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ABSTRACT: Herein, we report a novel method for synthesizing
diaryl selenides from aryl benzyl selenides and aryl bromides via
debenzylative cross-coupling with a Pd/NIXANTPHOS-catalyst.
NIXANTPHOS outperformed other commonly used bi- and
monodentate ligands examined in this novel transformation. This
reaction system displays wide functional group tolerance and
excellent substrate scope. The transformation broadens the scope of
palladium-catalyzed debenzylative processes to use selenolate anions
as a leaving group. Its potential for practical synthetic applications
was demonstrated with the gram scale synthesis of 4-chlorophenyl phenyl selenide.

■ INTRODUCTION

Diaryl selenides constitute an important molecular scaffold
with wide applications in natural products, agrochemicals,
materials chemistry, and pharmaceutical sciences.1 Recently,
diaryl selenides have also been employed as ligands in
transition metal complexes with efficient catalytic activity.2

Due to the practical applications of diaryl selenides and other
selenium-containing compounds, their synthesis has attracted
great attention and interest.3

Transition metal-catalyzed cross-coupling reactions are the
most efficient methods for constructing C−Se bonds in diaryl
selenides.4 These reactions fall mainly into five categories
based on the selenium source employed and the reaction
mechanism (Scheme 1): (1) transition metal-catalyzed C−Se
cross-coupling of phenyl selenol or selenoate with aryl halides;5

(2) transition metal-catalyzed cross-coupling of aryl halides
with diaryl diselenides;6 (3) transition metal-catalyzed cross-
coupling of arylboronic acids with diaryl diselenides;7 (4)
transition metal-catalyzed cross-coupling of phenyl tributyl-
stannyl selenides with aryl halides;8 (5) or copper-catalyzed
cross-coupling of arylselenyl halides with arylboronic acids.9

These reactions have a number of shortcomings. For example,
areneselenols are unstable starting materials that often have
unpleasant odors, exhibit a narrow substrate scope, which has
been attributed to difficulties in purification of diselenides, or
use toxic selenium reagents. Stannyl selenides are also toxic
and, therefore, not suitable for large-scale reactions. In order to
circumvent some of these drawbacks, it is necessary to explore
less traditional approaches that employ more benign organo-
selenium reagents that can be activated by transition metal-
catalysts, ultimately leading to C−Se bond formation.10

Recently, our group initiated studies to arylate sulfenate and
thiolate anions via a palladium-catalyzed debenzylative cross-
coupling strategy (Scheme 2, eq 1).11 During our studies of
these Pd-catalyzed transformations, we found that van
Leeuwen’s NIXANTPHOS ligand significantly outperformed
other electronically and sterically diverse mono- and bidentate
phosphines. It is known that aryl thiolate anions and aryl
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Scheme 1. Transition Metal-Catalyzed Diaryl selenide
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selenolate anions exhibit different reactivity, making it
important to study both the chemistry of organosulfur and
selenium compounds.4b,11h,12 Thus, we decided to examine the
reactivity of aryl benzyl selenides in the debenzylative cross-
coupling reaction. Herein, we disclose the Pd/NIXANT-
PHOS-catalyzed debenzylative cross-coupling of aryl benzyl
selenides with aryl bromides to generate a diverse array of
diaryl selenides (Scheme 2, eq 2).

■ RESULTS AND DISCUSSION
Preliminary Reaction Optimization. To begin optimi-

zation of the debenzylative cross-coupling process with phenyl
benzyl selenide 1a and 4-tert-butyl bromobenzene 2a, we
examined six different bases [LiN(SiMe3)2, NaN(SiMe3)2,
KN(SiMe3)2, KOtBu, NaOtBu, and LiOtBu] using Pd(dba)2/
NIXANTPHOS to generate the catalyst in tetrahydrofuran
(THF) at 85 °C for 12 h (Table 1, entries 1−6). This screen
identified LiN(SiMe3)2 as the lead hit, affording the desired
diaryl selenide 3a in 80% yield, along with the symmetric
byproducts 3d (6%) and 4a (8%). These products likely arise
from Se−C bond metathesis, as described by Morandi and co-

workers.3d It is noteworthy that in the same reaction of the
sulfur analogues no symmetrical diaryl sulfides were detected.
These findings highlight the differences in reactivity between
sulfur and selenium substrates in these reactions.11f Other
bases either afforded low yields of 3a (Table 1, entries 2−4) or
did not promote the debenzylative cross-coupling process at all
(Table 1, entries 5 and 6). We propose that symmetrical diaryl
selenide formation is initiated by oxidative addition of the
target product 3a to the palladium catalyst3d,13,6i followed by
selenolate exchange.
We next screened three different ethereal solvents [CPME

(cyclopentyl methyl ether), 1,4-dioxane and DME (dimethoxy-
ethane)] under the conditions of entry 1. Unfortunately, these
solvents furnished low yields of 3a (Table 1, entries 7−9).
Based on the solvent screening, THF was identified as the best
solvent and was used going forward.
A series of mono- and bidentate phosphines were then

tested in the debenzylative cross-coupling process under the
conditions of entry 1, and NIXANTPHOS was identified as
the most effective (see Supporting Information (SI) for full
results). Since palladium sources also can impact reactivity in
debenzylative cross-coupling transformations,11d,f,g we tested
several palladium precursors besides Pd(dba)2, including
Pd(OAc)2, Pd2(dba)3, Pd(acac)2, and [PdCl(ally)]2 (Table
1, entries 10−13). Pd(acac)2 exhibited the highest reactivity,
affording the desired product in 86% yield with slightly
decreased production of the symmetrical diaryl selenide
byproducts (Table 1, entry 12). When the palladium loading
was reduced to 2.5%, the yield of 3a dropped to 58% (Table 1,
entries 12 vs 14). Therefore, the best result was obtained with
1 equiv of benzyl phenyl selenide (1a), 3 equiv of aryl bromide
2a, 2 equiv of LiN(SiMe3)2, 5 mol % Pd(acac)2, and 7.5 mol %
NIXANTPHOS in THF at 85 °C for 12 h. It is noteworthy
that the catalytic system developed herein is different from our
previous reactions with the sulfur analogs [Pd(acac)2 vs
Pd(dba)2, NaN(SiMe3)2 vs LiN(SiMe3)2, THF vs CPME].11f

Scope of Aryl Bromides. With the optimized conditions
in hand, we next tested the scope of aryl bromides with phenyl
benzyl selenide 1a (Table 2). In general, the transformation
tolerated a broad range of substitution patterns. Aryl bromides
bearing electron-donating groups, such as 4-tert-butyl

Scheme 2. Palladium-Catalyzed Debenzylative Arylations
with Aryl Bromides

Table 1. Optimization of the Reaction Conditionsa

yield (%)a

entry Pd source base solvent 3a 3d 4a

1 Pd(dba)2 LiN(SiMe3)2 THF 80 6 8
2 Pd(dba)2 NaN(SiMe3)2 THF 69 8 18
3 Pd(dba)2 KN(SiMe3)2 THF 70 8 20
4 Pd(dba)2 KOtBu THF 51 2 8
5 Pd(dba)2 NaOtBu THF 0 0 0
6 Pd(dba)2 LiOtBu THF 0 0 0
7 Pd(dba)2 LiN(SiMe3)2 CPME 12 1 1
8 Pd(dba)2 LiN(SiMe3)2 dioxane 20 1 1
9 Pd(dba)2 LiN(SiMe3)2 DME 68 7 10
10 Pd(OAc)2 LiN(SiMe3)2 THF 69 6 8
11 Pd2(dba)3 LiN(SiMe3)2 THF 83 6 8
12 Pd(acac)2 LiN(SiMe3)2 THF 86 2 5
13 [PdCl(ally)]2 LiN(SiMe3)2 THF 80 8 11
14b Pd(acac)2 LiN(SiMe3)2 THF 58 1 3

aYields determined by GC analysis of crude mixtures with n-dodecane
as internal standard. b2.5 mol % catalyst was used.

Table 2. Substrate Scope of Aryl Bromidesa,b

aReactions performed on a 0.1 mmol scale. bIsolated yield after
chromatographic purification. c3 equiv of aryl bromide and 4 equiv of
base. d10 mol % catalyst.
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bromobenzene 2a, 4-bromotoluene 2b, and 4-bromoanisole 2c
exhibited very good reactivity, giving the desired products 3a−
3c in 79−86% yields. The parent phenyl bromide was an
excellent substrate, affording 3d in 95% yield. Aryl bromides
containing electron withdrawing groups, such as 4-chloro (2e),
and 4-trifluoromethyl (2f), also exhibited excellent reactivity,
affording both 3e and 3f in 90% yield. Aryl bromides with
meta-substituents, such as 1-bromo-3-trifluoromethylbenzene
2g and 3-bromotoluene 2h produced the corresponding
products in 61 and 90% yield, respectively, whereas ortho-
substituted 1-bromo-2-chlorobenzene gave 3i in 94% yield. It
is noteworthy that the chloro substituent in this coupling
partner did not participate in the debenzylative transformation.
More sterically hindered 1-naphthyl bromide 2j coupled with
1a to afford the product 3j in 80% yield. Diaryl selenides
containing indole and pyridine also could be prepared under
our conditions, as exemplified by generation of 3k and 3l in 80
and 60% yields, respectively.
Scope of Aryl Benzyl Selenides. Next, we turned our

attention to the scope of aryl benzyl selenides (Table 3). Aryl

benzyl selenides bearing electron-donating groups such as 4-
methyl (1b), 4-methoxy (1c), 4-tert-butyl (1d), and 4-N,N-
dimethylamino (1e) consistently exhibited very good reac-
tivity, giving the target products 3b, 3c, 3a, and 3m in 72−89%
yields. Aryl benzyl selenides containing electron-withdrawing
groups were also good coupling partners. 4-Fluorophenyl
benzyl selenide 1f and 4-trifluoromethylphenyl benzyl selenide
1g afforded the corresponding products in 80 and 70% isolated
yields, respectively. Meta-substituted 3-trifluoromethylphenyl
benzyl selenide 1h gave the desired product in 65% yield.
More sterically hindered 2-tolyl (1i) and 1-naphthyl (1j)
benzyl selenides furnished the products in 81 and 64% yield,
respectively, and heterocyclic selenide 3k could be obtained in
86% yield.
Gram Scale Reaction. To demonstrate the potential utility

of this transformation, a gram scale synthesis of 4-chlorophenyl
phenyl selenide 3e was performed using phenyl benzyl selenide
1a and 1-bromo-4-chlorobenzene 2e as coupling partners. The
product, which was obtained in 89% yield under our reaction
conditions (Scheme 3), provides a readily available handle for
further functionalization and elaboration via additional
coupling reactions.

Proposed Mechanism. We next explored the reaction
pathway. In this debenzylative transformation, the Pd/
NIXANTPHOS catalyst mediates multiple reactions including
C(sp3)−Se bond cleavage and C(sp2)−Se bond-formation.
Based on the experiments outlined below, and our past work
with the sulfur analogues, three interdependent Pd-catalyzed
reactions are proposed (Figure 1).11f Cycle A is the palladium-
catalyzed deprotonative cross-coupling process (DCCP) of
aryl benzyl selenides with aryl bromides. We have previously
demonstrated that aryl benzyl selenides can be reversibly
deprotonated by silyl amide bases to generate the carbanion
II.12a Compound II undergoes transmetalation with
(NIXANTPHOS)Pd(Ar3)(Br) (III) to generate IV, which is
proposed to undergo reductive elimination to form V.
When the coupling in Scheme 4, eq 1 was conducted under

the standard conditions, but quenched after 15 min, trace
intermediate 5e was observed by 1H NMR. The structure of
compound 5e was verified by independent synthesis (see SI).
We envisioned that the intermediate 5e quickly undergoes
palladium-catalyzed C−Se bond cleavage via an η3-π-benzyl-
palladium intermediate (VII, cycle B). To explore the viability
of 5e in the catalytic cycle, independently synthesized 5e was
heated under the standard coupling conditions. After only 15
min, diaryl selenide 3e was obtained in 79% yield, along with
traces of the symmetric products 3d and 4e (Scheme 4, eq 2).
These results indicate that 5e is a viable intermediate in this
transformation. Unfortunately, we did not detect the proposed
diarylmethyl amine product, Ar2Ar3CHNH2, which we
expected to be formed on reaction workup. We were also
not able to trap this product by addition of benzoyl chloride
after hydrolysis to generate the amide. Use of LDA was
envisioned to provide a more stable product, Ar2Ar3CHN(i-
Pr)2. Unfortunately, the debenzylative cross-coupling reaction
was not promoted upon substituting LiN(SiMe3)2 by LDA.
In cycle C (Figure 1), the selenolate anion generated from

cycle B underwent palladium-catalyzed arylation to form the
observed diaryl selenide. We have previously characterized
PhSeK•18-crown-6.12a In cycle C, we propose PhSeLi
undergoes transmetalation with (NIXANTPHOS)Pd(Ar3)-
(Br) (III) to form the prereductive elimination complex XI.
Reductive elimination forms the Se−C bond of the product
and regenerates Pd(0). This mechanism is consistent with our
prior palladium catalyzed debenzylative cross-coupling with
aryl benzyl sulfides.11f

■ CONCLUSIONS
In summary, a method for the synthesis of diaryl selenides by
coupling aryl benzyl selenides with aryl bromides via a
palladium-catalyzed debenzylative process has been developed.
One advantage of this approach is the in situ generation of the
highly reactive aryl selenolate using simple benzyl as a mask to
avoid employing areneselenol and aryl tributylstannyl selenide.
A wide range of electron-donating and withdrawing aryl
substrates, including heterocycles, are well tolerated in our
reaction system. The practical synthetic value of this method

Table 3. Substrate Scope of Aryl Benzyl Selenidesa,b

aReactions performed on a 0.1 mmol scale. bIsolated yield after
chromatographic purification.

Scheme 3. Gram Scale Synthesis of 4-Chlorophenyl Phenyl
Selenide
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has been demonstrated with a gram scale reaction. This
transformation also enlarges the scope of transition-metal-
catalyzed debenzylative process using selenolate anion as a
leaving group.
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