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ABSTRACT: A palladium-catalyzed decarbonylative alkenylation of

aromatic carboxylic acids was developed. Under the reaction conditions, i . cat. Pd(TFA)/dppb R
various benzoic acids including those bearing functional groups coupled RTTon * 7R 15 equiv Piv,0 32 examples
R = aryl, alkenyl up to 95% vyields

to terminal alkenes, producing the corresponding internal alkenes in
good to high yields. Cinnamic acids and bioactive benzoic acids such as
3-methylflavone-8-carboxylic acid, probenecid, adapalin, and febuxostat
were also applicable to this reaction, demonstrating the potential \

synthetic value of this new reaction in organic synthesis.

H eck coupling is one of the most powerful methods for
preparing alkenes and has been widely used in the
synthesis of some natural products, synthetic drugs, and
functional material molecules." Usually, aryl halides,” aryl
triflates,” aryl diazonium salts,* and so on’ are used as the aryl
source. For comparison, aromatic carboxylic acids are more
abundant and readily available. Their transformation for
constructing functional molecules has attracted chemists’
attention.” Their utilization in Heck couplings as the aryl
source instead would greatly promote the synthesis of alkenes
with high synthetic efficiency. Chemists have converted
carboxylic acids into active derivatives such as aroyl chlorides,”
alnhydrides,8 esters,” and amides'® and then allowed these
derivatives to couple to alkenes. Despite the fact that the
corresponding internal alkenes could be produced by this
strategy, the prepreparation of these derivatives has decreased
their synthetic efficiency to some extent. The direct coupling of
aromatic carboxylic acids with alkenes through decarboxylation
has also been achieved; however, overstoichiometric oxidants
are required, which also lead to some oxidative side reactions
and the tolerance issue of functional groups prone to
oxidants."" In 2002, Gooflen and coauthors reported a
palladium-catalyzed decarbonylation Heck reaction from
carboxylic acid using di-tert-butyl dicarbonate (Boc,0O) as an
in situ activating reagent (Scheme 1A)."” This reaction avoided
the use of oxidants and the prepreparation of carboxylic
derivatives, well overcoming the issues described above.
However, because of the thermal instability, 3 equiv of
Boc,0 was required. Moreover, most of the Boc,O (2.0 equiv)
should be slowly added via a syringe pump over several hours
for a better yield, limiting its practical application in organic
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Scheme 1. Decarbonylative Heck Coupling of Carboxylic
Acids with Alkenes

OH + R

Boc,0 (2 equiv) were added slowly via syringe pump over several hours.
Only electron-rich benzoic acids and three alkenes were demonstrated.

cat. PdCl,/y-picoline

3 equiv Boc,O

' @ One-pot manipulation Q@ Aromatic and aliphatic alkenes

B: This work i
0 0

cat. Pd(TFA),/dppb SR :

R)LOH + /\R' A : R/\/ 3

1.5 equiv Piv,0 32 examples |

R = aryl, alkenyl up to 95% yields !

Q Benzoic and cinnamic acid @ Modification of bioactive carboxylic acids

synthesis. In addition, only electron-rich benzoic acids and
three alkenes were demonstrated.

Herein we report a new palladium-catalyzed decarbonylative
Heck coupling reaction (Scheme 1B). This reaction used
Piv,O as the in situ activating reagent of carboxylic acids and
was conducted in one pot,'”'* well overcoming the
manipulation shortcoming of Gooflen’s work in which the
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activating reagent should be added slowly. This substrate scope
is also relatively general. Both electron-rich and electron-
deficient benzoic acids readily coupled with various aromatic
and electron-deficient aliphatic alkenes. This reaction was also
applicable to cinnamic acid and bioactive benzoic acids. These
results showed the potential application value of this new
reaction in organic synthesis.

Heating a mixture of Pd(TFA),/dppb (5 mol %), 2-
naphthoic acid 1a, N,N-dimethylacrylamide 2a (2.0 equiv),
and Piv,0 (1.5 equiv) in dioxane to 150 °C for 10 h, the
corresponding decarbonylative coupling product 3a was
produced in 60% yield (Table 1, entry 1). By the addition of

Table 1. Optimization of Reaction Conditions”

cat.Pd/ligand 0
COOH P|v20 1.5 equiv. S _
“/ /W addmve solvent OO ’T‘
temp, 9.5 h
3a
entry cat. Pd additive ligand solvent  yield (%)”
1 Pd(TFA), - dppb dioxane 60
2 Pd(TFA), NaCl dppb dioxane 90
3 Pd(TFA), KCl dppb dioxane 89
4 Pd(TFA), NaBr dppb dioxane 22
5 Pd(TFA), NaF dppb dioxane 58
6 Pd(OAc), NaCl dppb dioxane 40
7 Pd(AcAc), NaCl dppb dioxane 41
8 PdCl, NaCl dppb dioxane 19
9 Pd,(dba), NaCl dppb dioxane 75
10 - NaCl dppb dioxane N.D.
11 Pd(TFA), NaCl dppp dioxane 15
12 Pd(TFA), NaCl dpppe dioxane 48
13 Pd(TFA), NaCl dppf dioxane 70
14 Pd(TFA), NaCl DPE-phos dioxane 79
15 Pd(TFA), NaCl PPh, dioxane 73
16 Pd(TFA), NaCl PPh,Cy dioxane 65
17¢ Pd(TFA), NaCl dppb dioxane 81
18 Pd(TFA), NaCl dioxane N.D.
19 PA(TFA),  NaCl  dppb THF 61
20 Pd(TFA), NaCl dppb toluene 39
21 Pd(TFA), NaCl dppb PhOMe 22
22 PA(TEA),  NaCl  dppb NMP 12
23 Pd(TFA), NaCl dppb DMF trace
24 Pd(TFA), NaCl dppb DCE trace
257 Pd(TFA), NaCl dppb dioxane S8
26° Pd(TFA), NaCl dppb dioxane 92

“Conditions: 1a (0.2 mmol), 2a (0.4 mmol), Piv,0 (0.3 mmol),
catalyst (S mol % Pd), ligand (Pd/P = 1:2), additive (50 mol %), N,,
150 °C, 10 h, solvent (2 mL). dppb (1,4-bis(diphenylphos
phanyl)butane); dppp (1,3-bis(diphosp-hino)propane); dpppe (1,5-
bis(diphenylphosphanyl)petane); dppf (1,1’-bis(diphenylphosphino)-
ferrocene), DPE-phos ((oxybis(2,1-phenylene))bis(diphenylphosph-
ane)). GC yield using tridecane as an internal standard. “dppb (10
mol %). 9140 °C. °160 °C.

50 mol % NaCl, the yield of 3a increased to 90% (Table 1,
entry 2)."° A similar result was obtained with KCI (Table 1,
entry 3); however, NaBr and NaF could not enhance the
reaction (Table 1, entries 4 and 5). Other selected palladium
catalysts such as Pd(OAc), and Pd(AcAc), were tried, but
relatively low yields were given (Table 1, entries 6—9).'
Without the addition of palladium catalysts, no reaction took
place (Table 1, entry 10). The phosphine ligands were
subsequently screened, with dppb being the best choice (Table

1, entries 11—16). Increasing the ratio of Pd/P to 1:4 led to a
slight decrease in yield, whereas no reaction was observed in
the absence of phosphine ligands (Table 1, entries 17 and 18).
This reaction also took place in THF, toluene, PhOMe, and
NMP but was sluggish in DMF and DCE (Table 1, entries
19-24). Elevating the reaction temperature could not enhance
the yield; whereas the reaction was conducted at 140 °C, only
a 58% yield of 3a was produced (Table 1, entries 25 and 26).

With the optimized reaction conditions in hand, the
substrate scope was subsequently investigated. As shown in
Table 2, this reaction was relatively general. Various carboxylic
acids coupled to terminal alkenes to produce the correspond-
ing products in good to high yields. In addition to 2-naphthoic
acid 1a, 1-naphthoic acid also worked well to give the product
3b in 97% yield. The 7-extended anthracene-9-carboxylic acid
also proved to be a good substrate (3c). Under the reaction
conditions, both electron-rich and electron-deficient benzoic
acids were applicable, furnishing the expected coupling
products in good to high yields. The steric hindrance did
not seem to affect the reaction because benzoic acids bearing
4-Ph, 3-Ph, and 2-Ph were all decarbonylatively alkenylated,
and the coupling products 3g, 3h, and 3i were generated in 74,
89, and 86% yields, respectively. Halo groups (F and Cl) also
survived well. Heteroaromatic internal alkenes were also
efficiently prepared through a similar decarbonylative alkeny-
lation (3n—p). Notably, cinnamic acid was also workable,
providing an efficient method for the synthesis of dienes (3q
and 3r).

Other selected electron-deficient terminal alkenes such as
N,N-diethylacrylamide, 1-morpholinoprop-2-en-1-one, and
methyl acrylate were transformed into the corresponding
internal alkenes in the present catalytic system (3s—u).
However, only a trace amount of product was given with
acrylaldehyde (3v). The reaction also progressed sluggishly
with hept-1-ene (3w). To our delight, trimethyl(vinyl)silane
could couple to 1a to give 3x in 37% yield. Aromatic terminal
alkenes including those bearing functional groups also worked
well under the reaction conditions (3y—ac). The internal
alkenes exemplified by 2m were not applicable to this reaction.

Interestingly, this reaction was applicable to the modification
of bioactive carboxylic acids (Scheme 2). For example, 3-
methylflavone-8-carboxylic acid, a clinical drug for coronary
heart disease, was alkenylated to produce 3ae in 95% yield.
Probenecid is a clinical drug for hyperuricemia with chronic
gouty arthritis and gouty stones. It also reacted smoothly with
2a, producing the expected product 3af in 63% yield. The
clinic drugs adapalin and febuxostat were also proved to be the
right substrates, furnishing the coupling products in high
yields.

On the basis of previous literature, a plausible
mechanism was proposed. As shown in Scheme 3, the
carboxylic acid was first in situ activated by Piv,O to produce
a mixing anhydride A, followed by oxidative addition with the
active Pd(0) complex generated in situ to give an intermediate
B. The resulting B further underwent decarbonylation,'”
transfer insertion, and f-elimination to yield the desired
product and complex E. Complex E was subsequently
transformed into the active Pd(0) catalyst to complete the
catalytic cycle.

In summary, we have developed a decarbonylative
alkenylation of carboxylic acids with terminal alkenes. This
reaction used Piv,O as the in situ activating reagent for
carboxylic acids, avoided the use of overstoichiometric
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Table 2. Scope of Decarbonylative Heck-Type Coupling of Carboxylic Acids with Alkenes”

o

3q, 68%(70%)

Entry Carboxylic acid Alkene Product, yie|db Entry Carboxylic acid Alkene Product, yie|db
o S
COOH ‘
N J S o]
1 OO Y OO NMe, 159 mCOOH 2a CE/)_\\—/(
o NMe,
1a 2a 3a, 90%(87%) 1o 30, 63%(62%)
O,
COOH O (e} o >\ 0
2 2a S e, 169 @E%COOH 2a
O NMe,
1 3p, 72%(73%
1b 3b, 97%(93%) P P 72%( O")
o) x~COOH S
COOH “ 17de @/\/ 2a Q/WNMeZ
2a NMe, 1
C

w
o
>

o)
. COOH
s X N
1c 3c, 78%(75%) 18%¢ ©/\/ \)LN/\ ©/\/\)LN/\
COOH 0 Lo L_o
400 /©/ 2a /@MNM% 1q éb 3r, 55%(53°OA))
MeO
MeO P X
1d 3d, 62%(61%) 19 1a N OO NEt,
o} Et
c coon 2 N 2¢ 3s, 82%(76%)
5 a NMe, o >
20 1a \)LN/\ SN
le 3e, 74%(70%) Lo OO Lo
COOH o 2b 3t, 86%(80%)
219 1a \AOME OO N OMe
1f 3f, 77%(69%)
0 0
COOH - % 2d 3u, 68 /0(7\0/0)\
7¢e Ph/©/ 2a MNMEQ 22 1a NO O
Ph 2e
19 39, 74%(76%) 3v, trace
COOH - %
8 ©/ 2a Q/\)‘\NM% 2f 3w, trace
Ph

3 SiMe
A gj :
2468 1a SiMe3

Ph

1h 3h, 89%(86%) 2
o ] 3%, 37%(37%)
COOH Bu
N X
gce 2a NMe, de Q/\ X
Ph Ph 259 -9 1a ‘BU OO
1i 3i, 86%(85%) 2h 3y, 62%(57%)
COOH “ 2 O
: e
F f
1j 3j, 58% (4(1)3%) 2i 3z, 52%(51%)
COOH S X i
cl cl F OO
3k, 80%(80%) 2j 3aa, 56%(50%)

12d.e 2a NMe,

Cl
X
28%7 1a /©/\ X O
c 0
2k
0,
X
29¢ 1a /@/\
N O

o
(@]
_‘<\\>_.
= =
(@]
o
o
I
M
w
(@]
4
o

31,76%(75%)

4
Q
z

13 2a NMe,

P4
(@]
(@]
o)
e}
T
P4
o
4
o

§ g
123 1a A

1m am, 71%(10%) 21 3ac, 56% (40%)
_ COOH o o ’
1 [ 2a z NMe, 30 1a @7 OO o
N N
1n 3n, 79%(76%) 2m 3ad, N.D

“Conditions: carboxylic acid (0.2 mmol), alkene (0.4 mmol), Piv,0O (1.5 equiv), NaCl (50 mol %), Pd(TFA), (5 mol %), dppb (S mol %), N,, 150
°C, dioxane (2 mL), 10 h. *GC yield using tridecane as the internal standard. The data in parentheses are isolated yields obtained by PTLC. For 3j
and 3ag, recrystallization was additionally performed. trans/cis was §enerally more than 30:1. Two isomers were detected by GC and GC-MS for
3q (trans/cis = 15/1) and 3r (trans/cis = 5:1). “dppb (10 mol %). “DPE-phos (10 mol %). “THE./12 h. £20 h "NMR yield using tridecane as an
internal standard.
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Scheme 2. Modification of Bioactive Carboxyllc Acids
through Decarbonylative Heck Coupling™”

Qﬂjﬁj@f

From 3-methylflavone
-8-carboxylic acid

3ae’, 95%(94%)

From probenecid From adapalin From febuxostat

3af®, 63%(65%) 3ag®?®, 90%(80%)  3ah®, 58%(60%)

“Conditions: carboxylic acid (0.2 mmol), alkene (0.4 mmol), Piv,O
(1.5 equiv), NaCl (50 mol %), Pd(TFA)2 (5 mol %), dppb (5 mol
%), N,, 150 °C, 10 h, dioxane (2 mL). °GC yield using tridecane as
an internal standard; The data in parentheses are isolated yields
obtained by PTLC. “DPE-phos (10 mol %). “THF. °NMR yield using
tridecane as an internal standard.

Scheme 3. Proposed Mechanism for the Decarbonylative
Heck Coupling of Carboxylic Acids
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oxidants, and was conducted in one pot. A relatively wide
substrate scope was demonstrated. Bioactive carboxylic acids
were also successfully modified by the strategy. These results
showed the potential synthetic value of this new reaction in
organic synthesis.
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