amounts of the metallacyclopentene complex $(\eta$ -C₅Me₅)₂TiCH=C(CH₃)-CH₂CH₂ (3) and the propynyl ethyl species $(\eta$ -

*Contribution No. 7103.

 $C_5Me_5_2Ti(C = CCH_3)(CH_2CH_3)$ (4). Spectroscopic data

$$(\eta - C_{5}Me_{5})_{2}Ti(\eta - C_{2}H_{4}) \xrightarrow{CH_{3}C \equiv CH} (\eta - C_{5}Me_{5})_{2}Ti + 1$$

$$3$$

$$(\eta - C_{5}Me_{5})_{2}Ti \xrightarrow{CH_{2}CH_{3}} (2)$$

$$(\eta - C_{5}Me_{5})_{2}Ti \xrightarrow{CH_{2}CH_{3}} (2)$$

(IR 3, $\nu(C=C)$ 1587, 4, $\nu(C=C)$ 2100 cm⁻¹; NMR, Tables I and II) are consistent with the structures shown in eq 2. The 2-methyl isomer of 3 is not observed, presumably due to unfavorable steric interactions between the methyl group and the $[C_5Me_5]$ ligands.² Formation of 3 and 4 proceeds without loss of the ethylene ligand from 1; addition of propyne to a solution of 1 containing 0.6 equiv of ${}^{13}CH_2 {}^{13}CH_2$ does not lead to incorporation of labeled ethylene in the products, either upon reaction at -50 °C or on standing several hours at 25 °C. Over a period of several days at 25 °C, the propynyl ethyl tautomer rearranges to 3 (eq 3). Hence, the reaction of 1 with propyne provides a quantitative, albeit rather slow route to 3.

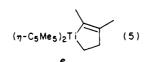
^{(1) (}a) "Abstracts of Papers", 179th Meeting of the American Chemical Society, Houston, March 1980; American Chemical Society: Washington, D.C., 1980; PETR 27. (b) "Abstracts of Papers", 182nd National Meeting of the American Chemical Society, New York, 1981; American Chemical Society: Washington, D.C., 1981; IMOR 2950. (c) Cohen, S. A. Ph.D Dissertation, California Institute of Technology, 1982. (d) Cohen, S. A.; Auburn, P. R.; Bercaw, J. E. J. Am. Chem. Soc. 1983, 105, 1136-43. (2) (a) Application of recent theoretical results^{2b} suggests the 3, methyltitanacyclopentene also is electronically favored over the 2-methyl isomer of 3. The regiochemistry of the metallacyclopentenes derived from CH₃C=CR remains unsettled; however, the regiospecific formation of the cycloimines, lactone, and oxycyclopentane (vide infra) also are in accord with this analysis. (b) Stockis, A.; Hoffmann, R. J. Am. Chem. Soc. 1980, 102, 2952-62.

Titanacycles Derived from Reductive Coupling

The titanacyclopentene complex 3 is also slowly obtained as the predominant product (80% pure by ¹H NMR) from the reaction of 1 with allene at 25 °C. The course of this reaction is not known; however, decamethyltitanocenecatalyzed isomerization of allene to propyne,³ analogous to the catalytic isomerization of olefins by 1,¹ may be a preliminary step.

Treatment of a toluene solution of 1 with 1 equiv of Me₃CC==CH at -40 °C quantitatively affords the tertbutylacetylide ethyl complex 5 (eq 4). Formation of the tert-butyl-substituted metallacyclopentene product analogous to 3 is not observed, either initially at -40 °C or after weeks at 25 °C.

$$(\eta - C_5 Me_5)_2 Ti(\eta - C_2 H_4) + Me_3 CC \equiv CH -$$

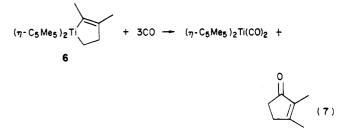

$$1$$

$$(\eta - C_5 Me_5)_2 Ti CH_2 CH_3$$

$$(\eta - C_5 Me_5)_2 Ti CH_2 CH_3$$

$$5$$

While the addition of terminal alkynes to 1 occurs rapidly at low temperatures, internal alkynes react more slowly with 1. For example, the reaction with 2-butyne proceeds over a period of 8 h at 25 °C, to afford a quantitative yield (¹H NMR) of $(\eta - C_5 Me_5)_2 \dot{T}iC(CH_3) = C$ - $(CH_3)CH_2CH_2$ (6) (eq 5). Red-orange 6 is isolable as a (n-C5Me5)2Ti(n-C2H4) + CH3C==CCH3 -


thermally stable, crystalline solid. Traces of free C_2H_4 and the 2-butyne adduct $(\eta$ -C₅Me₅)₂Ti $(\eta$ -CH₃=CCH₃) (7) are detected (¹H NMR) during the reaction of 1 with CH₃- $C = CCH_3$. Thermally unstable 7 may be independently prepared⁴ by addition of 2-butyne to $[(\eta - C_5Me_5)_2Ti]_2(\mu - N_2)$. Treatment of 1 with diphenylacetylene yields only $(\eta$ - $C_5Me_5)_2Ti(\eta$ -PhC=CPh)^{4a} (8) and C_2H_4 (eq 6). No di- $(\eta - C_5 Me_5)_2 Ti(\eta - C_2 H_4) + PhC \equiv CPh \rightarrow$

$$(\eta - C_5 Me_5)_2 Ti(\eta - PhC \equiv CPh) + C_2 H_4$$
 (6)

phenyltitanacyclopentene is formed, even at elevated temperatures under excess ethylene. Both 7 and 8 exhibit rather low C=C stretching frequencies in the IR (7, ν -(C=C) 1683, 8, ν (C=C) 1647 cm⁻¹).

The reactions of 1 with the unsymmetrical internal alkynes 2-pentyne, 2-octyne, and 1-phenylpropyne also produces appreciable concentrations of the transient alkyne adducts $(\eta - C_5 Me_5)_2 Ti(\eta - CH_3 C \equiv CR)$, where R = CH_2CH_3 , $CH_2(CH_2)_3CH_3$, and Ph, prior to formation of the corresponding titanacyclopentenes. The final products have been characterized only by ¹H and ¹³C NMR spectrometry, and in each case the titanacyclopentene appears to be present as a mixture of the 2-methyl and 3-methyl isomers.⁵

Carbonylation (3 atm) of 6 occurs within 18 h at 80 °C to afford $(\eta$ -C₅Me₅)₂Ti(CO)₂⁶ and 2,3-dimethylcyclopent-2-enone⁷ quantitatively by ¹H NMR (eq 7). Unfortu-

nately, $(\eta$ -C₅Me₅)₂Ti(CO)₂ is unreactive toward C₂H₄ and/or $CH_3C = CCH_3$, even under forcing conditions, so that a catalytic synthesis of 2,3-dimethylcyclopent-2-enone based on this chemistry has not yet been achieved.⁸

Reactions of $(\eta - C_5 Me_5)_2 Ti(\eta - C_2 H_4)$ with Nitriles. Addition of 1 equiv of acetonitrile to a toluene solution of 1 at -50 °C results in quantitative formation of the mecomplex $(\eta - C_5 Me_5)_2 TiN = C(CH_3)$ tallacycloimine $\overline{CH_2CH_2}$ (9) (eq 8). Red-orange 9 has been characterized $(\eta - C_5Me_5)_2 Ti(\eta - C_2H_4) + CH_3 CN - (\eta - C_5Me_5)_2 Ti(\eta - C_5Me_5)_2 Ti(\eta$ (8)

by ¹H and ¹³C NMR spectrometry (Tables I and II) and infrared spectroscopy (ν (C=N) 1638 cm⁻¹). Above -10 °C an equilibrium is established between 9 and its metallacycloenamine tautomer 10 (equ 9). The value of K_{eq} varies

$$(\eta \cdot C_5 Me_5)_2 Ti$$

9
10
($\eta \cdot C_5 Me_5)_2 Ti$
(9)

from ~ 0.4 at 0 °C to ~ 0.8 at 25 °C. The specificity of this 1,3 hydrogen shift is apparent from the fact that $(\eta - C_5 Me_5)_2 \dot{T}iN = C(CD_3)CH_2\dot{C}H_2$, prepared from 1 and

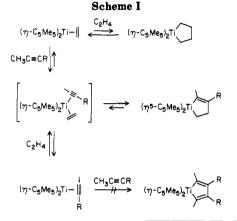
^{(3) (}a) Schwartz, J.; Hart, D. W.; McGiffert, B. J. Am. Chem. Soc. 1974, 96, 5613-4. (b) McGrady, N. D.; McDade, C.; Bercaw, J. E. In Organometallic Compounds: Synthesis, Structure, and Theory"; B. L. Shapiro, Ed; Texas A & M Press: College Station, TX, 1983; pp 46-85. (c) Doherty, N. M. Ph.D. Dissertation, California Institute of Technology, 1984. (d) McDade, C.; Bercaw, J. E. J. Organomet. Chem. 1985, 279, 281-315.

^{(4) (}a) Threlkel, R. S. Ph.D Dissertation, California Institute of Technology, 1980. (b) Spectroscopic data for 7: NMR, Tables I and II; IR (Nujol muil) 2705 (w), 1683 (w), 1495 (m), 1100 (m), 1025 (s), 800 (m), 595 (s), 425 (s), 360 (m) cm⁻¹.

^{(5) (}a) Ratio of the isomeric 2-methyl- and 3-methyl-substituted metallacyclopentenes derived from 1 and 2-pentyne is 80:20, from 2-octyne, 85:15, from 1-phenylpropyne, ≤5:95 (spectroscopic data suggest that the major isomer may be the 2-phenyl-3-methyltitanacycle but this has not been confirmed). (b) Limited spectroscopic data for $(\eta$ -C₅Me₅)₂Ti $(\eta$ -CH₃C=CR) and the isomeric metallacyclopentenes are available as supplementary material.

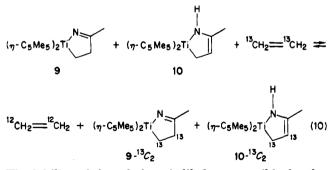
⁽⁶⁾ Bercaw, J. E.; Marvich, R. H.; Bell, L. G.; Brintzinger, H. H. J. Am. Chem. Soc. 1972, 94, 1219-38.

⁽⁷⁾ Berkowitz, W. F.; Ozorio, A. A. J. Org. Chem. 1971, 36, 3787-92 and references therein.

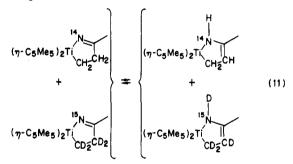

^{(8) (}a) The carbon monoxide insertion/reductive elimination behavior of 6 differs significantly from that of $2^{1,8b}$ or from the reactivity of zir-conocene^{8c,d} and decamethylzirconocene^{8b,d,3e} complexes. The reactivity of 6 and CO is typical of other dialkyl- or diarylitianocene derivatives, however.^{8b,f,g} (b) McDermott, J. X.; Wilson, M. E.; Whitesides, G. M. J. Am. Chem. Soc. 1976, 98, 6529–35 and references therein. (c) Fachinetti, G.; Fochi, G.; Floriani, C. J. Chem. Soc. Dalton Trans. 1977, 1946–50. (d) Erker, G.; Kropp, K. J. Organomet. Chem. 1980, 194, 45–60. (e) Man-riquez, J. M.; McAlister, D. R.; Sanner, R. D.; Bercaw, J. E. J. Am. Chem. Soc. 1978, 100, 2716–24. (f) Masai, H.; Sonogashira, K.; Hagihara, N. Bull. Chem. Soc. Jpn. 1968, 41, 750-1. (g) Facinetti, G.; Floriani, C. J. Chem. Soc. Chem. Commun. 1972, 654-5.

1008 Organometallics, Vol. 4, No. 6, 1985

compd (solv and temp) ^{a}		assignt	MR Data chem shift, δ	mult ^b	J(H-H), Hz
					•(11 11), 112
$(\eta - C_5 Me_5)_2 TiCH = C(CH_3)CH_2CH_2$	3	а	1.76	s	
a d e c b	J	a b	0.83	s t	7.5
$(C_6 D_6)$		c	2.21	t (br)	7.5
(0,0,)		d	4.90		
		e	1.60	q dt	$1.0 \\ 1.0, 1.0$
		C		ut	1.0, 1.0
$(\eta - C_{s}Me_{s})_{2}Ti(CH_{2}CH_{3})(C \equiv CCH_{3})$	4	a	1.90	s	
a b c d		b	0.57	q	7.5
$(C_6 D_6)$		c	1.15	t	7.5
		d	1.68	s	
$(\eta - C_5 Me_5)_2 Ti(CH_2 CH_3)[C \equiv CC(CH_3)_3]$	5	а	1.88	s	
a b c d		b	0.41	q	7.0
(C_6D_6)		С	1.40	t	7.0
		d	1.23	S	
[]					
$(\eta - C_5 Me_5)_2 TiC(CH_3) = C(CH_3)CH_2 CH_2$	6	а	1.80	s	
$a \circ d \circ b$	Ŭ	b	1.06	t	7.4
(C_6D_6)		c	2.13	t (br)	7.4
		d	1.03	tq	0.9, 0.9
		e	1.43	q	0.9
$(\eta - C_5 Me_5)_2 Ti(\eta - CH_3 C \equiv CCH_3)$	7	а	1.89	s	
$\begin{array}{c} a \qquad b \end{array}$	r	b	1.74	s	
$(\eta - C_s Me_s)_2 Ti(\eta - C_e H_s C \equiv CC_e H_s)$	8	a	1.74	s	
$(\eta - 0_5) (\eta - 0_6) (\eta -$	0	a b	6.80	m	
$(C_6 D_{12})$		c	6.54	d	8.0
		d	6.86	d	8.0
Test					
(n, O, M_{0}) (m, O, M_{0})	9		1.82		
$(\eta - C_s Me_s)_2 TiN = C(CH_3)CH_2CH_2$ a d c b	5	a b	0.63	s t	7.0
$\begin{pmatrix} a & d & c & b \\ (C_7 D_8, 0 \ ^{\circ}C) & & \end{pmatrix}$		c	3.33	t	7.0
$(\mathcal{O}_{\mathcal{I}}\mathcal{D}_{\mathcal{B}},\mathcal{O}_{\mathcal{O}})$		d	1.57	s	1.0
<u></u>					
$(\eta - C_5 Me_5)_2 TiNHC(CH_3) = CHCH_2$	10	а	1.72	S	•
a d e c b ($C_7 D_8, 0$ °C)		b	1.05	t	6
$(C_7 D_8, 0, C)$		c d	5.03 6.19	t s	6 72 <i>°</i>
		e e	1.81 (obsd	5	12
		C	in ² H spectrum)		
			- /		
(n-C Me) TIN-C(CH CH)CH CH	11	9	1.83	e	
$(\eta - C_s Me_s)_2 TiN = C(CH_2 CH_3)CH_2 CH_2$ a d e c b	11	a b	$\begin{array}{c} 1.83 \\ 0.68 \end{array}$	s t	7.3
$(C_6 D_6)$		c	3.32	t	7.3
v - 6 - 6 /		d	1.12	q	7.0
		e	0.92	t	7.0
· · · · · · · · · · · · · · · · · · ·					
(n,C,M_{e}) TiN-C(CM _e) CH CH	12	<u>c</u>	1.80		
$(\eta \cdot C_5 Me_5)_2 TiN = C(CMe_3)CH_2CH_2$ a d c b	14	a b	$\begin{array}{c} 1.80\\ 0.48 \end{array}$	s t	71
$(C_{7}D_{8})$		D C	3.43	t t	7.1 7.1
(-7-8)		d	1.01	S	1.1
				-	
	10	_	1.00		
$(\eta - C_5 Me_5)_2 TiN = C(C_6 H_4 CH_3) CH_2 CH_2$	13	a L	1.83	s	17 1
a e,f,d c b (C_7D_8)		b	0.68	t	7.1
$(\mathbf{U}_{7}\mathbf{U}_{8})$		c d	$3.88 \\ 2.11$	t s	7.1
		e	6.91	d	8.3
		f	7.38	d	8.3
$(\eta - C_s Me_s)_2 TiNHC(CH_2 CH_3) = CHCH_2$	14	<u>,</u>	1 79	~	
$(\eta - C_5 Me_5)_2 \text{INHO}(CH_2 CH_3) = CHCH_2$ a d e f c b	14	a b	1.73 (not observed)	S	
(C_6D_6)		р С	(not observed) 5.12	t	4
v g-0/		d	6.43	i S	т
		е	2.13	q	7
		f	(not observed)	-	
·					
1 1			1.67	s	
$(\eta - C_5 Me_5)_2 TiOC(O)CH_2CH_2$	15	а	1.01	3	
$\frac{\eta \cdot C_{s}Me_{s}_{2}TiOC(O)CH_{2}CH_{2}}{a}$	15	a b	1.09 3.24	t	8.0 8.0


	Tab	le I (Continu	ed)			
compd (solv and temp) ^a		assignt	chem shift, δ	mult ^b	J(H-H), Hz	
(η-C ₅ Me ₅)(η-C ₅ Me ₅)TiOCH(CH ₃)CHH'	☐ CHH′ 16	a	1.85	s		
a b c d ef	gh	b	1.82	s		
		с	4.71	dqd	11.0, 6.1, 3.7	
(C_7D_8)		d	0.95	d	6.1	
		е	2.67	dddd	12.2, 12.2, 11.0, 7.3	
		f	2.43	dddd	12.2, 7.3, 3.7, 1.2	
H' cis to methine H		g	0.23	ddd	11.0, 7.3, 1.2	
		ĥ	2.17	ddd	12.2, 11.0, 7.3	
Semple temperature 24 °C unless given	$b = - \sin \alpha \log \alpha$	d - doublet	t = twinlet = a = a = a = a	he - huard	C 1 1(15NL LL)	

^a Sample temperature 34 °C unless given. ^b s = singlet, d = doublet, t = triplet, q = quartet, br = broad. ^c ${}^{1}J({}^{15}N-H)$.


CD₃CN, yields only $(\eta$ -C₅Me₅)₂TiNHC(CD₃)=CHCH₂. Moreover, no H–D scrambling is observed after 2 days at 25 °C (²H NMR).

Carbon-carbon bond formation in the generation of 9, substantiated by the ${}^{13}C{-}^{13}C$ coupling constants observed for ${}^{13}C$ -labeled 9 (Table II), is found to be reversible. Thus, while incorporation of ${}^{13}CH_2{}^{13}CH_2$ into 9 is not detected (¹H and ${}^{13}C$ NMR) when addition of CH₃CN to 1 is carried out at -50 °C in the presence of 1 equiv of ${}^{13}CH_2{}^{13}CH_2$, unenriched ethylene and ${}^{13}C_2$ -labeled 9 and 10 are slowly formed at 25 °C, demonstrating that ethylene exchange occurs subsequent to the formation of 9 and 10 (eq 10).

The lability of the ethylene is likely responsible for the rapid decomposition that occurs when solutions of 9 and 10 are heated above 40 °C or exposed to CO, excess CH_3CN , or vacuum above -20 °C. In each case, C_2H_4 is produced along with a mixture of as yet unidentified organotitanium compounds.

As a solid, 9 can be stored for months at -20 °C and handled for brief periods at 25 °C without decomposition or formation of 10. Thus, it proved possible to address the molecularity of the isomerization of 9 to 10 with a crossover experiment. A toluene solution of doubly labeled $(\eta$ -C₅Me₅)₂Ti¹⁵N=C(CH₃)CD₂CD₂ (9-¹⁵N,d₄) and unlabeled 9 ([9-¹⁵N,d₄]/[9] = 1.2 ± 0.4) was warmed to 0 °C, and the $9 \rightleftharpoons 10$ tautomerization was monitored by ¹H NMR spectrometry. The extent of conversion of 9 to 10 was indicated by their respective C_5Me_5 intensities and the extent of crossover determined from the intensities of the ¹⁴N-H and ¹⁵N-H resonances (¹J(¹⁵N-H) = 72 Hz for 10-¹⁵N). Although some decomposition is detected (ca. 3%) during the latter stages of the experiment, the extent of H-D scrambling observed in the products (column 5, Table III) remains small as equilibrium between 9 and 10 is reached. Thus the imine \rightleftharpoons enamine tautomerization appears to proceed predominantly in an *intramolecular* fashion (eq 11).

Propionitrile, 2,2-dimethylpropionitrile, and p-tolunitrile also react rapidly with 1 to yield the corresponding titanacycloimines (eq 12). The infrared and NMR spectra

$$(\eta - C_5 Me_5)_2 Ti(\eta - C_2 H_4) + RC \equiv N + (\eta - C_5 Me_5)_2 Ti$$

11. R = CH₂CH₃

12. R = CMe₃

13. R = $\rho - C_6 H_4 CH_3$

of 11, 12, and 13 closely resemble those of 9 but, unlike 9, these derivatives proved sufficiently stable in the solid state for full characterization. The ethyl-substituted titanacycloimine complex 11 tautomerizes slowly to a small extent ($K_{eq} = 0.10$ at 25 °C), yielding (η - C_5Me_5)₂TiNHC(C_2H_5)=CHCH₂ (14), which has been characterized by ¹H and ¹³C NMR spectrometry. No isomerization ($K_{eq} < 0.01$) of 12 or 13 is observed even after several weeks at 25 °C.

Reactions of $(\eta - C_5Me_5)_2Ti(\eta - C_2H_4)$ with Carbon Dioxide and Acetaldehyde. Addition of 1 equiv of CO_2 to a toluene solution of 1 at -78 °C rapidly affords the bright red titanalactone $(\eta - C_5Me_5)_2TiOC(O)CH_2CH_2$ (15) in high yield (eq 13). Monomeric 15 exhibits a $\nu(CO)$ at

$$(\eta - C_5 Me_5)_2 Ti(\eta - C_2 H_4) + CO_2 \longrightarrow (\eta - C_5 Me_5)_2 Ti$$
 (13)

1653 cm⁻¹ in its infrared spectrum for the uncoordinated

compd (solv and temp) ^{a}		assignt	chem shift, δ	$^{1}J(C-H)$ (m), ^b Hz	$^{1}J(C-C),^{c}$ Hz	$^{x}J(C-H)$ (m), ^d Hz
$(\eta - C_5 Me_5)_2 TiCH = C(CH_3)CH_2 CH_2$	3	a	121.5	(\mathbf{s})		
a b f e g d c ($C_7D_8, -30$ °C)		b	112.1	126 (q)	21 (24)	
$(C_7 D_8, -30 C)$		c d	39.6 55.6	122 (t) 123 (t)	31 (cd)	6 (t)
		e	136.3	(s)		0(1)
		f	193.6	135 (d)		
		g	26.7	125 (q)		8 (d)
$(\eta - C_s Me_s)_2 Ti(C \equiv CCH_3)(CH_2 CH_3)$	4	а	120.2	(s)		
ab e fg c d		b	12.8	126 (q)	.	
$(C_7 D_8, -30 \ ^{\circ}C)$		C J	61.4	121(t)	33 (cd)	
		d e	$\begin{array}{c} 22.6 \\ 148.8 \end{array}$	123 (q) (s)		4 (q)
		f	110.7	(s) (s)		10(q)
		g	6.4	129 (q)		(4)
$(\eta \cdot C_{s}Me_{s})_{2}Ti(C \equiv CCMe_{3})(CH_{2}CH_{3})$	5	a	121.0			
ab efgh cd		b	12.8			
$(C_7 D_8, -40 \ ^{\circ}C)$		ç	61.9		32 (cd)	
		d	23.9			
		e f	(not observed)			
		g	28.3			
		h	32.1			
$(\eta - C_{s}Me_{s})_{2}$ $TiC(CH_{3}) = C(CH_{3})CH_{2}CH_{2}$	6	a	121.3	(s)		
ab fgehdc		b	12.2	126 (q)		
(C_6D_6)		C	38.5	121(t)	29 (cd)	
		d e	$57.4 \\ 129.9$	124(t)		
		f	194.3	(s) (s)		
		g	18.8	124(q)		
		ĥ	21.6	123(q)		
$(\eta - C_s Me_s)_2 Ti(\eta - CH_3 C \equiv CCH_3$	7	а	120.4	(s)		
ab dc		b	11.9	126 (q)		
(C,D ₈ , -40 °C		C d	200.1	(s)		6 (q)
$(\eta - C_s Me_s)_2 Ti(\eta - C_6 H_s C \equiv CC_6 H_s)$	8	d a	$\begin{array}{c} 19.8 \\ 122.4 \end{array}$	(obscured)		
a b d-g c	0	b	12.4	(s) 126 (q)		
$(\mathbf{C}_{6}\mathbf{D}_{6})$		č	200.9	(s)		4 (t)
-		d	141.4	(s)		7 (t)
		е	128.7	157 (d)		
		f	128.1	157 (d) 157 (d)		7 (t) 7 (d)
		g	125.1	160 (d)		8(t)
$(\eta - C_{5}Me_{5})_{2}TiN = C(CH_{3})CH_{2}CH_{2}$	9	а	119.5	(s)		
a b e f d c	Ũ	b	11.9	126 (q)		
$(C_7 D_8, -30 \ ^{\circ}C)$		с	44.0	124(t)	33 (cd)	3 (cf) ^e
		d	59.2	120(t)	40 (de)	15 (df) ^e
		e	164.2	(s)	42 (ef)	· · ·
[f	26.3	125 (q)		
$(\eta - C_{s}Me_{s})_{2}$ TiNHC(CH ₃)=CHCH ₂	10	а	117.0	(s)		
ab ef dc		b	12.0	126 (q)		
$(\mathbf{C}_{7}\mathbf{D}_{8})$		C J	61.4	132(t)	37 (cd)	$5 (cf)^e$
		d	$114.1 \\ 148.3$	154 (d)		8 (df) ^e
		e f	24.6	(s) 125 (q)		
			110 0			
$(\eta - C_5 Me_5)_2 TiN = C(CH_2 CH_3)CH_2 CH_2$ a b e f g d c	11	a b	119.6 11.9	(s) 126 (c)		
$(C_{\gamma}D_{8})$		c c	44.2	126 (q) 125 (t)	33 (cd)	
. , , ,		d	57.9	120(t) 119(t)	00 (Cu)	
		е	169.0	(s)		
		f g	31.5 10.9	121 (t) 123 (q)		
		8		140 (4)		
		а	119.1	(s)		
	12		10 0	T 11/2 / 1		
ab efg d c	12	b	12.0	126 (q)	20 (
	12	b c	43.8	123(t)	33 (cd)	
ab efg d c	12	b	43.8 54.0	123 (t) 120 (t)	33 (cd)	
	12	b c d	43.8	123(t)	33 (cd)	

Titanacycles Derived from Reductive Coupling

compd (solv and temp) ^{a}		assignt	chem shift, δ	$^{1}J(C-H)$ (m), ^b Hz	$^{1}J(C-C),^{c}$ Hz	$^{x}J(C-H)$ (m), ^d Hz
$(\eta \cdot C_{s}Me_{s})_{2}TiN = C(C_{6}H_{4}CH_{3})CH_{2}CH_{2}$	13	a	120.2	(s)		
ab ef-ijdc		b	12.0	126 (q)		
		с	42.7	122 (t)	33 (cd)	
		d	55.7	122 (t)	ζ, γ	
		е	161.8	(s)		
$(C_6 D_{12}; C_7 D_8 \text{ for } {}^{13}C \{ {}^{1}H \})$		f	120.9	(s)		
		g	126.4	158 (d)		
		g h	128.9	160 (d)		
		i	137.0	(s)		
		j	21.3	(obscured)		
F						
$(\eta \cdot C_5 Me_5)_2 TiNHC(CH_2 CH_3) = CHCH_2$	14	а	116.9			
ab efg dc		b	11.6			
(C_7D_8)		с	61.2		38 (cd)	
		d	112.5		()	
		е	142.2			
		f	34.1			
		g	10.4	·		
$(\eta - C_5 Me_5)_2 TiOC(O)CH_2 CH_2$	15	а	124.1	(s)		
ab edc		b	11.6	126 (q)		
(C_6D_6)		с	54.0	128(t)		
		d	53.6	125 (t)	52 (de)	
		е	171.5	(s)		6 (t)
$(\eta - C_{s}Me_{s})(\eta - C_{s}Me_{s})TiOC(CH_{3})CH_{2}CH_{2}$	16	а	121.3	(s)		
ac bd gh fe		b	121.0	(s)		
$(C_6 D_6)$		č	12.1	126(q)		
		d	12.2	126(q)		
		e	55.8	121(t)	31 (ef)	
		f	52.7	127(t)		
			75.8	138 (d)		
		g h	25.9	124 (q)		4 (d)

Table II (Continued

^a Sample temperature 34 °C unless given. ^b s = singlet, d = doublet, t = triplet, q = quartet, br = broad. ^c (xy) refers to carbon assignments. ^d Long-range C-H coupling values. ^e Long-range C-C coupling values.

time, min	[10]/[9]	extent of equilibratn ^a	[10 - ¹⁵ NH]/[10 - ¹⁴ NH]	extent of scrambling ^b
0	< 0.02	< 0.05	<< 0.05	
15	0.07 (4)	0.19	< 0.05	< 0.04
34	0.22(3)	0.56	0.07 (4)	0.06
83	0.27(2)	0.68	0.12(4)	0.10
440	0.35 (2)	0.90	0.27 (3)	0.23

Table III. Results of the Imine \Rightarrow Enamine Crossover Experiment

^a [10]/[9]/ K_{eq} , where $K_{eq} = 0.39 \pm 0.02$ at 0 °C. ^b [10-¹⁵NH]/[10-¹⁴NH]/ S_{eq} where $S_{eq} = 1.2 \pm 0.4$ (statistical scrambling ratio from initial [9-¹⁵N, d_4]/[9], ignoring thermodynamic isotope effects).

carbonyl. The ¹H and ¹³C NMR spectra are readily assigned, and the ¹³C-¹³C coupling constant of 52 Hz between the β -methylene carbon and carbonyl carbon of (η -C₅Me₅)₂TiO¹³C(O)¹³CH₂CH₂ clearly establishes the formation of the C-C bond of 15 (Table II). Compound 15 is thermally robust as a solid and in solution but decomposes slowly upon exposure to visible light. When carried out above 0 °C, the carboxylation of 1 (CO₂:1 = 1) does not produce 15; rather ethylene is liberated, and an unidentified light-colored precipitate is formed.

Acetaldehyde reacts rapidly with 1 below -20 °C to yield the oxytitanacyclopentane complex $(\eta$ -C₅Me₅)₂TiOCH-(CH₃)CH₂CH₂ (16) (eq 14). The 90-MHz ¹H NMR

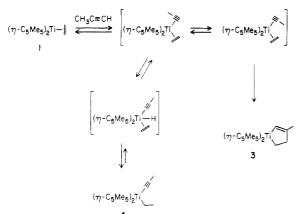
$$(\eta - C_5 Me_5)_2 Ti(\eta - C_2 H_4) + CH_3 CHO - (\eta - C_5 Me_5)_2 Ti$$

1

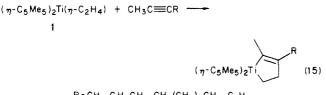
1

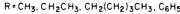
16

spectrum for 16 is consistent with the structure shown,

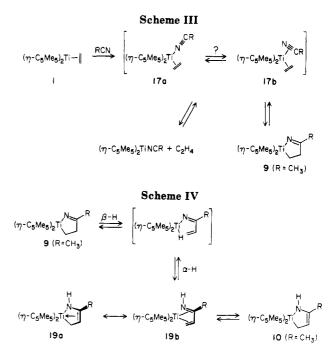

having two resonances assignable to the two inequivalent $[C_5Me_5]$ ligands and a doublet for the methyl substituent. At 500 MHz, the six highly coupled hydrogen resonances

of the TiOCH(CH₃)CCH'CHH' moiety are resolved (Table I). The infrared and ¹³C NMR spectra also support the formulation of 16. Bright orange-red 16 is quite stable, and there is no indication of formation of the tautomeric acyl ethyl complex (η -C₅Me₅)₂Ti(COCH₃)(CH₂CH₃) even after several days at 25 °C.


The reaction of 1 with acetone differs considerably from that of 1 with acetaldehyde and does not afford a 3,3-dimethyloxytitanacyclopentane species analogous to 16. No reaction between 1 and 1 equiv of $(CH_3)_2CO$ is observed below 0 °C. At 25 °C, evolution of ethylene accompanies the reaction. Unreacted 1 and a mixture of unidentified organotitanium products remain in solution.


Discussion

Bis(pentamethylcyclopentadienyl)(ethylene)titanium (1) reacts with a variety of unsaturated organic compounds.


The reactions of 1 with 2-butyne and several other methyl-substituted internal alkynes proceed analogously to the reaction of 1 with ethylene (eq 1), affording 2,3-disubstituted titanacyclopentenes (eq 15). Displacement of the

ethylene ligand of 1 by methyl-substituted internal alkynes also occurs and competes effectively with the reductive coupling pathway, since acetylene adducts and ethylene are detected by NMR as transient species.⁹ With diphenylacetylene, only the simple displacement of ethylene is observed, yielding the very stable adduct (η - $C_5Me_5)_2Ti(\eta$ -PhC=CPh). We believe that the steric bulk and the electron-withdrawing capability of the phenyl substituents of $(\eta$ -C₅Me₅)₂Ti $(\eta$ -PhC=CPh) prevent formation of the 2,3-diphenyltitanacyclopentene. Effectively, the titanium is more "oxidized" in $(\eta$ -C₅Me₅)₂Ti $(\eta$ -PhC= CPH) than are the metal centers in $(\eta - C_5 Me_5)_2 Ti(\eta - C_5 Me_5)$ $CH_3C = CR$), where $R = CH_3$, η -C₅H₁₁, and Ph. In this regard, it is interesting that reductive coupling of 2 equiv of alkyne by decamethyltitanocene is not observed,⁴ even at elevated temperatures in the presence of excess alkyne, whereas for both the parent $[(\eta - C_5H_5)_2Ti]^{10}$ and decamethylzirconocene⁴ systems, very stable metallacyclopentadiene derivatives are typically obtained. Apparently, a delicate balancing of electronic and steric effects for the decamethyltitanocene system makes the 2-methyltitanacyclopentene compounds much preferred over both the titanacyclopentane and titanacyclopentadiene products (Scheme I).

With terminal alkynes, insertion into the C-H bond may be exclusive pathway as observed with $Me_3CC \equiv CH$ (eq 4), or it may be competitive with reductive coupling as observed with propyne (eq 2). Isomerization of the propynyl ethyl complex to the 3-methyltitanacyclopentene occurs under more forcing conditions, suggesting parallel pathways for the reaction of 1 and $CH_3C \equiv CH$, with 3 the

thermodynamically favored product (Scheme II).

Rapid reductive coupling of nitriles, acetaldehyde, and carbon dioxide with $(\eta - C_5 Me_5)_2 Ti(\eta - C_2 H_4)$ also is observed. Formation of strong Ti-N or Ti-O bonds in the fivemembered-ring products undoubtedly provides much of the driving force for these reactions. Although 1 and CH_3CN directly afford 9 by an associative pathway, the slow incorporation of ${}^{13}C_2H_4$ into the titanacycloimine ring suggests that the reductive coupling reaction is reversible and that ethylene may be lost to solution from a nitrileethylene intermediate 17, as shown in Scheme III. Such behavior is reminiscent of the reactivity of 1 with alkynes (vide supra) and suggests that the nitrile is η^2 -coordinated (17b), at least in the nitrile-ethylene adduct that couples to the titanacycloimine product.² The end-on η^1 isomer 17a is a reasonable alternative structure by analogy to η^1 -N₂ adducts of decamethyltitanocene¹¹ but appears less likely than 17b to afford 9.12

Isomerization of the metallacycloimine complexes to equilibrium mixtures of $(\eta$ -C₅Me₅)₂TiN=C(R)CH₂CH₂ and $(\eta - C_5 Me_5)_2 TiNHC(R) = CHCH_2$ occurs for $R = CH_3$ and C_2H_5 but not for $R = CMe_3$ or $p-CH_3C_6H_4$, suggesting that steric rather than electronic effects are the determining factor. The imine \rightleftharpoons enamine tautomerization is a 1,3 hydrogen shift and thus a symmetry-forbidden reaction. Such tautomerizations are, however, commonly catalyzed by even traces of acid or base.¹³ Significantly, the results of the crossover experiment (Table III) indicate that the $9 \rightleftharpoons 10$ isomerization occurs intramolecularly. Although there is little additional evidence that bears directly on the mechanism of this transformation, we believe the observations are best accomodated by a sequence involving intramolecular, titanium-mediated, reversible hydrogen eliminations from the β -methylene carbon of the

⁽⁹⁾ Similar behavior has been reported for Ta(olefin) complexes: Smith, G.; Schrock, R. R.; Churchill, M. R.; Youngs, W. I. Inorg. Chem. 1981, 20, 387-98.

^{(10) (}a) Sonogashira, K.; Hagihara, N. Bull. Chem. Soc. Jpn. 1966, 39, 1178-82.
(b) Mattia, J.; Sikora, D. J.; Macomber, D. W.; Rausch, M. D; Hickey, J. P.; Friesen, G. D.; Todd, L. J. J. Organomet. Chem. 1981, 213, 441-50 and references therein. (c) Demerseman, B.; Dixneuf, P. H. J. Chem. Soc. Chem. Commun. 1981, 665-6.

⁽¹¹⁾ Sanner, R. D.; Duggan, D. M.; McKenzie, T. C.; Marsh, R. E. Bercaw, J. E. J. Am. Chem. Soc. 1976, 98, 8358-65.

^{(12) (}a) Reversible oxidative coupling of two nitriles by $(\eta$ -C₅Me₅)Zr^{II} has been found to be facile. (b) Wolczanski, P. T. Ph.D. Dissertation, California Institute of Technology, 1981. (13) (a) Lowry, T. H., Richardson, K. S. "Mechanism and Theory in

^{(13) (}a) Lowry, T. H., Richardson, K. S. "Mechanism and Theory in Organic Chemistry"; Harper Row: New York, 1976. (b) March, J. "Advanced Organic Chemistry"; McGraw-Hill: New York, 1977. (c) Dykes, S. F. "The Chemistry of Enamines"; University Press: Cambridge, 1973.

imine and from the α -nitrogen of the enamine (Scheme IV).¹⁴

Experimental Section

General Considerations. All manipulations were performed by using glovebox or high vacuum line techniques. Argon, nitrogen, and hydrogen were purified by passage over MnO on vermiculite and activated Linde 4Å molecular sieves. Solvents were purified by vacuum transfer, first from LiAlH₄ and then "titanocene".⁶ Benzene- d_{6} , cyclohexane- d_{12} , and toluene- d_8 (Aldrich, Stohler) were dried over molecular sieves and vacuum transferred from "titanocene". Propyne, 2-butyne, 2-pentyne, 3,3-dimethyl-1-butyne (all Farchan), ethylene, allene, and acetaldehyde were freeze-pump-thaw degassed at -196 °C. Methyl iodide, CD₃CN (99% D, Kor), ¹³CH₃CN (90% ¹³C, Stohler), and all other nitriles were vacuum transferred from CaH₂. Acetonitrile- $1^{-13}C$ and $CH_3C^{15}N$ were prepared by addition of methyl iodide to a toluene solution containing 18-crown-6 and Na¹³CN (91.5% ¹³C, Prochem) or KC¹⁵N (99% ¹⁵N, Koch), respectively.¹⁷ Carbon dioxide and carbon monoxide were used directly from the cylinder. Ethylene-¹³C₂ (90% ¹³C, Merck, Sharp, and Dohme) and ethylene- d_4 (98% D, Stohler) were freeze-pump-thaw degassed at -196 °C and distilled at -78 °C. Acetone and 1phenylpropyne were distilled from molecular sieves; diphenylacetylene was recrystallized from diethyl ether. [(ŋ- $C_5, Me_5)_2 Ti]_2(\mu - N_2), (\eta - C_5 Me_5)_2 Ti(\eta - C_2 H_4), (\eta - C_5 Me_5)_2 Ti(\eta -$ ${}^{13}\! \mathring{C}_2 H_4), {}^1$ and $(\eta - C_5 Me_5)_2 Ti(\eta - C_2 D_4)^1$ were prepared by previously reported methods.

Proton, ²H, and ¹³C NMR spectra were recorded by using Varian EM-390, JEOL FX90Q and Bruker WM-500 spectrometers. Spectra were taken in benzene or toluene solutions, and data are referenced to Me₄Si at δ 0. Infrared spectra were obtained by using a Beckman 4240 spectrophotometer. Spectra of solids were recorded as Nujol mulls using KBr plates; spectra of gases were measured by using a 10-cm path-length cell (NaCl windows) fitted with a stopcock and ball joint for attachment to the vacuum line. Molecular weights were determined cryoscopically or by vapor-phase osmometry. Elemental analyses were performed by Alfred Bernhardt Analytical Laboratories, Germany.

Procedure. A majority of the experiments were performed by procedures similar to those detailed for 9. Isolated yields are generally reduced from those observed spectroscopically due to the high solubility of the compounds. ¹H and ¹³C NMR data are found in Tables I and II, respectively.¹⁸

 $(\eta$ -C₅Me₅)₂TiCH=C(CH₃)CH₂CH₂ (3) and $(\eta$ -C₅Me₅)₂Ti-(C=CCH₃)(C₂H₅) (4). Toluene (10 mL) and propyne (2.0 mmol) were condensed into a flask containing 1 (700 mg, 2.02 mmol). The solution was warmed to 25 °C and stirred overnight. Volatiles were removed in vacuo, and the red-orange residue was recrystallized from octane to yield an 80:20 mixture of 3 and 4. Samples

(16) (a) Erker, G.; Engel, K.; Kruger, C.; Muller, G. Organometallics 1984, 3, 128-33 and references therein. (b) Yasuda, H.; Kajihara, Y.; Mashima, K; Nagasuna, K.; Lee, K.; Nakamura, A. Organometallics 1982, 1, 388-96.

(17) Cook, F. L.; Bowers, C. W.; Liotta, C. L. J. Org. Chem. 1974, 39, 3416-18.

left in solution contained no 4 (¹H NMR) after several days while the concentration of 3 increased proportionally vs. an internal standard. Isolated yield of 3: 450 mg (58%); IR 2725 (w), 1587 (m), 1495 (m), 1312 (w), 1023 (s), 400 (s), cm⁻¹. Anal. Calcd for $C_{25}H_{38}$ Ti: C, 77.70; H, 9.91; Ti, 12.39; mol wt, 386. Found: C, 77.15; H, 9.87; Ti, 12.66; mol wt, 384. 4: IR 2720 (w), 2100 (s), 1115 (m), 1023 (s), 973 (s) cm⁻¹. Addition of Me₃CC=CH to 1 similarly gives (η -C₅Me₅)₂Ti(C=CCMe₃)(C₂H₅) (5) as determined by NMR.

 $(\eta$ -C₅Me₅)₂TiC(CH₃)=C(CH₃)CH₂CH₂ (6). Toluene (5 mL), 2-butyne (8 mmol), and ethylene (2 mmol) were condensed at -196 °C into a flask containing 1 (250 mg, 0.72 mmol). The mixture was warmed to 25 °C and stirred 12 h. Volatiles were removed under vacuum at 0 °C to yield a crude red-orange solid which was recrystallized from petroleum ether: yield (two crops) 200 mg (70%); IR 2795 (w), 2720 (w), 1580 (m), 1492 (m), 1020 (s), 590 (w) cm⁻¹. Anal. Calcd for C₂₈H₄₀Ti: C, 77.97; H, 10.07; Ti, 11.96; mol wt, 401. Found: C, 77.75; H, 9.94; Ti, 11.85; mol wt, 386.

 $(\eta$ -C₅Me₅)₂TiN=C(CH₃)CH₂CH₂ (9). Toluene-d₈ (0.3 mL) and CH₃CN (0.073 mmol) were condensed at -196 °C into an NMR tube containing 1 (0.069 mmol). The mixture was warmed to -78 °C and the reaction monitored by ¹H and ¹³C NMR between -70 and 30 °C.

Petroleum ether (7 mL) and acetonitrile (0.88 mmol) were condensed at -196 °C into a 10-mL flask containing 1 (230 mg, 0.66 mmol). The mixture was warmed to -40 °C, stirred 30 min, and then cooled to -78 °C. The slurry of red-orange crystals was filtered and dried below –30 °C, affording 160 mg of 9 (62%): IR (from sample containing 9 and 10) 3370 (w), 2725 (w), 1638 (s), 1571 (m), 1280 (m), 1148 (m), 1020 (s), 645 (s), 617 (s) 595 (s), 517 (s) cm⁻¹. Similar procedures were employed for the isolation of $(\eta - C_5 Me_5)_2 TiN = C(C_2 H_5) CH_2 CH_2$ (11), $(\eta - C_5 Me_5)_2 TiN = C$ - $(CMe_3)CH_2\dot{C}H_2$ (12) and $(\eta$ -C₅Me₅)₂ $\dot{T}iN$ =C(C₆H₄CH₃)CH₂ $\dot{C}H_2$ (13). 11: yield 86%; IR 2722 (w), 1640 (s), 1278 (s), 1100 (s), 1020 (s), 942 (m), 663 (s), 510 (s) cm⁻¹. Anal. Calcd for $C_{25}H_{39}NTi$: C, 74.79; H, 9.79; N, 3.49; Ti, 11.93; mol wt, 401. Found: C, 74.64; H, 9.85; N, 3.31; Ti, 12.05; mol wt, 390. 12: yield 56%: IR 1620 (s), 1283 (w), 1055 (m), 1020 (m), 950 (m), 635 (m) cm⁻¹. Anal. Calcd for C₂₇H₄₃NTi: C, 75.50; H, 10.09; N, 3.26; Ti, 11.15. Found: C, 74.84; H, 9.97; N, 3.52; Ti, 11.30. 13: yield 28%; IR 2725 (w), 1680 (s), 1555 (w), 1215 (s), 1022 (s), 830 (s), 455 (m) cm⁻¹. Anal. Calcd for $C_{30}H_{41}NTi:$ C, 77.73; H, 8.92; N, 3.02; mol wt, 464. Found: C, 77.64; H, 8.70; N, 3.21; mol wt, 439.

 $(\eta$ -C₅Me₅)₂TiOC(O)CH₂CH₂ (15). Carbon dioxide (1.07 mmol) was added to a stirred solution of 1 (360 mg, 1.04 mmol) in 10 mL of toluene at -78 °C. The reaction was allowed to proceed 15 min at -78 °C, and then the mixture was warmed to 25 °C. The toluene and excess CO₂ were removed under vacuum, and the resulting red solid was recrystallized from cold petroleum ether to give 325 mg (80%) pure 15. IR 1657 (vs), 1277 (s), 1250 (s), 1219 (m), 1020 (m), 895 (s), 860 (m), 421 (s), 380 (s) cm⁻¹. Anal. Calcd for C₂₃H₃₄TiO₂: C, 70.76; H, 8.78; Ti, 12.27; mol wt, 390. Found: C, 70.31; H, 8.81; Ti, 12.15; mol wt, 386.

 $(\eta - C_5 Me_5)_2 TiOCH(CH_3)CH_2 CH_2$ (16). Following the same procedure as that used for 15, the red-orange, very soluble 16 was isolated in 31% yield: IR 2722 (w), 1363 (m), 1320 (m), 1217 (m), 1115 (m), 1080 (s), 1020 (m), 1002 (m), 903 (s), 830 (m), 582 (s) cm⁻¹. Anal. Calcd for $C_{24}H_{38}$ TiO: C, 73.83; H, 9.81; Ti, 12.27. Found: C, 73.40; H, 9.93; Ti; 12.79.

Carbonylation of 6. Benzene- d_6 (0.5 mL) was condensed at -196 °C into a thick-walled glass vessel containing 6 (45 mg, 0.13 mmol). Carbon monoxide (10 mmol) was added, and the contents were heated and stirred at 80 °C for 48 h. The excess CO was removed by three freeze-pump-thaw cycles at -196 °C; then the benzene- d_6 and any volatiles were vacuum transferred at 25 °C into an NMR tube and found to contain a trace of 2,3-dimethylcyclopent-2-enone. The contents of the glass vessel were identified as $(\eta$ -C₅Me₅)₂Ti(CO)₂ and 2,3-dimethylcyclopent-2-enone by ¹H NMR and IR.^{6,7}

Acknowledgment. This work has been supported by the National Science Foundation (Grant No. CHE-

⁽¹⁴⁾ Contributions by the $\text{Ti}^{II}(\eta^4\text{-azabutadiene})$ (19b) or the Ti^{IV} -($\sigma^2,\pi\text{-metallacyclopent-3-enamine})$ (19a) resonance structures may impart to the titanacycloenamine 10 a nonplanar ring geometry similar to those found for group 4 metallocene dithiolene¹⁵ and butadiene¹⁶ complexes, thereby providing a plausible rational for the influence of the imine \rightleftharpoons enamine equilibrium by steric interactions between the C_5Me_5 rings and the seemingly remote alkyl or aryl substituent R. In this connection it is noteworthy that a single resonance for the $[\eta\text{-}C_5Me_5]$ ligands of 10 is observed even at 0 °C.^{15,16}

^{(15) (}a) Kutoglu, A. Z. Anorg. Allg. Chem. 1972, 390, 195-209. (b)
Kutoglu, A. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
1973, B29, 2891-97. (c) Kopf, H. Angew. Chem., Int. Ed. Engl. 1971, 10,
134-5. (d) Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc. 1976, 98,
1729-42 and references therein.

^{(18) (}a) Wenkert, E.; Cochran, D. W.; Hagaman, E. W.; Schell, F. M.; Neuss, N.; Katner, A. S.; Potier, P.; Kan, D.; Plat, M.; Koch, M.; Mehri, H.; Poisson, J.; Kunesch, N.; Rolland, Y. J. Am. Chem. Soc. 1973, 95, 4990–95. (b) Shamma, M.; Hindenlang, D. M.; Ed. "Carbon Thirteen NMR Shift Assignments of Amines and Alkaloids", Plenum Press: New York, 1978, and references therein. (c) Levy, G. C.; Lichter, R. L.; Nelson, G. L. "Carbon-13 Nuclear Magnetic Resonance Spectroscopy", 2nd ed.; Wiley, New York, 1980, and references therein.

8303735). We also acknowledge use of the Southern California Regional NMR Facility and the support of NSF Grant CHE-7916324A1.

Registry No. 1, 83314-27-6; 3, 95865-15-9; 4, 95865-16-0; 5, 95865-17-1; 6, 95865-18-2; 7, 95865-19-3; 8, 95865-20-6; 9, 95865-21-7; 9- d_3 , 95865-22-8; 9- $^{13}C_2$, 95865-23-9; 9- ^{15}N , d_4 , 95865-24-0; 10, 95865-25-1; 10-d₃, 95892-03-8; 10-13C₂, 95865-26-2; 10- $^{15}N, d_4, 95865-27-3; 11, 95865-28-4; 12, 95865-29-5; 13, 95865-30-8;$ 14, 95865-31-9; 15, 95865-32-0; 16, 95892-04-9; (n-C5Me5)2Ti(CO)2, 11136-40-6; $(\eta - C_5 Me_5)_2 Ti(\eta - CH_3 C = CCH_2 CH_3)$, 95892-05-0; $(\eta - C_5 Me_5)_2 Ti(\eta - CH_3 C = C(CH_2)_4 CH_3)$, 95865-33-1; $(\eta - C_5 Me_5)_2 Ti(\eta - CH_3 C = C(CH_2)_4 CH_3)$, 95865-33-1; $(\eta - C_5 Me_5)_2 Ti(\eta - CH_3 C = C(CH_2)_4 CH_3)$, 95865-33-1; $(\eta - C_5 Me_5)_2 Ti(\eta - CH_3 C = C(CH_2)_4 CH_3)$, 95865-33-1; $(\eta - C_5 Me_5)_2 Ti(\eta - CH_3 C = C(CH_2)_4 CH_3)$, 95865-33-1; $(\eta - C_5 Me_5)_2 Ti(\eta - CH_3 C = C(CH_2)_4 CH_3)$, 95865-33-1; $(\eta - C_5 Me_5)_2 Ti(\eta - CH_3 C = C(CH_2)_4 CH_3)$, 95865-33-1; $(\eta - C_5 Me_5)_2 Ti(\eta - CH_3 C = C(CH_2)_4 CH_3)$, 95865-33-1; $(\eta - C_5 Me_5)_2 Ti(\eta - CH_3 C = C(CH_2)_4 CH_3)$, 95865-33-1; $(\eta - C_5 Me_5)_2 Ti(\eta - CH_3 C = C(CH_2)_4 CH_3)$, 95865-33-1; $(\eta - C_5 Me_5)_2 Ti(\eta - CH_3 C = C(CH_2)_4 CH_3)$, 95865-33-1; $(\eta - C_5 Me_5)_2 Ti(\eta - CH_3 C = C(CH_2)_4 CH_3)$, 95865-33-1; $(\eta - C_5 Me_5)_2 Ti(\eta - CH_3 C = C(CH_2)_4 CH_3)$, 95865-33-1; $(\eta - C_5 Me_5)_2 Ti(\eta - CH_3 C = C(CH_2)_4 CH_3)$, 95865-33-1; $(\eta - C_5 Me_5)_2 Ti(\eta - C_5 Me_$ $CH_3C \equiv CPh), 95865-34-2; (\eta - C_5Me_5)_2 TiC(CH_3) = C(CH_2CH_3) - C(CH_3CH_3) - C($ CH_2CH_2 , 95865-35-3; $(\eta - C_5Me_5)_2Ti(C(CH_2CH_3) = C(CH_3) - C(CH_3))$ $\overline{CH_2CH_2}$, 95865-36-4; $(\eta - C_5Me_5)_2 \overline{TiC(CH_3)} = C[(CH_2)_4CH_3)$ - CH_2CH_2 , 95865-37-5; $(\eta - C_5Me_5)_2TiC((CH_2)_4CH_3) = C(CH_3)$ -

 CH_2CH_2 , 95865-38-6; $(\eta - C_5Me_5)_2TiC(CH_3) = C(Ph)CH_2CH_2$, 95865-39-7; $(\eta$ -C₅Me₅)₂TiC(Ph)=C(CH₃)CH₂CH₂, 95892-06-1; $(\eta - C_5 Me_5)_2 TiO(CH_3)_2 CCH_2 CH_2$, 95865-40-0; $[(\eta - C_5 Me_5)_2 Ti]_2 (\mu - N_2)$, 11136-46-2; CO₂, 124-38-9; CO, 630-08-0; Me₃CC==CH, 917-92-0; CH₃CN, 75-05-8; CD₃CN, 2206-26-0; ¹³CH₂¹³CH₂, 51915-19-6; propyne, 74-99-7; 2-butyne, 503-17-3; ethylene, 74-85-1; allene, 463-49-0; diphenylacetylene, 501-65-5; 2-pentyne, 627-21-4; 2-octyne, 2809-67-8; 1-phenylpropyne, 673-32-5; propionitrile, 107-12-0; 2,2-dimethylpropionitrile, 630-18-2; p-tolunitrile, 104-85-8; acetaldehyde, 75-07-0; acetone, 67-64-1; 2,3-dimethylcyclopent-2-enone, 1121-05-7.

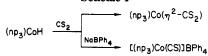
Supplementary Material Available: Spectroscopic data for $(\eta - C_5 Me_5)_2 Ti(\eta - CH_3 C \equiv CR)$ and the corresponding isomeric metallacyclopentenes, where $R = C_2H_5$, $CH_2(CH_2)CH_3$, and Ph (2 pages). Ordering information is given any current masthead page.

Effects of the Conformational Rearrangement of the (np₃)M Fragment in the Course of the Reaction between (np₃)MH Hydrides $[M = Co, Rh; np_3 = N(CH_2CH_2PPh_2)_3]$ and **Carbon Disulfide**

Claudio Bianchini,* Dante Masi, Carlo Mealli,* Andrea Meli, and Michal Sabat

Istituto per lo Studio della Stereochimica ed Energetica dei Composti di Coordinazione, C.N.R., 50132 Firenze, Italy

Received June 25, 1984


The reactivity of the complex $(np_3)RhH$ toward CS_2 has been investigated. Depending on the presence or absence of NaBPh₄ in the reaction mixture, two different compounds are obtained: $[(np_3)Rh(\eta^2 - CS_2)]BPh_4 \cdot 0.5C_2H_5OH$ and $(np_3)Rh(S_2CH)$. In contrast to the rhodium hydride, the cobalt analogue is reported to yield $[(np_3)Co(CS)]BPh_4$ and $(np_3)Co(\eta^2 - CS_2)$. An indirect way of obtaining a stable rhodium analogue of the cobalt thiocarbonyl complex is presented. The structure of the Rh(I)- η^2 -CS₂ complex has been determined by X-ray diffraction analysis in order to compare its stereochemical features with those of the Co(0) analogue: a = 19.134 (3) Å, b = 17.061 (3) Å, c = 9.111 (1) Å, $\alpha = 83.95$ (2)°, $\beta = 79.70$ (1)°, $\gamma = 84.46$ (1)°, triclinic, $P\bar{I}, Z = 2$. In the complex cation the (np₃)M fragment distorts from the common $C_{3\nu}$ symmetry by accommodating two phosphorus atoms in trans axial positions of an octahedron; the nitrogen and the third phosphorus atoms lie cis to each other in the equatorial plane. This arrangement corresponds to the shape of typical L₄M fragments with $C_{2\nu}$ symmetry where d⁸ metal fragments of this type are supportive of η^2 -CS₂ coordination. Although the four different products obtainable from the reaction of the cobalt and rhodium hydrides with CS_2 indicate multiple-reaction pathways, there is enough evidence that these may be caused by the ease of the rearrangement of the $(np_3)M$ fragment and by the amphoteric nature of the (np₃)MH hydrides. This paper, by referring to a series of experimental and theoretical observations for complexes containing the (np₃)M fragment, offers suggestions as to how one can interpret major, different trends of the reactivity. Qualitative MO arguments, supported in some cases by EHMO calculations, are used to check whether the existence of the proposed key intermediates is allowed or not.

Introduction

In a recent paper we described CS_2 chemistry of a reactive metal hydride, namely, the complex (np₃)CoH, 1 $[np_3 = tris(2-(diphenylphosphino)ethyl)amine].^1$ Depending on the presence of NaBPh₄ in the reaction mixture, two different products can be obtained: (i) a para-

2

magnetic cobalt(0) complex, $(np_3)Co(\eta^2-CS_2)$, which was assigned the structure 2; (ii) a cobalt(I) thiocarbonyl complex, $[(np_3)Co(CS)]BPh_4$, 3, as shown in Scheme I.

The unique bonding capabilities of the ligand np₃ must play an important role in determining the different reactivities of $(np_3)CoH$. In effect, the ligand envelopes the metal in different modes that ultimately affect the mobility of hydrogen over the coordination sphere and hence the different modes of rupture of the M-H linkage.^{2,3} This

⁽¹⁾ Bianchini, C.; Meli, A.; Scapacci, G. Organometallics 1983, 2, 1834.

⁽²⁾ Bianchini, C.; Masi, D.; Mealli, C.; Meli, A.; Sabat, M.; Scapacci, G. J. Organomet. Chem. 1984, 273, 91.