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ABSTRACT: Utilization of renewable biomass to partly replace the fossil resources in industrial 10 

applications has attracted attention due to the limited fossil feedstock with the increased 11 

environmental concerns. This work introduced a modified Wacker-type oxidation for 12 

transformation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, in 13 

which Cu2+ cation was replaced with common non-redox metal ions, that is, a novel Pd(II)/Lewis 14 

acid (LA) catalyst. It was found that adding non-redox metal ions can effectively promote Pd(II)-15 

catalyzed oxidation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, 16 

even much better than Cu2+, and the promotional effect is highly dependent on the Lewis acidity 17 

of added non-redox metal ions. The improved catalytic efficiency is attributed to the formation 18 

of hetero-bimetallic Pd(II)/LA species, and the oxidation mechanism of this Pd(II)/LA catalyst is 19 

also briefly discussed. 20 
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INTRODUCTION 23 

With the rapid depletion of fossil feedstock, the exploitation of renewable biomass to partly 24 

replace the fossil resources as the carbon source for chemical industry has attracted much 25 

attention.1,2 One classic example is the extensive addition of biofuel in gasoline, in which biofuel 26 

is produced through transesterification of plant oils with methanol to the corresponding methyl 27 

esters.3 Because of the renewable availability and biodegradability, not only utilization as 28 

biofuel, these plant oils, for example, vegetable oils have also been employed in the preparation 29 

of drying oils for paints and coatings after transformation to conjugated derivatives,4-6 and 30 

employed as the monomer of biopolymers after epoxidation.7-10 Because of the unsaturated C=C 31 

bond in plant oils, utilization of unmodified vegetable oils as lubricants generally faces the aging 32 

challenge. Accordingly, elimination of the C=C double bond through ketonization or formation 33 

of chloro alkyoxy derivatives was reported to improve the quality of vegetable oil based 34 

lubricants.11,12  35 

While transesterification, isomerization and epoxidation of versatile vegetable oils have been 36 

widely investigated and partly applied in industry, the studies on ketonization of unsaturated 37 

fatty acids and their derivatives are very limited until now. In literature, Sels and coworkers 13 38 

reported a nitrous oxide based oxidation of unsaturated fatty acid esters and triacylglycerol 39 

mixtures to the keto fatty esters in the absence of solvent and metal ion catalyst; Knothe 14 also 40 

developed the synthesis of long-chain 1,2-dioxo methyl esters of monounsaturated fatty acid 41 

with potassium permanganate as oxidant. As a well-known protocol for olefin oxidation, 42 

Wacker-type oxidation with Pd(II) catalysts has also been reported in oxidizing unsaturated fatty 43 

acid and its derivatives to the keto fatty acid and other derivatives with CuCl, or benzoquinone as 44 

co-catalysts.15-17  45 
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For the Wacker-type oxidations, Hosokawa et al. 18,19 even isolated a few palladium-copper 46 

hetero-bimetallic complexes which are active for olefin oxidations. Most recently, we 47 

unexpectedly found that adding certain non-redox metal ions like Sc3+ as Lewis acid can 48 

significantly accelerate Pd(II)-catalyzed olefin oxidation even better than that using Cu2+ as co-49 

catalyst.20 Similar promotional effects were also observed in Pd(II)-catalyzed olefin 50 

isomerization, olefin oxidative coupling, alkane oxidative dehydrogenation, and nitrile 51 

hydration.21-24 The promotional effect was attributed to the formation of hetero-bimetallic Pd(II)/ 52 

LA  species which serves as the key active species in above-mentioned reactions, and binding of 53 

Lewis acid to the Pd(II) species may have increased its positive net charge, thus improving its 54 

redox potential for oxidation reactions.25 This Pd(II)/LA based catalyst strategy has offered a 55 

new opportunity for versatile Pd(II)-catalyzed reactions, including traditional Wacker-type 56 

oxidations, 26,27 and related applications in biomass utilizations. Here, we report the application 57 

of this Pd(II)/LA catalyst for the valorization of vegetable oils through oxidation of unsaturated 58 

fatty acids/esters to the corresponding keto fatty acids/esters with oxygen as oxidant, and it was 59 

found that the promotional effect of Lewis acids like Sc3+ is much better than that of Cu2+ as co-60 

catalyst in this Pd(II)-catalyzed vegetable oil oxidation.  61 

MATERIALS AND METHODS 62 

Materials. All chemical reagents were commercially available and used without further 63 

purification. Sc(OTf)3: (Accela Chembio Co., Ltd., Shanghai, China). Pd(OAc)2: (Stream 64 

Chemicals Inc., Newburyport, MA). Cu(OTf)2: (Alfa Aesar, Stoughton, MA). NaOTf, 65 

Mg(OTf)2, Fe(OTf)2 and octadecane: (TCI (Shanghai) Development Co., Ltd., Shanghai, China). 66 

Ca(OTf)2, Zn(OTf)2, Al(OTf)3, Y(OTf)3, and Yb(OTf)3: (Shanghai Dibai Chemical Co. Ltd., 67 

Shanghai, China). Methyl palmitoleate, methyl oleate, methyl linoleate, oleic acid, linoleic acid 68 
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and 1,3,5-tri-chlorobenzene: (Aladdin Ltd., Shanghai, China). Dimethyl sulfoxide (DMSO), 69 

N,N′-dimethylacetamide (DMA), N,N′-dimethylformamide (DMF), acetonitrile (CH3CN), 70 

toluene, n-octane, cyclohexane and 1,4-dioxane: (Sinopharm Chemical Reagent Co.,Ltd, 71 

Shanghai, China).  Nuclear magnetic resonance (NMR) was performed on an AV400 400MHz 72 

instrument (Bruker, Beijing, China). Ultraviolet visible (UV/Vis) spectra were recorded on a 73 

specord 205 Plus spectrophotometer (Analytik Jena, Jena, Germany) and gas chromatography-74 

mass spectrometry (GC-MS) analysis was performed on a 7890A GC/5975C mass spectrometer 75 

(Agilent, Philadelphia, PA) using the following column and temperature program. HP-5: 30 m × 76 

0.25 mm, i.d., 0.25 µm (Agilent, Philadelphia, PA); the initial temperature of 150 °C was held 77 

for 3 min, then raised at 5 °C/min to 200 °C, and again raised at 20 °C/min to 300 °C, finally 78 

held for 2 min. Mass spectra were recorded at 70 eV in the electron ionization mode (EI-MS). 79 

Internal standard method.  Firstly, a series of calibration solutions (at least five) were 80 

prepared, which contain the analytes that we need to find the response factors to the standard (n- 81 

octadecane in this study) in GC analysis. These calibration solutions should cover the 82 

concentrations of the analytes for which the concentrations of future practical samples will fall 83 

in. These calibration solutions were next injected one by one into GC for analysis, and the 84 

detector responses (peak areas) to all of the analytes were recorded. The response factor of each 85 

analyte in one calibration solution was calculated as the value of the weight ratio of the 86 

analyte/n-octadecane timing the peak area ratio of n-octadecane/the analyte. The average 87 

response factor of each analyte in five calibration solutions was employed as the GC response 88 

factor of the analyte in coming practical analysis. 89 

General procedure for catalytic oxidation of methyl oleate, 1, to a mixture of methyl oxo-90 

octadecanoate, 2, by Pd(OAc)2/Sc(OTf)3  91 
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In a typical procedure, Pd(OAc)2 (1.34 mg, 0.006 mmol) and Sc(OTf)3 (5.9 mg, 0.012 mmol) 92 

were dissolved in 2.7 mL of acetonitrile in a glass tube, next 1 (88.9 mg, 0.3 mmol) and 0.3 mL 93 

of water were then added. The glass tube was placed into a 50 mL stainless autoclave which was 94 

then charged with oxygen to 20 atm. (Caution: 20 atm of oxygen possesses potential explosion, 95 

and can aid combustion of flammable materials; the reactions need to be carried out in a well-96 

ventilated fumehood, free from any source of ignition). Next, the reaction mixture was stirred at 97 

80 °C in an oil bath for 18 h. After the reaction, the autoclave was cooled to room temperature 98 

and carefully depressurized to normal pressure. Control experiments including using Pd(OAc)2 99 

or Sc(OTf)3 alone as catalyst were carried out in parallel. After GC analysis of 2 using the 100 

internal standard method, the solvent was removed by rotary evaporation and the residue was 101 

purified by silica gel column chromatography (20 cm × 1.5 cm) using n-hexane/ethyl acetate 102 

(10:1, v/v, 500 mL) as eluent to afford the products as white solid in 92% yield.  1H NMR (400 103 

MHz, CDCl3) δ 3.60 (s, 3H, -COOCH3), 2.31 (t, J = 7.4 Hz, 4H, -CH2-C(O)-CH2-), 2.23 (t, J = 104 

7.6 Hz, 2H, CH2-COOCH3), 1.61 – 1.42 (m, 6H, 3× -CH2-), 1.26-1.15 (m, 18H,  9× -CH2-), 0.81 105 

(t, J = 6.3 Hz, 3H, CH2-CH3). 106 

Catalytic oxidation of oleic acid to a mixture of oxo-octadecanoic acid: General oxidation 107 

procedures were followed for this reaction except using oleic acid (84.4 mg, 0.3 mmol). 108 

Purification of the products by column chromatography (20 cm × 1.5 cm) using n-hexane/ethyl 109 

acetate/acetic acid (90:30:1, v/v/v) afforded the product as a pale yellow solid in 50% yield. 1H 110 

NMR (400 MHz, CDCl3) δ 2.46 – 2.25 (m, 6H, -CH2-C(O)-CH2-, CH2-COOH), 1.73 – 1.46 (m, 111 

6H, 3× -CH2-), 1.26 (s, 18H,  9× -CH2-), 0.88 (t, J = 6.5 Hz, 3H, CH2-CH3). 112 

Catalytic oxidation of methyl palmitoleate to a mixture of methyl oxo-hexadecanoate: 113 

General oxidation procedures were followed except using methyl palmitoleate (80.5 mg, 0.3 114 
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mmol). The products were determined by 1H NMR analysis in 91% yield with internal standard 115 

method. 1H NMR (400 MHz, CD3CN), δ 3.62 (s, 3H, -COOCH3), 2.39 (t, J = 7.4 Hz, 4H, -CH2-116 

C(O)-CH2-), 2.29 (t, J = 7.4 Hz, 2H, CH2-COOCH3), 1.60 – 1.48 (m, 6H, 3× -CH2-), 1.35-1.23 117 

(m, 14H,  7× -CH2-), 0.90 (t, J = 6.8 Hz, 3H, CH2-CH3). 118 

Catalytic oxidation of methyl linoleate to a mixture of methyl dioxo-octadecanoate: 119 

General oxidation procedures were followed except using methyl linoleate (88.8 mg, 0.3 mmol). 120 

Purification of the products by column chromatography using n-hexane/ethyl acetate (10:1, v/v) 121 

afforded the product as a light yellow solid in 83% yield. 1H NMR (400 MHz, CDCl3) δ 3.67 (s, 122 

3H, -COOCH3), 2.53 – 2.14 (m, 4H, -CH2-C(O)-C(O)-CH2-), 2.13 – 1.84 (m, 2H, CH2-123 

COOCH3), 1.72 – 1.52 (m, 6H, 3× -CH2-), 1.46 – 1.10 (m, 16H, 8× -CH2-), 0.97 – 0.80 (m, 3H, 124 

CH2-CH3). 125 

Catalytic oxidation of linoleic acid to a mixture of dioxo-octadecanoic acid: General 126 

oxidation procedures were followed except using linoleic acid (84.2 mg, 0.3 mmol). Purification 127 

of the product by column chromatography using n-hexane/ethyl acetate/acetic acid (90:30:1, 128 

v/v/v) afforded the products as a light yellow solid in 47% yield. 1H NMR (400 MHz, CDCl3) δ 129 

2.48 – 2.20 (m, 4H, -CH2-C(O)-CH2-), 2.17 – 1.92 (m, 2H, CH2-COOH), 1.78 – 1.48 (m, 6H, 3× 130 

-CH2-), 1.45 – 1.05 (m, 16H,  8× -CH2-), 1.06 – 0.73 (m, 3H, CH2-CH3). 131 

Catalytic kinetics of methyl oleate oxidation by Pd(OAc)2/Sc(OTf)3: General oxidation 132 

procedures were followed using 1 (88.9 mg, 0.3 mmol) in the designed interval period, and the 133 

yields of isomerization and oxidation products were analyzed by 1H NMR and GC using the 134 

internal standard method, respectively. 135 

RESULTS AND DISCUSSION  136 

To investigate the oxidations of unsaturated fatty acids and their ester derivatives by Pd(II)/LA 137 

catalyst, methyl oleate, 1, was initially employed as a model compound using Pd(OAc)2 as 138 
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catalyst, Sc(OTf)3 as Lewis acid additives, and oxygen as oxidant. First, the effects of solvents 139 

on this reaction were investigated and the results are summarized in Table 1. It was found that 140 

the CH3CN/H2O mixture (90:10, v/v) provided the best catalytic efficiency for the oxidation of 1 141 

to the keto fatty esters, a mixture of methyl oxo-octadecanoate, 2. After reaction at 80 ˚C for 18 h 142 

under 20 atm of oxygen, 62% conversion with 39% yield of 2 was achieved by GC analysis with 143 

1% equiv. of Pd(OAc)2 and 2% equiv. of Sc(OTf)3 as Pd(II)/LA catalyst; extending the reaction 144 

time to 40 h further offered 96% conversion with 88% yield of 2 (Table 1, entries 1 and 2). The 145 

remaining byproducts were the mixtures of isomerization products, 3, as identified by 1H NMR 146 

analysis. Similar isomerizations of common olefins by Pd(II)/LA catalyst were also observed 147 

previously in our laboratory.21 Increasing the Pd(OAc)2 loading from 1% to 2% equiv. with 148 

Sc(OTf)3 to 4% equiv. improved the conversion up to 100% with 98% yield of 2 after 18 h 149 

reaction, and an isolated yield of 92% was achieved under current conditions (Table 1, entry 3). 150 

Further increasing the catalyst loading to 4% equiv. completed the oxidation in 4.5 h, giving 98% 151 

yield of 2 (Table 1, entry 4). In another test, keeping the concentration of the Pd(II)/LA 152 

unchanged, increasing the methyl oleate from 100 mM to 200 mM, corresponding to 1% equiv. 153 

Pd(OAc)2 loading, achieved 98% conversion of substrate with 95% GC yield or 90% isolated 154 

yield of 2 in 40 h (Table 1, entry 5), clearly indicating the high activity of this Pd(II)/LA catalyst 155 

in vegetable oil oxidation. However, in the case of using oxygen balloon as the oxidant source, 156 

the activity of this Pd(II)/LA system is very sluggish, giving only 87% of conversion with 2% 157 

yield of 2 (Table 1, entry 6), suggesting that the pressurized oxygen is essential for the 158 

regeneration of the active Pd(II)/LA catalyst in the catalytic cycle. In another control experiment, 159 

using acetonitrile alone as the solvent (in the absence of water), also provided 100% conversion 160 

of methyl oleate under air, however, there were no 2 detected, only giving the isomerization 161 
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products 3 (Table 1, entry 7). In nonpolar solvents like THF, toluene, n-octane and cyclohexane, 162 

extremely low yields were obtained with noticeable palladium black formation after the reactions 163 

(Table 1, entries 8-11), implicating the inefficient re-oxidation of palladium(0) by dioxygen 164 

under these conditions. In addition, these solvents except THF are immiscible with water, which 165 

apparently block the formation of the active Pd(II)/LA species for oxidation. On the other side, 166 

the low catalytic efficiency in polar aprotic solvents like DMA, DMF and DMSO without 167 

palladium black formation can be attributed to their coordination to the Pd(II) species (Table 1, 168 

entries 12-14), leading to the reduced oxidizing power of the Pd(II) species for olefin oxidation. 169 

Taken together, a reasonable polarity of solvent like that of acetonitrile is essential for efficient 170 

unsaturated fatty acid oxidation by the Pd(II)/LA catalyst as well as those for common olefin 171 

oxidations.20 172 

The identification of 2 was conducted by 1H NMR analysis, which disclosed that the 173 

methylene groups nearby the oxidized carbonyl group of 2 have the chemical shift around 2.4 174 

ppm (Figure 1A), while 3 have the chemical shifts of the olefinic C=C bond between 5.3 and 5.5 175 

ppm (Figure 1B), as previously reported.6,13 Further identification of 2 by GC-MS analysis 176 

disclosed a series of products including methyl 5-oxo-octadecanoate, methyl 10-oxo-177 

octadecanoate, methyl 9-oxo-octadecanoate, methyl 8-oxo-octadecanoate, and methyl 17-oxo-178 

octadecanoate with the relative contents of 7%, 70%, 8%, 11% and 3%, respectively.  179 

Next, using CH3CN/H2O (v/v, 90/10) as solvent, various non-redox metal salts as Lewis acids 180 

were investigated to promote Pd(OAc)2-catalyzed methyl oleate oxidation, and the results are 181 

summarized in Table 2. In the absence of Lewis acid, using Pd(OAc)2 alone as catalyst was 182 

ineffective for methyl oleate transformation (Table 2, entry 1). The promotional effects of Ba2+ 183 

and Ca2+ were very limited, giving only 4% and 8% yield of 2 (Table 2, entries 2 and 3), while 184 
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other divalent metal ions like Fe2+ and Zn2+ apparently improved the catalytic efficiency of 185 

Pd(OAc)2 catalyst, providing 28% and 46% yield of 2, respectively (Table 2, entries 4 and 5). 186 

Pd(II)/Cu(II) system is the classic Wacker-type catalyst for olefin oxidation;27 however adding 187 

Cu(OTf)2 provided only a slightly higher yield (56%) of 2 than that (46%) of adding Zn2+ as 188 

Lewis acid (Table 2, entry 6), while adding Cu(OAc)2 did not generate any promotional effect. 189 

Significantly, adding trivalent, non-redox metal ions like Al3+, Y3+, and Sc3+ greatly improved 190 

the yield up to 75%, 94% and 98%, respectively (Table 2, entries 7-9), much higher than that of 191 

adding Cu2+. As mentioned, Cu(II) salts were popularly employed as co-catalyst for regenerating 192 

the active Pd(II) species from reduced Pd(0) in Wacker-type oxidations;27 here, attempting to 193 

further improve the catalytic efficiency of this Pd(II)/Sc(III) system, additional Cu(OAc)2, 194 

Cu(TFA)2, CuCl2, CuBr2 or Cu(OTf)2 were added to the system using 1 mol% Pd(OAc)2 with 2 195 

mol% Sc(OTf)3 catalyst loading, however, a sharply decreased yield was obtained in each case, 196 

giving only 2-12% yield of 2. Even adding BQ or DMA to this Pd(II)/Sc(III) system in 197 

acetonitrile also caused the yields dropping to 38% or 32%, respectively. Similar inhibitory 198 

effect of CuCl2 were observed by Kaneda in their PdCl2-catalyzed internal olefin oxidations in 199 

DMA, in contrast to its acceleratory role in terminal alkene oxidations.28 In that case, the 200 

inhibitory effect of CuCl2 was attributed to inhibit π-coordination of an olefin to the Pd species 201 

through the complexation of Cu with Pd.  202 

In another test in Table 1, 12% equiv. of NaOTf were employed as Lewis acid, which contains 203 

the identical amount of OTf- anion as those in 4% equiv. of Sc(OTf)3, however, it was inactive 204 

for methyl oleate transformation (Table 2, entry 12). Clearly, the promotional effect originated 205 

from the added metal ions as Lewis acid rather than the OTf- anion. Consistent with this, the 206 

stronger the Lewis acid employed and the larger the promotional effect generally observed. In 207 
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particular, the much higher yield of 2 (94% or 98%) obtained by adding Al3+ or Y3+ than that 208 

(56%)  by adding Cu2+  in this study clearly highlighted the Lewis acid properties of added non-209 

redox metal ions rather than their redox properties in this Pd(II)-catalyzed vegetable oil 210 

oxidation. In the textbook mechanism of Wacker-type oxidation, the role of the Cu2+ cation is 211 

assigned to re-oxidize the reduced Pd(0) back to the active Pd(II) species to achieve the catalytic 212 

cycle, thus highlighted its redox properties.29 Together with previous studies,20 the results 213 

demonstrated here further support that the Lewis acid properties of the Cu2+ cation may have 214 

played significant roles in Wacker-type oxidations, even though it is not distinguishable from its 215 

redox properties in Pd(II)/Cu(II) system. 216 

Catalytic kinetics further displayed the high activity of this Pd(II)/LA catalyst in oxidation of 217 

methyl oleate, and it also provided fruitful mechanistic information. As shown in Figure 2, in 4 h 218 

reaction at 80 ˚C, using 2% equiv. Pd(OAc)2 loading with 4% equiv. of Sc(OTf)3 achieved 56% 219 

conversion of 1, however, the isomerization products 3 were obtained as the main products in 220 

34% yield, and the yield of 2 was only 21%. With the reaction proceeding, the yield of 3 dropped 221 

gradually, meanwhile the yield of 2 increased gradually up to 98% in 18 h with 100% conversion 222 

of 1. Clearly, the isomerization reaction is competitive with the oxidation, and it proceeds faster 223 

than oxidation. Remarkably, with the reaction proceeding, the resulting isomerization products 3 224 

can be eventually oxidized to 2 as the terminal products, thus leads to the high selectivity of the 225 

keto fatty esters.  It is worth mentioning that as shown in Figure 2, in the absence of Lewis acid, 226 

Pd(OAc)2 alone as catalyst is very sluggish for both isomerization and oxidation reactions. 227 

Figure 3 displays the influence of the Sc(III)/Pd(II) ratio on the Pd(II)/LA catalyzed methyl 228 

oleate oxidation. In the absence of Sc(OTf)3, Pd(OAc)2 alone as the catalyst is almost inactive 229 

for methyl oleate transformation in 18 h at 80 ˚C, whether for isomerization or oxidation. The 1:1 230 
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ratio of Sc(III)/Pd(II) provided 41% conversion of 1 with dominant 2 (30% yield) and minor 3 231 

(5% yield). Increasing the ratio of Sc(III)/Pd(II) to 3:1 improved the conversion up to 62% with 232 

45% yield of 2 and 13% yield of 3. However, as displayed in Figure 3, further increasing the 233 

ratio of Sc(III)/Pd(II) caused the yield of 2 to decrease, whereas the yield of 3 increased linearly, 234 

even though it still improved the conversion of 1. For example, at the ratio of 8:1, after 18 h 235 

reaction, it provided 76% conversion of 1 with only 31% yield of 2 but 28% yield of 3. The 236 

selectivity of the keto fatty esters 2 also revealed a decreased trend with further increase of the 237 

Sc(III)/Pd(II) ratio after 3:1. 238 

Table 3 shows the oxidations of different unsaturated fatty acids/esters to the corresponding 239 

keto fatty acids/esters by this Pd(II)/LA catalyst. As described above, oxidation of 1 provided 240 

92% isolated yield of 2 under 20 atm of oxygen at 80 ˚C in 18 h. Under the current conditions, 241 

oxidation of methyl palmitoleate and methyl linoleate gave the corresponding keto fatty esters, a 242 

mixture of methyl oxo-hexadecanoate in 83% yield and a mixture of methyl dioxo-octadecanoate 243 

in 91% yield, respectively, which were determined by 1H NMR analysis. Not only the 244 

unsaturated fatty esters, but also oleic acid and linoleic acid can be oxidized by this Pd(II)/LA 245 

system to afford a mixture of oxo-octadecanoic acid in 50% yield and a mixture of dioxo-246 

octadecanoic acid in 47% yield, respectively. The relatively low activity of this Pd(II)/LA 247 

catalyst in oxidizing unsaturated fatty acids is possibly related to the interaction of the carboxylic 248 

acid with the Pd(II) and/or Lewis acid, which may block the formation of the active Pd(II)/LA 249 

species for oxidation. 250 

As presented above, adding non-redox metal ions like Sc3+ can sharply promote the oxidations 251 

of different unsaturated fatty acids/esters by Pd(OAc)2 catalyst to the corresponding keto fatty 252 

acids/esters, which is similar to previous reports for common olefin oxidations.17 In previous 253 
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studies, through UV-Vis, 1H and 13C NMR characterizations, it was found that, in acetonitrile, 254 

adding non-redox metal ions to Pd(OAc)2 leads to the formation of hetero-bimetallic Pd(II)/LA 255 

species having two acetate bridges.20-22 As a result, binding of Lewis acid to the Pd(II) species 256 

makes it more positively charged as observed by the downshift of the chemical shift of the 257 

acetate bridge in 1H and 13C NMR spectra, which leads to its improved catalytic efficiency in 258 

olefin oxidations. In addition, similar hetero-bimetallic Pd(II)/LA salts with acetate bridges were 259 

widely reported, including LA = Ba2+, Sr2+, Ca2+, Mn2+, Co2+, Ni2+, Cd2+, Nd2+, Zn2+ and Ce4+, 260 

and some of those were successfully identified by X-ray single crystal characterizations.30-33 261 

Here, in the identical CH3CN/H2O solvent, formation of the Pd(II)/LA species, for example, 262 

Pd(II)/Sc(III) species, should happen as well as those in previous studies, and is responsible for 263 

vegetable oil oxidations. It is worth mentioning that, a few hetero-bimetallic Pd(II)/Cu(II) 264 

complexes were isolated by Hosokawa and Murahashi, and they are active catalyst for olefin 265 

oxidations.18,19 266 

Accordingly, a similar Pd(II)/Sc(III) species catalyzed oxidation can be proposed for this 267 

unsaturated fatty acids/esters oxidation as shown in Figure 4. By taking 1 for example, in the first 268 

step, 1 is ligated to the Pd(II)/Sc(III) species to generate the intermediate 4. Next, a water 269 

molecule attacks on the ligated C=C bond of the vegetable oil followed by β-hydride 270 

elimination.34-36 Then, the keto fatty esters 2 are released with the formation of the H-271 

Pd(II)/Sc(III) intermediate 5. This intermediate may interact with the second Sc3+ cation to 272 

stabilize the Pd(II) hydride to form the Sc(III)•••H-Pd(II)/Sc(III) intermediate 6; otherwise, the 273 

intermediate 5 may be feasibly reduced to the inactive palladium(0).37,38 Dioxygen insertion of 274 

the intermediate 6 leads to the formation of the HOO-Pd(II)/Sc(III) intermediate 7.39-44 After 275 

releasing the HOO- anion, the Pd(II)/Sc(III) species is regenerated to achieve the catalytic 276 
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cycle.20,22 Since the formation of the Pd(II)/Sc(III) species sharply promotes the vegetable oil 277 

oxidation, two plausible roles of Sc3+ can be expected in this Pd(II)/LA species: 1) ligation of the 278 

Sc3+ cation to the Pd(II) species may increase the positive charge of the Pd2+ cation as indicated 279 

by the chemical shift of acetate bridge, making it more electrophilic, thus facilitating the C=C 280 

bond coordination of the vegetable oil on the Pd2+ cation; and 2) because of the enhanced 281 

electron transfer from the C=C bond of the unsaturated fatty esters to the Pd(II)/Sc(III) species, it 282 

further promotes the water molecule attacking on the ligated C=C bond, thus accelerating the 283 

oxidation of the vegetable oil. As shown in Figure 3, not only the 1:1 ratio of Sc(III)/Pd(II) 284 

improved the vegetable oil oxidation, the ratio of 2:1 still obviously improved the oxidation 285 

efficiency, and the ratio of 3:1 also slightly improved the efficiency, indicating the extra Sc3+ 286 

cation still benefited the Pd(II)-catalyzed oxidation. Accordingly, a third role of the Sc3+ cation 287 

was proposed to stabilize the H-Pd(II)/Sc(III) species through the formation of the Sc(III)•••H-288 

Pd(II)/Sc(III) intermediate III, which inhibits the reductive elimination of the H-Pd(II) bond to 289 

form the inactive Pd(0), and promotes the oxygen insertion into the H-Pd(II) bond because of its 290 

weakness through Sc3+ binding. Indeed, in the case of using a 1:1 ratio of the Sc(III)/Pd(II) 291 

catalyst, there still was palladium black observed after the vegetable oil oxidation, while with 2:1 292 

ratio of the Sc(III)/Pd(II) catalyst, there was no palladium black formation observed. 293 

This work introduces the Pd(II)/LA catalyst for oxidation of renewable unsaturated fatty 294 

acids/esters to the corresponding keto fatty acids/esters which can be applied as lubricants in 295 

industry. It was found that adding non-redox metal ions like Sc3+ to simple Pd(OAc)2 as the 296 

Pd(II)/LA catalyst can sharply promote its oxidation efficiency, even much better than the classic 297 

Pd(II)/Cu(II) catalyst, which highlights the Lewis acid properties of Cu2+ cation in this Pd(II)-298 

catalyzed oxidation of unsaturated fatty acids/esters. The observed promotional effects are 299 
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obviously Lewis acidity dependent on the added non-redox metal ions, and generally, a stronger 300 

Lewis acid provided a better efficiency. As well as in previous studies, the promotional effect of 301 

Lewis acid is attributed to the formation of the hetero-bimetallic Pd(II)/LA species which is 302 

responsible for oxidations. The demonstrated Pd(II)/LA catalyst may offer new opportunities for 303 

transforming versatile plant oils to the corresponding keto fatty acids, esters or other derivatives 304 

in their industrial utilizations through catalytic oxidations.  305 
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SUPPORTING INFORMATION 306 

Detailed NMR and GC-MS data for different vegetable oil oxidations. This material is 307 

available free of charge via the Internet at http://pubs.acs.org. 308 
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FIGURE CAPTIONS 432 

Figure 1. 1H NMR identifications of products from methyl oleate oxidation by Pd(II)/LA 433 

catalyst. (A) oxidation products, (B) isomerization products, and (C) original methyl oleate 434 

substrate, in CDCl3. 435 

Figure 2. Catalytic kinetics for oxidation of 1 to 2 by Pd(II)/Sc(III) catalyst. Reaction conditions: 436 

CH3CN/H2O (v/v, 2.7 mL/0.3 mL), Pd(OAc)2 (2 mM), Sc(OTf)3 (4 mM), 1 (100 mM), O2 (20 437 

atm), 80 ˚C. 438 

Figure 3. The influence of the Sc(III)/Pd(II) ratio on the Pd(II)-catalyzed oxidation of 1. 439 

Reaction condition: Pd(OAc)2 (1 mM), CH3CN/H2O (v/v, 2.7 mL/0.3 mL), O2 (20 atm), 18 h, 80 440 

˚C. 441 

Figure 4. Proposed mechanism for Pd(II)/LA catalyzed oxidation of unsaturated fatty 442 

acids/esters. 443 
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Table 1. Pd(II)/Sc(III) Catalyzed Methyl Oleate, 1, Oxidation to a Mixture of Methyl Oxo-

octadecanoate, 2, in Different Solvents.a 

 

Entry Pd(II)/Sc(III) 
(mM/ mM) 

Solvent Time /h Conv. /% Yield % 

1 1/ 2 CH3CN/ H2O 18 53 39 

2 1/ 2 CH3CN/ H2O 40 96 88 

3 2/ 4 CH3CN/ H2O 18 100 98 (92) 

4 4/ 8 CH3CN/ H2O 4.5 100 98 

5b 2/ 4 CH3CN/ H2O 40 98 95 (90) 

6c 2/ 4 CH3CN/ H2O 18 88 2 

7d 2/ 4 CH3CN 18 100 N.D. 

8c 2/ 4 THF/ H2O 18 28 10 

9 2/ 4 Toluene/ H2O 18 12 3 

10  2/ 4 n-Octane/ 
H2O 

18 15 1 

11b 2/ 4 Cyclohexane/ 
H2O 

18 10 6 

12 2/ 4 DMA/ H2O 18 9 4 

13 2/ 4 DMF/ H2O 18 24 8 

14 2/ 4 DMSO / H2O 18 23 13 

a Conditions: organic solvent/water (v/v, 2.7 mL/0.3 mL), 1 (100 mM), O2 (20 atm), 80 ˚C, yield 
was determined by GC analysis and the data in parentheses represent isolated yield. b 

1 (200 
mM). c O2 balloon at 70 ˚C. d CH3CN alone as solvent under air. N.D. = Not detected.                
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Table 2. Pd(II)-Catalyzed  Oxidation of 1 in the Presence of Different Non-Redox Metal Ions. a 

 

Entry Lewis acid Conv.% Yield%  

1 - 3.1 N.D. 

2 Ba(OTf)2 7 4 

3 Ca(OTf)2 23 8 

4 Fe(OTf)2 37 28 

5 Zn(OTf)2 50 46 

6 Cu(OTf)2 80 56  

7 Al(OTf)3 92 75  

8 Y(OTf)3 100 94 

9 Sc(OTf)3 100 98 (92) 

10 Yb(OTf)3 53 49 

11 In(OTf)3 68 28 

12b NaOTf 3 trace 

a Conditions: CH3CN/H2O (v/v, 2.7 mL/0.3 mL), Pd (OAc)2 (2 mM), Lewis acid (4 mM), 1 
(100 mM), O2 (20 atm), 80 ˚C, 18 h. Yield was determined by GC and the data in parentheses 
represent isolated yield. b NaOTf 12 mM. N.D. = Not detected. 
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Table 3. Wacker-Type Oxidation of Different Unsaturated Fatty Acids/Esters by Pd(OAc)2 with 

the Sc(OTf)3 in CH3CN/H2O.a 

Entry Substrate Time Yield % 

1b Methyl oleate  18 h 92 

2 b Oleic acid  18 h 50 

3c Methyl palmitoleate  18 h 91 

4 b Methyl linoleate  24 h 83 

5 b Linoleic acid  24 h 47 

a Reaction Conditions: CH3CN/H2O (v/v, 2.7 mL/0.3 mL), Pd(OAc)2 (2 mM), Sc(OTf)3 (4 
mM), unsaturated fatty acids or esters (100 mM), O2 (20 atm), 80 ˚C. b Isolated yield. c Yield 
determined by 1H NMR analysis with internal standard. 
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Figure 1 

  

 

  

A  methyl oxo-octadecanoate, 2 

B isomerization products of methyl oleate, 3 

C  methyl oleate, 1 
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Figure 2 
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Figure 3 
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Figure 4 
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