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Abstract Titanium enolate-mediated aldol reaction of N-phthaloyl-l~--alanyl-1, 3-benzoxazinone 5 with 
acetaldehyde gave the (±)-syn-aldol (±)-6 in a high yield with high diastereoselectivity. Lipase-catalyzed 
hydrolysis of the corresponding laurate (_+)-Tb furnished enantiomerically pure (2S, 3R)-N-(2- 
phthaloylaminomethyl-3-hydroxybutyryl)-l, 3-benzoxazinone 6 in 49% yield. Silylation of the hydroxy group 
of (2S, 3R)-6 follwed by deprotection of the amino and carboxy groups gave the ~-amino acid derivative 9 
which was transformed into the acetoxynzetidinone 3, a key intermediate of penems and carbapenems. 
Copyright © 1996 Elsevier Science Ltd 

Penems I and carbapenems 2 have recently attracted keen interest as promising antibiotics due to their 

potent and broad antimicrobial activities as well as excellent metabolic stability. 1 Acetoxyazetidinone 3 with 

three contiguous stereogenic centers corresponding to the C-5, C-6 and C-8 carbons of 1 and 2 has been 

recognized as a key intermediate for synthesizing [~-lactam antibiotics of this important class. 2 Synthesis of 

OH OTBS 

C02H 
1 : X=S  3 
2: X~CH2, CH(Me) 

3 has been extensively studied and some efficient methods including industrially applicable asymmetric 

reactions have been developed. 3, 4 As an alternative approach, enzymatic synthesis of 3 is attractive. 

However, no satisfactory result has been achieved. For instance, a method based on the microbial reduction of 

the carbonyl group of ethyl 2-benzoylaminomethyl-3-oxobutanoate was mostly unfruitful due to the lack of 

selectivity and/or the need to invert the configuration of the stereogenic center bearing the hydroxy group. 5 

Recent successful application of lipase to the synthesis of optically active compounds 6 has prompted us to 

investigate an alternative enzymatic synthesis of 3. Our strategy is based on the elabolation of the required (2S, 

3R)-2-aminomethyl-3-tert-butyldimethylsilyloxybutyric acid 9 by a syn-selective aldol reaction followed by 

lipase-catalyzed resolution of the resulting racemic aldol. Highly efficient syn-selective Reformatsky reactions 

have recently been achieved utilizing a novel 1, 3-benzoxazinone auxiliary, le The racemic substrate (_+)-6 with 
the desired relative configuration might thus be prepared efficiently by the aldol reaction of N-phthaloyl-~- 

alanyl- 1, 3-benzoxazinone 5 with acetaldehyde. 

N-Phthaloyl-~-alanyl-1, 3-benzoxazinone 5 was readily prepared in 86% yield by condensation of 

salicylamide with 3-pontanone followed by acylation with N-phthaloyl-[i-alanylchlofide (Scheme 1). The 

aldol reaction of 5 with acetaldehyde was undertaken by transmetallation of the sodium enolate of 5 with 
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a: Et2CO, p-TsOH (10 tool%), toluene, reflux, 17 h; b: PhIN(CH~2COCI, i-Pr2EtN, 
CuCI (cat.), toluene, 70°C, 5 h; c: i) NaN(TMS)2, THF, -78°C, 1 h ii) CITi(O/-Pr) 3 
-780C, 1 h iii) CH3CHO, -780C-0°C, 2 h (Method A); i) TiCl4, Et3N, -78°C, 20 rain. 
ii) CItjCHO, -78°C-00C, 2 h (Method B). 

C1Ti(Oi-Pr)3 and subsequent reaction with acetaldehyde to give the desired syn-aldol ( ± ) - 6  in 85% yield with 

high selectivity (syn:anti >95:5) 0Vlethod A). 7 The structure of (_+)-6 was unequivocally confirmed by X- 

ray crystallographic analysis. 8 The ix-methylene proton of the carbonyl group of 5 complexed with TiCI4 was 

acidic enough to be deprotonated by a weak base. Thus, as an alternative procedure, chlorotitanium enolate 

directly generated by treatment of 5 with TiCI4 and Et3N in CH2C12 at -78 °C 9 was allowed to react with 

acetaldehyde to afford (±)-6 as well in 86% yield with excellent selectivity (syn:anti >95:5) (Method B). 

Enzymatic resolution of the racemic aldol (±)-6 was the next subject of our investigation (Scheme 2). 

Lipase QL (Alcaligenes sp.) was selected as the enzyme of choice because of it's outstanding stability and 

activity in organic media_ 10 Since many lipases including Lipase QL show a preference for the R-configuration 

at the hydroxy bearing carbon, 11 lipase-catalyzed asymmetric hydrolysis of racemic esters (±)-7a,b derived 

from (±)-6 was examined to afford the required (2S, 3R)-6. The racemic esters (±)-7a,b were synthesized 

from (±)-6 by usual acylation and were subjected to react with Lipase QL in a phosphate buffer (0.1 M, pH 

Scheme 2 

Q-CO(CH2) lo Me 

d /NPht e =, + 

(±)-6 - O ~ X a  R=(Ca2)t0Me O ~  a 

(¢)-7 (2S, 3R)-6 (2R, 3S)-7 b 
a: R=Me, 95% 49%, >99% e.e. 50%, >99% e.e. 
b: R=(CH 2) lo Me, 87% 

Xa: At=iliary 

d: RCOCI, Et3N, DMAP, THF, 25°C, 3 h; e: Lipase QL, phosphate buffer (pH 7.5), DMF, 40°C, 22 h. 
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7.5) solution with 10% DMF at 40 °C for 22 h. Employing the laurate (+)-7b as the substrate, the desired 

enantioraedcally pure aldol (9.S, 3R)-6 was obtained in 49% yield along with unreacted ester (2R, 3S)-7b (c.y. 

50%, >99% c.c.). 12 Use of the acetate (±)-Ta resulted in a dramatic decrease in the reaction rate and did not 

reach an acceptable level even after prolonged reaction periods (conversion <5% after 72 h at 40 °C). The aldol 

(2S, 3R)-6 was transformed into 3 employing the reaction sequence illustrated in Scheme 3. After silylation of 

the bydroxy group of (2S, 3R)-6, removal of the 1, 3-benzoxazinone auxiliary and the amino and carboxy 

protective groups were sequentially conducted to yield the ~amino acid 9 in good yield (overall 71% in three 

steps). Cyclization of 9 to l~-lactam 10 was carried out by Ohno's procedure in a high yield. 13 The 

physicochemical properties of 10 obtained by the present synthesis were in complete accordance with those 

reported in the literature. 14 Synthesis of 3 from 10 was achieved according to the reported procedure. 4b, 15 

Scheme 3 
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Xa: Auxiliary 

g: TBS-CI, imidazole, DMF, 250C, 24 h; h: BnOLI, THF, O°C, 24 h; i: NH2NH2.H20, EtOH 
250C, 17 h; j: H2 (1 alm), Pd-C, MeOH, 25°C, 5 h. k: (2-PYS)2, PPh3, CH3CN, 60°C, 7 h 

As described above, a new and facile synthesis of acetoxyazetidinone 3 was developed by combination 

of the highly diastereoselective aldol reaction and the efficient lipase-catalyzed kinetic resolution. Use of readily 

accessible materials under industrially applicable mild conditions allows an easy access to the acetoxy- 

azetidinone, a key intermediate of penems and carbapenems. 
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