ChemComm

This article was published as part of the

2009 'Catalysis in Organic Synthesis' web theme issue

Showcasing high quality research in organic chemistry

Please see our website (<u>http://www.rsc.org/chemcomm/organicwebtheme2009</u>) to access the other papers in this issue.

ChemComm

Direct catalytic asymmetric aldol reaction of β -keto esters with formaldehyde promoted by a dinuclear Ni₂-Schiff base complex[†]‡

Shinsuke Mouri, Zhihua Chen, Shigeki Matsunaga* and Masakatsu Shibasaki*

Received (in College Park, MD, USA) 23rd June 2009, Accepted 7th July 2009 First published as an Advance Article on the web 24th July 2009 DOI: 10.1039/b912380f

A homodinuclear Ni₂-Schiff base 1 complex (0.1–1 mol%) promoted the direct catalytic asymmetric aldol reaction of β -keto esters with formaldehyde, giving hydroxymethylated adducts in 94–66% ee.

The direct catalytic asymmetric aldol reaction is a powerful and atom-economical method for synthesizing chiral β-hydroxy carbonyl compounds.^{1,2} To date, many chiral metal and organocatalysts have been developed for reactions of various donors with aldehydes.² The use of formaldehyde as a useful C1 unit in direct catalytic asymmetric aldol reactions, however, has been relatively limited, 3-5 possibly due to its high reactivity. Highly enantioselective chiral catalysts for indirect aldol reactions of formaldehyde with preformed silyl enolates have been developed,⁶ but for direct aldol reactions, there remains room for improvement in catalyst loading, catalyst reactivity, formaldehyde amount, and substrate scope. Herein, we report a homodinuclear Ni₂-Schiff base 1 complex-catalyzed direct asymmetric aldol reaction of β -keto esters with formaldehyde. Ni₂-1 (0.1–1 mol%; Fig. 1) gave the hydroxymethylated products in 66-94% ee.

Aqueous formaldehyde solution (*i.e.*, formalin) is the most convenient source of formaldehyde. A moisture-tolerant chiral catalyst is required to realize the direct catalytic asymmetric

Fig. 1 Structures of dinucleating Schiff base 1 and homodinuclear M_2 -Schiff base 1 complexes.

Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan. E-mail: mshibasa@mol.f.u-tokyo.ac.jp, smatsuna@mol.f.u-tokyo.ac.jp; Fax: +81-3-5684-5206; Tel: +81-3-5841-4830

‡ Electronic supplementary information (ESI) available: General experimental information, spectral data of new compounds, and copies of NMR spectral data. See DOI: 10.1039/b912380f

aldol reaction with formalin. As a part of our ongoing studies of bifunctional Lewis acid/Brønsted base catalysis,⁷ we recently reported the utility of dinuclear Schiff base complexes.⁸⁻¹² Homodinuclear transition metal-Schiff base 1 complexes⁸⁻¹⁰ are bench-stable and can be used without regard to their exposure to air and moisture. Thus, we expected that the bimetallic Schiff base complexes would be suitable for a direct aldol reaction with formalin. Initial optimization studies using β -keto ester 2a and formalin are summarized in Table 1. Among the homodinuclear Schiff base complexes screened, the Ni₂-1 catalyst⁸ gave promising results. The reaction of β-keto ester 2a with 1.2 equiv. of formalin in *i*-Pr₂O at 40 °C completed within 0.5 h, giving product 3a in 81% yield and 77% ee (entry 1). The reaction also proceeded smoothly in other solvents, but enantioselectivity was less satisfactory (entries 2–7). Other metal complexes, such as Co,⁹ Mn,¹⁰ Zn, and Pd, gave much less satisfactory enantioselectivity (entries 8-11, 1-30% ee). In entry 12, enantioselectivity decreased when the reaction time was prolonged (12 h, 63% ee). The results of entries 1 and 12 suggested that an undesirable retro-aldol reaction would proceed under the reaction conditions, resulting in lower enantiomeric excess after 12 h than after 0.5 h. In addition, the reaction proceeded at 40 °C, even in the absence of catalysts in *i*-Pr₂O (0.2 M), giving product 3a in 43% yield after 0.5 h (entry 13). To suppress the undesirable

 Table 1 Optimization of reaction conditions^a

Entry	М	x	Solvent	Conc./M	Time/h	% Yield	% ee
1	Ni	10	<i>i</i> Pr ₂ O	0.2	0.5	81	77
2	Ni	10	THF	0.2	0.5	87	65
3	Ni	10	Et ₂ O	0.2	0.5	87	60
4	Ni	10	EtOH	0.2	0.5	90	2
5	Ni	10	AcOEt	0.2	0.5	89	19
6	Ni	10	CH_2Cl_2	0.2	0.5	82	37
7	Ni	10	Toluene	0.2	0.5	84	20
8	Co(OAc)	10	<i>i</i> Pr ₂ O	0.2	1	82	22
9	Mn(OAc)	10	<i>i</i> Pr ₂ O	0.2	1	75	30
10	Zn	10	<i>i</i> Pr ₂ O	0.2	1	70	9
11	Pd	10	<i>i</i> Pr ₂ O	0.2	1	61	1
12	Ni	10	<i>i</i> Pr ₂ O	0.2	12	78	63
13	None	0	<i>i</i> Pr ₂ O	0.2	0.5	43	
14	Ni	0.1	<i>i</i> Pr ₂ O	0.02	1	94	93

^{*a*} Formalin (37% in water) was used in all entries. 1.2 equiv. of formalin were used in entries 1–13, while 1.1 equiv. were used in entry 14.

[†] This article is part of a ChemComm 'Catalysis in Organic Synthesis' web-theme issue showcasing high quality research in organic chemistry. Please see our website (http://www.rsc.org/chemcomm/organic webtheme2009) to access the other papers in this issue.

Entry	2	Ni ₂ -1 (x mol%)	HCHO (y equiv.)	Time/h	% Yield ^b	% ee ^c
1	CO ₂ t-Bu	0.1	1.1	1	94	93
2	CO ₂ t-Bu	1	1.1	12	91	85
3	CO ₂ t-Bu	0.1	1.1	12	81	66
4	O CO ₂ t-Bu Me 2d	0.1	1.1	28	79	81
5	CO_2t -Bu Et 2e	1	10	48	32	79
6 ^{<i>d</i>}	$CO_2 t$ -Bu Et 2e	0.1	5	20	79	89
7	O CO ₂ t-Bu Bn 2f	1	3	120	43	75
8 ^{<i>d</i>}	O CO ₂ t-Bu Bn 2f	0.1	5	72	84	90
9	Ph CO ₂ <i>t</i> -Bu Me 2g	1	1.1	120	40	89
10 ^{<i>d</i>}	$CO_2 t$ -Bu	0.1	5	120	22	94

^{*a*} Formalin (37% in water) was used in entries 1–5, 7 and 9. ^{*b*} Isolated yield after purification by silica gel column chromatography. ^{*c*} Determined by HPLC analysis. ^{*d*} Paraformaldehyde (HCHO)_n was used.

racemic pathway, we performed the reaction under diluted conditions (0.02 M) to keep the formaldehyde concentration low. Furthermore, we performed the reaction with reduced catalyst loading (0.1 mol%) to avoid the undesirable retroaldol reaction and to obtain the aldol adduct under kinetic control. The reaction proceeded smoothly even with 0.1 mol% of Ni₂-1, giving the product in 94% yield and 93% ee after 1 h (entry 14).¹³

The substrate scope of the reaction is summarized in Table 2. Because the reactivity of β -keto esters 2 depends on

the structure, the reaction conditions, such as catalyst loading, reaction time, and the amount of formalin required, were optimized for each β-keto ester to achieve the highest enantioselectivity under kinetic control. The best results for each substrate are summarized in Table 2. The reactivity of β-keto ester 2b with a six-membered ring was lower than that of β -keto ester 2a, and product 3b was obtained in 91% yield and 85% ee with 1 mol% catalyst after 12 h (entry 2). With the seven-membered ring β -keto ester 2c, the reaction proceeded smoothly with 0.1 mol% catalyst, but enantioselectivity was modest (entry 3, 66% ee). Ni₂-1 was also applicable to acyclic β -keto esters 2d-2g. The reaction of 2d with a methyl substituent gave product 3d in 79% yield and 81% ee using 0.1 mol% catalyst after 28 h (entry 4). β-Keto esters 2e and 2f with bulkier substituents, however, were much less reactive, giving products in only 32-43% yield after 48-120 h (entries 5 and 7). For 2e and 2f, the use of paraformaldehyde instead of formalin effectively improved both yield and enantioselectivity. The reaction with 5 equiv. of paraformaldehyde proceeded well and products 3e and 3f were obtained in good yield and enantioselectivity using 0.1 mol% catalyst (entry 6, 79% yield, 89% ee; entry 8, 84% yield, 90% ee). With phenyl ketone 2g, good enantioselectivity was obtained (entries 9-10, 89-94% ee); however, it was difficult to improve the reactivity, even with paraformaldehyde.

In summary, we developed a homodinuclear Ni₂-Schiff base-catalyzed enantioselective hydroxymethylation of β -keto esters. The reaction proceeded with 0.1–1 mol% catalyst, and hydroxymethylated products were obtained in 66–94% ee and 22–94% yield (TON = up to 940). Further trials to expand the nucleophile scope are ongoing.

This work was supported by Grant-in-Aid for Scientific Research (S), for Scientific Research on Priority Areas (No. 20037010, Chemistry of Concerto Catalysis for SM), and for Young Scientists (A) from JSPS and MEXT.

Notes and references

- 1 For a general review on asymmetric aldol reactions, see: (a) L. M. Geary and P. G. Hultin, *Tetrahedron: Asymmetry*, 2009, **20**, 131; (b) *Modern Aldol Reactions*, ed. R. Mahrwald, Wiley-VCH, Weinheim, 2004.
- Reviews on direct catalytic asymmetric aldol reactions:
 (a) B. Alcaide and P. Almendros, *Eur. J. Org. Chem.*, 2002, 1595. With organocatalysts, see: (b) S. Mukherjee, J. W. Yang, S. Hoffmann and B. List, *Chem. Rev.*, 2007, **107**, 5471; (c) W. Notz, F. Tanaka and C. F. Barbas, III, *Acc. Chem. Res.*, 2004, **37**, 580.
- 3 With organocatalysts: (a) H. Torii, M. Nakadai, K. Ishihara, S. Saito and H. Yamamoto, Angew. Chem., Int. Ed., 2004, 43, 1983; (b) J. Casas, H. Sundén and A. Córdova, Tetrahedron Lett.,

2004, **45**, 6117; (c) M. Fujii, Y. Sato, T. Aida and M. Yoshihara, *Chem. Express*, 1992, **7**, 309.

- 4 With a Rh-catalyst: (a) R. Kuwano, H. Miyazaki and Y. Ito, *Chem. Commun.*, 1998, 71; (b) R. Kuwano, H. Miyazaki and Y. Ito, J. Organomet. Chem., 2000, 603, 18.
- 5 With a Pd-catalyst: I. Fukuchi, Y. Hamashima and M. Sodeoka, *Adv. Synth. Catal.*, 2007, **349**, 509.
- 6 (a) S. Ishikawa, T. Hamada, K. Manabe and S. Kobayashi, J. Am. Chem. Soc., 2004, 126, 12236; (b) S. Kobayashi, T. Ogino, H. Shimizu, S. Ishikawa, T. Hamada and K. Manabe, Org. Lett., 2005, 7, 4729; (c) M. Kokubo, C. Ogawa and S. Kobayashi, Angew. Chem., Int. Ed., 2008, 47, 6909. For early work, see also: (d) N. Ozawa, M. Wadamoto, K. Ishihara and H. Yamamoto, Synlett, 2003, 2219.
- 7 Recent reviews on bifunctional asymmetric metal catalysis: (a) M. Shibasaki, S. Matsunaga and N. Kumagai, Synlett, 2008, 1583; (b) S. Matsunaga and M. Shibasaki, Bull. Chem. Soc. Jpn., 2008, 81, 60. For selected examples of chiral catalysts for direct aldol reactions developed in our group, see: (c) N. Yoshikawa, Y. M. A. Yamada, J. Das, H. Sasai and M. Shibasaki, J. Am. Chem. Soc., 1999, 121, 4168; (d) N. Kumagai, S. Matsunaga, T. Kinoshita, S. Harada, S. Okada, S. Sakamoto, K. Yamaguchi and M. Shibasaki, J. Am. Chem. Soc., 2003, 125, 2169 and references therein.
- 8 Ni₂-1 catalyst: (a) Z. Chen, H. Morimoto, S. Matsunaga and M. Shibasaki, J. Am. Chem. Soc., 2008, 130, 2170; (b) Z. Chen, K. Yakura, S. Matsunaga and M. Shibasaki, Org. Lett., 2008, 10, 3239; (c) Y. Xu, G. Lu, S. Matsunaga and M. Shibasaki, Angew. Chem., Int. Ed., 2009, 48, 3353; (d) Y. Kato, Z. Chen, S. Matsunaga and M. Shibasaki, Synlett, 2009, 1635.
- 9 Co₂(OAc)₂-1 catalyst: Z. Chen, M. Furutachi, Y. Kato, S. Matsunaga and M. Shibasaki, *Angew. Chem., Int. Ed.*, 2009, 48, 2218.
- 10 Mn₂(OAc)₂-1 catalyst: Y. Kato, M. Furutachi, Z. Chen, H. Mitsunuma, S. Matsunaga and M. Shibasaki, J. Am. Chem. Soc., 2009, 131, 9168.
- 11 Heterobimetallic transition metal-rare earth metal Schiff base catalysts: (a) S. Handa, V. Gnanadesikan, S. Matsunaga and M. Shibasaki, J. Am. Chem. Soc., 2007, 129, 4900; (b) S. Handa, K. Nagawa, Y. Sohtome, S. Matsunaga and M. Shibasaki, Angew. Chem., Int. Ed., 2008, 47, 3230; (c) H. Mihara, Y. Xu, N. E. Shepherd, S. Matsunaga and M. Shibasaki, J. Am. Chem. Soc., 2009, 131, 8384.
- 12 For selected examples of related bifunctional bimetallic Schiff base complexes in asymmetric catalysis, see: (a) V. Annamalai, E. F. DiMauro, P. J. Carroll and M. C. Kozlowski, J. Org. Chem., 2003, 68, 1973 and references therein; (b) G. M. Sammis, H. Danjo and E. N. Jacobsen, J. Am. Chem. Soc., 2004, 126, 9928; (c) M. Yang, C. Zhu, F. Yuan, Y. Huang and Y. Pan, Org. Lett., 2005, 7, 1927; (d) J. Gao, F. R. Woolley and R. A. Zingaro, Org. Biomol. Chem., 2005, 3, 2126; (e) W. Li, S. S. Thakur, S.-W. Chen, C.-K. Shin, R. B. Kawthekar and G.-J. Kim, Tetrahedron Lett., 2006, 47, 3453; (f) W. Hirahata, R. M. Thomas, E. B. Lobkovsky and G. W. Coates, J. Am. Chem. Soc., 2008, 130, 17658. For related early studies with dinuclear Ni₂-Schiff base complexes as epoxidation catalysts, see also: (g) T. Oda, R. Irie, T. Katsuki and H. Okawa, Synlett, 1992, 641.
- 13 The absolute configuration of **3a** was determined by comparing the sign of optical rotation with literature data in ref. 5.