A Kinetic and Mechanistic Study of the Cl/F Exchange Reaction of CCl₃F, CCl₂F₂, and CClF₃ with Prefluorided Chromia

A. Farrokhnia, B. Sakakini, and K. C. Waugh*

Department of Chemistry, Faraday Building, UMIST, PO Box 88, Manchester M60 1QD, U.K. Received: February 26, 2002; In Final Form: June 17, 2002

Chromium oxide has been fluorided to several monolayers depth by interaction with HF at 625 K. The interaction of CCl₃F and CCl₂F₂ with these surface chromium fluoride layers has been studied by temperatureprogrammed reaction. In the case of the reaction of CCl₃F, mono- and bi-exchange occurs with the surface monolayer fluoride, forming CCl₂F₂ and CClF₃ simultaneously at a peak maximum temperature of 520 K. Exchange with the subsurface fluoride layers occurs at a peak maximum temperature of 680 K, as the fluoride ions from the bulk migrate to the surface and chloride ions on the surface migrate inward. In both temperature regions, mono-exchange predominates by a factor of about 10^2 . Line-shape analysis of the temperature dependence of the rates of production of CCl₂F₂ and CClF₃ gave activation energies of 53 and 54 kJ mol⁻¹ for exchange with the surface fluoride, so the difference in rates must be the need for special dimer-type surface sites for the bi-exchange. The activation energy for exchange of F ions evolving from the bulk calculated by line-shape analysis is 83 kJ mol⁻¹ for mono-exchange and 100 kJ mol⁻¹ for bi-exchange. These higher values than those obtained by reaction with the surface fluoride ion derive from the added activation energy for migration of the fluoride ion from the bulk to the surface.

Introduction

The Montreal protocol in 1989 banned production and use of chlorofluorocarbons (CFCs) because of their ability to destroy the ozone layer. This is thought to be accomplished by the following chain reaction (reactions 1-3), which leads to the net destruction of O₃ and O[•] atoms.

$$\mathrm{RC-Cl} \xrightarrow{h\nu} \mathrm{RC}^{\bullet} + \mathrm{Cl}^{\bullet} \tag{1}$$

$$Cl^{\bullet} + O_3 \rightarrow ClO + O_2 \tag{2}$$

$$ClO + O^{\bullet} \rightarrow Cl + O_2 \tag{3}$$

The CFCs have been replaced by hydrofluorocarbons (HFAs), which are not sufficiently stable to rise through the atmosphere to the ozone layer. One of the HFA replacements is 1,1,1,2-tetrafluoroethane (**134a**), which is produced by reaction of 1,1,2-trichloroethene with HF over a prefluorided chromia catalyst. The reaction is considered to proceed according to the following mechanism.

$$\operatorname{CCl}_2 = \operatorname{CHCl} + \operatorname{HF} \xrightarrow{\operatorname{CrF}_3} \operatorname{CFCl}_2 \operatorname{CH}_2 \operatorname{Cl} (\mathbf{131a}) \qquad (4)$$

$$CFCl_2CH_2Cl + CrF_3 \rightarrow CF_2ClCH_2Cl (132a) + CrF_2Cl (5)$$

$$CrF_2Cl + HF \rightarrow CrF_3 + HCl$$
 (6)

$$CF_2CICH_2CI + CrF_3 \rightarrow CF_3CH_2CI (133a) + CrF_2CI (7)$$

$$CF_3CH_2Cl + CrF_3 \rightarrow CF_3CH_2F$$
 (134a) + CrF_2Cl (8)

This mechanism (reactions 4-8) is based on our previously published work on the fluorination of CCl₄ in which we showed that the fluorination reaction proceeds by the exchange of the chlorine atom of the CCl₄ with the F atom/ion of the fluorided chromium (usually surface CrF₃).^{1,2} The role of the HF was considered to be to refluoride the surface of the CrF₃, which had been partially chlorided (reaction 6).

In the study reported in this paper, we have determined the kinetics and mechanism of the fluorination of CCl_3F and CCl_2F_2 over a prefluorided Cr_2O_3 (CrF_3) as models for reactions 5 and 7, respectively, of the above mechanism. We use these model systems to avoid complications of reactions involving chlorine/ fluorine exchange on the second C atom.

Experimental Section

Apparatus. The microreactor and gas-handling system have been previously reported.¹ The microreactor is a U-shaped (30 cm long, 0.6 cm i.d.) monel microreactor tube, which was connected via a heated capillary to an on-line, computerinterrogated, mass spectrometer (Hiden Analytical, Warrington, England). It is used for temperature-programmed reaction (TPR), temperature-programmed desorption (TPD) in which 16 masses can be followed with temperature/time and in-situ surface area measurements.

Catalyst. The catalyst that was used in this study is gel chromium oxide. The preparation of this catalyst has been previously described. The calcined chromium(III) oxide was crushed and sieved into particles size of 300 to 350 μ m. The total surface area of the catalyst was determined to be 200 m² g⁻¹ by applying the BET method, using N₂, adsorption at 77 K. X-ray diffraction (XRD) of the powder showed that the material contained only amorphous chromium oxide.

Catalyst Pretreatment. The chromium(III) oxide catalyst (~ 0.2 g) was loaded into the microreactor tube, and before any

^{*} To whom correspondence should be addressed. Tel: 44 (0) 161 200 4503. Fax: 44 (0) 161 200 4430. E-mail: ken.waugh@umist.ac.uk.

Figure 1. Temperature-programmed reaction of CCl₃F over HF-pretreated Cr₂O₃.

measurement and reaction, it was heated under helium (25 cm³ min⁻¹, 101 kPa) to 623 K and was left at this temperature for 30 min to remove any adsorbed water. The catalyst was then fluorinated in situ by 10% HF in He (25 cm³ min⁻¹, 101 kPa) for approximately 90 min at 623 K. The total amount of HF passed was always 200 cm³ or 8.2×10^{-3} mol or 2.5×10^{22} fluorine atoms per gram of catalyst. The surface area of the fluorided chromia was measured in situ to be 103 m² g⁻¹, so assuming unit reaction probability of the HF with the oxide, this corresponds to a coverage of the oxide with fluoride ions of 1.9×10^{17} ions cm⁻², which, if the assumption is correct, means that the surface and several layers of the bulk of the Cr₂O₃ have been fluorinated. The catalyst was then sealed, removed from the fluorinating unit, and connected to the mass spectrometer.

Results and Discussion

The Temperature-Programmed Reaction of CCl₃F over Fluorided Cr₂O₃. The temperature-programmed reaction of CCl₃F on fluorided Cr₂O₃ is shown in Figure 1. A CCl₃F mixture (~4% CCl₃F, 101 kPa) was produced by bubbling He (25 cm³ min⁻¹, 101 kPa) through liquid CCl₃F held in a slush bath of liquid nitrogen/chlorobenzene at 228 K. Initially, the CCl₃F/ He mixture was flowed over the catalyst for 12 min at 296 K to ensure adsorption equilibrium, after which the temperature was increased linearly from 296 to 773 K at a rate of 5 K min⁻¹, following masses m/z = 117 (CCl₄), m/z = 101 (CCl₃F), m/z =85 (CCl₂F₂), and m/z = 69 (CClF₃) on the mass spectrometer. The temperature-programmed reaction profile so produced is shown in Figure 1.

Several points can be made by inspection of the Figure 1. The initial increase in CCl₃F concentration between 300 and 350 K derives from the desorption of physisorbed CCl₃F from the surface of the catalyst. The remaining profile can be divided into two regions: (i) the low-temperature region, where the ion-exchange reaction between CCl₃F (m/z = 101) and the catalyst, CrF₃, begins at around 400 K, and (ii) the high-temperature region, where the bulk to surface fluorine/chlorine ion-exchange reaction begins at about 600 K.

Figure 2a shows the temperature dependence of the rate of production of CCl_2F_2 with the curve fitting used to determine

Figure 2. The temperature dependence of the rate production and curve fit (a) for CCl_2F_2 , m/z = 85 and (b) for CCl_3 , m/z = 69. The solid line is the experimental data; the dashed line is the curve fitting to the data.

the kinetics of the surface exchange reaction and to determine the kinetics of the exchange reaction of CCl_3F with a F ion on the surface, which had migrated there from the bulk. The temperature dependence of the rate of production of $CClF_3$ (with the curve fitting) is shown in Figure 2b. It is clear from these figures that mono-exchange (producing CCl_2F_2) and bi-exchange (producing $CClF_3$) occur simultaneously. Simultaneous monoand bi-exchange had been observed previously with CCl_4 as the reactant.¹

Evaluation of the Detailed Energetics of the Process by Line-Shape Analysis of Figure 1. *The Heat of Adsorption of CCl*₃*F*. The temperature dependence of the CCl₃*F* line shape in the temperature range 300-350 K in Figure 1 contains data for the measurement of the heat of adsorption of CCl₃*F*. Figure 3 shows an expanded version of the profile of the temperature

Figure 3. A profile of temperature dependence of CCl₃F desorption from fluorided Cr₂O₃.

dependence of the rate of desorption of CCl_3F . If the rate of desorption is given by

$$\frac{-\mathrm{d}[\mathrm{CCl}_{3}\mathrm{F}]}{\mathrm{d}t} = A_{\mathrm{ex}} \,\mathrm{e}^{-E/(RT)} \,[\mathrm{CCl}_{3}\mathrm{F}] \tag{9}$$

where [CCl₃F] is the amount of CCl₃F that is desorbed in units of mol cm⁻³, A_{ex} and E are the A-factor and desorption activation energy, which in this physisorption process is equal to ΔH_a , the heat of adsorption. The rate of desorption is proportional to the height, h, of the mass spectrometer response, and the amount of [CCl₃F] adsorbed is proportional to the area, A, of the CCl₃F peak. Equation 9 can be rewritten as

$$k_1 h = A_{\rm ex} e^{-E/(RT)} k_2 A$$
 (10)

or

$$\ln\left(\frac{h}{A}\right) = \ln A_{\rm ex} + \ln\frac{k_2}{k_1} - \frac{E}{RT} \tag{11}$$

where k_1 and k_2 are calibration constants.

A plot of $\ln(h/A)$ versus 1/T gives the desorption activation energy. The integration of the area was taken to 339 K, because this was the temperature at which a minimum in the rate of desorption of CCl₃F was observed. The desorption activation energy of CCl₃F is obtained by plotting $\ln(h/A)$ versus 1/T in the temperature range 293–303 K for the line shape shown in Figure 3, which gives a straight line is shown in Figure 4. A value of 34 kJ mol⁻¹ is obtained for desorption activation energy, which is characteristic of physical adsorption.³

The Activation Energies for the Formation of CCl_2F_2 and $CClF_3$. The activation energies for the interaction of chemisorbed CCl_3F with surface and bulk F^- ions of the prefluorided Cr_2O_3 forming CCl_2F_2 and $CClF_3$ can be obtained by line-shape analysis of the temperature dependence of the CCl_2F_2 peaks at 520 and 684 K and of the CCl_3F peaks at 520 and 680 K. The line-shape analysis technique for calculation of the activation energies of the above reactions is as follows. The halogen

exchange reaction occurs between chemisorbed CCl_3F and surface F^- . (The loss of gas-phase CCl_3F upon the production of CCl_2F_2 shows the chemisorbed material to be replenished from the gas phase.) Assuming the reaction to be first-order in CCl_3F , the reaction is described by eq 12 and the rate of production of CCl_2F_2 is given by eq 13.

$$\operatorname{CCl}_{3}F + F_{(s)}^{-} \rightarrow \operatorname{CCl}_{2}F_{2} + \operatorname{Cl}_{(s)}^{-}$$
(12)

$$\frac{d[CCl_2F_2]}{dt} = A e^{-E/(RT)} [CCl_3F][F_{(s)}]$$
(13)

where [CCl₃F], [CCl₂F₂], and [F⁻_(s)] are the concentrations of each species in units of mol cm⁻³ and A_{ex} and *E* are the A-factor and activation energy, respectively, for the exchange reaction. Figure 5 shows the rate of production of CCl₂F₂. The concentrations of CCl₃F and CCl₂F₂ are given by the height of the mass spectrometer response. Each of these species is multiplied by its respective calibration constant, that is, [CCl₃F] in mol cm⁻³ = k_1h_1 and [CCl₂F₂] in mol cm⁻³ = k_2h_2 and the surface F⁻ ion concentration is given by the area, *A*, under the CCl₂F₂ peak so that eq 13 can be rewritten as

or

$$fk_2h_2 = A_{\rm ex} \,{\rm e}^{-E/(RT)} \,k_1h_1A$$
 (14)

$$\ln\left(\frac{h_2}{h_1A}\right) = \ln(A_{\text{ex}}) - \frac{E_{\text{ex}}}{RT} + \ln\left(\frac{k_1}{fk_2}\right)$$
(15)

where *f* is the flow rate in $\text{cm}^3 \text{ s}^{-1}$.

A plot of $\ln(h_2/(h_1A))$ versus 1/T gives the exchange activation energy. The surface exchange activation energy for the formation of CCl₂F₂ is obtained by plotting $\ln(h_2/(h_1A))$ versus 1/T in the temperature range 400–490 K for the deconvoluted [CCl₂F₂] line shape shown in Figure 5. The Arrhenius plot for the determination of the surface exchange activation energy is shown in Figure 6 from which a value of 53 kJ mol⁻¹ is obtained for the reaction of an adsorbed CCl₃F molecule with a surface

Figure 4. Arrhenius plot of $\ln(h/A)$ versus 1/T for determination of desorption activation energy.

Figure 5. Temperature dependence of the rate of production of CCl₂F₂.

 F^- ion. Justification of the assumption that the 520 K CCl₂F₂ peak results from the exchange of CCl₃F with a surface F^- and the assumption that the 684 K peak results from exchange with a bulk F^- ion is found by calculation of the amounts of F^- exchanged in each peak; see below and Table 1.

An identical analysis of the temperature dependence of the rate of production of CCl_2F_2 in the temperature range 640–666 K gave an activation energy of 83 kJ mol⁻¹ for the surface exchange reaction between chemisorbed CCl_3F and a F⁻ ion that had evolved at the surface by diffusion from the bulk of the fluorided chromia. The Arrhenius plot for this reaction is shown in Figure 7. The same analysis was used for the temperature dependence of the rate of formation of CCl_3 from which a value of 54 kJ mol⁻¹ for exchange with F⁻ ions emanating at the surface from the bulk. The nearly identical values for the activation energy for the mono- and bi-exchange

TABLE 1: The Amounts of CCl₂F₂ and CClF₃ Formed in the Low-Temperature Region (at 520 K) and the High-Temperature Region (at 680 K) by Temperature-Programmed Reaction of CCl₃F over Fluorided Chromia Catalyst

	surface F reaction peak (520 K)	exchange reaction with a F ion that had migrated from the bulk to the surface			
CCl ₂ F ₂					
amount	2.03×10^{20} molecule or	5.2×10^{20} molecule or			
	1.6×10^{21} molecule g ⁻¹	4.1×10^{21} molecule g ⁻¹			
selectivity	98.7%	99.8%			
	CClF ₃				
amount	3.3×10^{18} molecule or	4.9×10^{19} molecule or			
	2.6×10^{19} molecule g ⁻¹	3.9×10^{20} molecule g ⁻¹			
selectivity	1.3%	0.2%			

suggests that a similar type of intermediate is involved in both reactions; see later.

Figure 6. Arrhenius plot of $\ln[h_2/(h_1A)]$ versus 1/T for the determination of the activation energy of CCl₃F with surface F⁻ to form CCl₂F₂.

Figure 7. Arrhenius plot of $\ln[h_2/(h_1A)]$ versus 1/T for the determination of the activation energy for the exchange reaction (to form CCl_2F_2) between CCl_3F and F^- ions evolving at the surface from the bulk of the fluorided chromium oxide.

Table 1 lists the amount of CCl₂F₂ and CClF₃ by both the surface exchange reaction and by exchange of F⁻ ion that had migrated to the surface from the bulk. The total surface fluoride, which removed from the catalyst in the first two peaks, was 1.7×10^{21} atoms g⁻¹ (0.127 g catalyst, total surface area 103 m² g⁻¹), while the amount in the higher temperature peaks was 4.9×10^{21} fluorine ions g⁻¹. The total amount of fluorine removed from the catalyst in the higher temperature region constitutes 4.74×10^{15} ions cm⁻². This is greater than five monolayers of fluorine confirming that the higher temperature peaks derive from F⁻ in bulk CrF₃ migrating to the surface.

The product percentage ratio of $CCl_2F_2/CClF_3$ in the first two peaks was 98.7:1.3 and in the second two peaks was 99.8:0.2, which clearly shows that the reaction is highly selective for mono-exchange producing CCl_2F_2 . The low selectivity to $CClF_3$ is probably a function of the low surface coverage of appropriately spaced $\rm Cr^{3+}$ sites for bidentate adsorption of the CCl_3F.

A final point of note is that the total amount of fluorine in the 520 K CCl₂F₂ and CClF₃ peaks, which is considered to be the surface exchange reaction, is 2.08×10^{20} atoms, corresponding to a surface coverage of 1.59×10^{15} ions cm⁻² or a fluorine ion area of 6.3 Å² or a fluorine ion radius of 1.4 Å. This latter value accords well with the quoted value of the fluorine ion radius of 1.33 Å.⁴ This results gives added credence to the suggestion that the 520 K peaks derive from exchange of the surface F⁻ species.

The activation energy for mono chloro/fluoro exchange of CCl_4 is 65 kJ mol⁻¹.¹ This is slightly higher than the value of 53 kJ mol⁻¹ found here for CCl_3F . Our previous paper¹ postulated that the ion exchange reaction proceeds by a

TABLE 2: C–Cl and C–F Bond Dissociation Energies (kJ mol^{-1}) in Chlorofluoromethane⁴

Х	$X-CF_3$	$X-CClF_2$	$X-CCl_2F$	$X-CCl_3$
F	546	514.6	460	426
Cl	360.7	318	305	306

Langmuir—Hinshelwood mechanism through a four-center intermediate. The structure of four-center intermediate that we consider is likely to be involved is shown in intermediate 1.

Intermediate 1 - The four centre intermediate for production of CCl_2F_2 from the reaction of CCl_2F over fluorided Cr_2O_3 .

The exchange reactions of both CCl₄ and CCl₃F require the breaking of a C–Cl and a Cr–F bond and, at the same time, the formation of a C–F and a Cr–Cl bond. As a result, during the exchange process, the formation of the reaction intermediate depends on the strengths of the bonds being formed or broken. The bond strengths of C–F and C–Cl bonds in different chlorofluoromethanes are reported in Table 2.⁴

Because the bond strengths of Cr–F and Cr–Cl are similar (~356 kJ mol⁻¹), the driving force for the reaction is the formation of the stronger C–F bond. The fluorination of CCl₄ to form CCl₃F requires 306 kJ mol⁻¹ of energy to dissociate the Cl–CCl₃ bond, which is more than compensated for by the formation of the F–CCl₃ bond (D(C–F) = 426 kJ mol⁻¹), eq 16. On the other hand, in the fluorination of CCl₃F to form CCl₂F₂, dissociation of the Cl–CCl₂F bond requires 305 kJ mol⁻¹, while the formation of the F–CCl₂F bond releases 460 kJ mol⁻¹, eq 17.

$$\operatorname{Cl} \xrightarrow{306} \operatorname{CCl}_3 \xrightarrow{\operatorname{CrF}_3} \operatorname{F} \xrightarrow{426} \operatorname{CCl}_3 \qquad E_a = 65 \text{ kJ mol}^{-1} (16)$$

$$\operatorname{Cl} \xrightarrow{305} \operatorname{CCl}_2 F \xrightarrow{\operatorname{Cr}_3} F \xrightarrow{460} \operatorname{CCl}_2 F \qquad E_a = 53 \text{ kJ mol}^{-1} (17)$$

Therefore because of the formation of the stronger C–F bond in the fluorination of CCl_3F , the exchange activation energy of CCl_3F is smaller than that of CCl_4 .

As is clear from Figure 2a,b, the production of CCl_2F_2 and CCl_3 from CCl_3F occurs simultaneously. Because the temperature dependences of the rates of production of CCl_2F_2 and $CClF_3$ are identical, it is highly unlikely that the production of CCl_3F_2 . Were it to have been sequential, a small delay in the rate of production of $CClF_3$ would have been expected. The intermediate that would allow bi-exchange, is a "bi-four-center" intermediate (intermediate 2).

Intermediate 2-The intermediate for di-substitution to form CCIF₃ from reaction of CCl₃F over fluorided chromium oxide.

The adsorption of CCl_3F on the 001 surface of CrF_3 for the bi-exchange reaction is shown in Figure 8. The Cl^- and F^- ions

Figure 8. A cut-away model of the (001) face of CrF_3 with a CCl_3F molecule adsorbed on it for bi-exchange reaction together with the product $CClF_3$ and the catalyst after the reaction.

and the smaller chromium ions are shown to scale. The CCl_3F molecule can adsorb with two of the Cl atoms interacting with two exposed Cr^{3+} ions. This will allow simultaneous abstraction of the Cl atoms from the adsorbed CCl_3F molecule and substitution of them by the F of the surface.

Another point of note in relation to Figure 1 is the production of CCl_4 from CCl_3F . This reaction would occur through a fourcenter intermediate (intermediate 3) resulting from the reaction of chemisorbed CCl_3F with partially chlorided catalyst (CrF_2 -Cl) shown in Figure 8.

Intermediate 3-The four centre intermediate for mono-substitution to form CCl₄ from reaction of CCl₃F over prefluorided Cr_2O_3 .

Temperature-Programmed Reaction of CCl_2F_2 over HF Prefluorided Cr_2O_3 . The temperature-programmed reaction of CCl_2F_2 over prefluorided chromium(III) oxide is shown in Figure 9. The catalyst is pretreated with HF, using 10% HF in He (25 cm² min⁻¹, 101 kPa) for approximately 1 h at 623 K.

The reactant gas, 5% CCl_2F_2 in He (25 cm³ min⁻¹, 101 kPa), is prepared by choosing the appropriate flow rates of both CCl_2F_2 and helium using flow meters. The temperatureprogrammed reaction profile (Figure 9) is obtained by passing CCl_2F_2 (5% in He) continuously over the catalyst while raising the temperature from ambient to 773 K at 5 K min⁻¹.

Only CClF₃ is observed. No CF₄ is detected. Therefore, whereas mono- and bi-exchange were observed with CCl₄ and CCl₃F as the reactants, bi-exchange is not observed with CCl₂F₂ as the reactant. Because the availability of the appropriately spaced two Cr³⁺ ions on the surface CrF₃ in the catalyst is the same and because the distance between the Cl atoms on CCl₂F₂ will be the same as that between two Cl atoms on CCl₄ and CCl₃F, the lack of observation of bi-exchange cannot be structural. It must therefore be energetic.

It could be a function of the reaction dynamics. If the first Cl/F exchange occurs fractionally before the second, then in the case of the reaction of CCl_2F_2 , the first product will be CCl_3F , the C–Cl bond strength of which is 361 kJ mol⁻¹. This high C–Cl bond strength probably prevents the near-simulta-

Time/ s

Figure 9. Temperature-programmed reaction of CCl₂F₂ over HF-pretreated Cr₂O₃.

Figure 10. Temperature dependence of the rate production of CClF₃.

neous bi-exchange from occurring. It also suggests that, whereas in the cases of the bi-exchange of CCl₄ and CCl₃F we had argued that bi-exchange was a concerted and simultaneous process, it is probable that the first exchange occurs fractionally earlier (say 10^{-10} s) than the second. (It should be noted that no exchange reaction is observed with CClF₃ as reactant (see later). This observation supports the C–Cl bond-strength argument.)

Another point to note in relation to Figure 9 is the production of CCl_3F from CCl_2F_2 . It is being suggested here that the chlorination reaction of CCl_2F_2 to CCl_3F occurs with the same mechanism as that involved in the fluorination reaction. Here, however, it can be seen from Figure 9 that production of $CClF_3$ only occurs after some significant production of $CClF_3$ is observed, which produces a considerably chlorided surface.

The Activation Energies for the Formation of CCl_3F and $CClF_3$. The activation energies for the interaction of chemisorbed CCl_2F_2 with surface and bulk F^- ions of the fluorided Cr_2O_3 to form $CClF_3$ can be obtained by line-shape analysis of the temperature dependence of the two product peaks at 570 and 600 K. The line-shape analysis technique for calculation of the activation energies of the above reactions is exactly the same one that was used for the CCl_3F and CCl_4 reaction. The crude deconvolution of the $CClF_3$ reaction profile used to calculate the exchange activation energies is shown in Figure 10. Again the reaction is assumed to be first-order in CCl_2F_2 (eq 18), and the rate of production of $CClF_3$ is given by eq 19.

$$\operatorname{CCl}_2 F_2 + F_{(s)}^{-} \rightarrow \operatorname{CCl} F_3 + \operatorname{Cl}_{(s)}^{-} \tag{18}$$

$$\frac{d[CClF_3]}{dt} = A_{ex} e^{-E/(RT)} [CCl_2F_2][F_{(s)}]$$
(19)

where [CCl₂F₂], [CClF₃], and [$F^-_{(s)}$] are the concentration of each species in units of mol cm⁻³ and A_{ex} and E are the A-factor and activation energy, respectively, for the exchange reaction. The concentrations of CCl₂F₂ and CClF₃ are given by the height of the mass spectrometer response.

Figure 11. Arrhenius plot of $\ln[h_2/(h_1A)]$ versus 1/T for the determination of the activation energy of CCl_2F_2 with surface F^- to form $CClF_3$.

Figure 12. Temperature-programmed reaction of CCIF₃ over prefluorided Cr₂O₃.

As explained in the previous equation, a plot of $\ln(h_2/(h_1A))$ versus 1/T gives the exchange activation energy. The surface exchange activation energy for the formation of CCIF₃ is obtained by plotting $\ln(h_2/(h_1A))$ versus 1/T in the temperature range 550–575 K for the deconvoluted [CCIF₃] line shape shown in Figure 10. The Arrhenius plot for the determination of the surface exchange activation energy is shown in Figure 11 from which a value of 84 kJ mol⁻¹ is obtained for the surface F/Cl exchange and 110 kJ mol⁻¹ for the exchange with F⁻ ions emanating at the surface from the bulk.

As Figure 10 clearly shows the mono-exchange reaction occurs at around 650 K. This is higher than mono-exchange reaction of CCl_4 and CCl_3F so the activation energy is expected to be higher, as we have found.

$$\operatorname{Cl} \xrightarrow{318} \operatorname{CClF}_2 \xrightarrow{\operatorname{CrF}_3} \operatorname{F} \xrightarrow{515} \operatorname{CClF}_2 \qquad E_a = 84 \text{ kJ mol}^{-1} \quad (20)$$

The C-Cl bond in CCl₂F₂ is 318 kJ mol⁻¹, which is higher than that in CCl₃F and CCl₄ (~305 kJ mol⁻¹), and although this is conpensenated for by a higher C-F bond strength (D(C-F) in CCl₂F₂ = 515 kJ mol⁻¹), the net effect is a higher activation energy for the exchange reaction.

Temperature-Programmed Reaction of CClF₃ over CrF₃ and CrCl₃. The final part of this study is to investigate the possibility of substitution of the chlorine atom of CClF₃ with a F^- atom. For this purpose, first the reaction of CClF₃ was investigated over fluoride chromia. Figure 12 is the temperature-programmed reaction mass spectrum obtained by flowing CClF₃ in He (5% CClF₃, 25 cm³ min⁻¹, 101 kPa) continuously over the catalyst (CrF₃), while raising the temperature from ambient to 773 K at a heating rate of 5 K min⁻¹.

Figure 12 clearly shows that no fluorination, chlorination, or decomposition reaction occurs. This is in agreement with the findings of Kemnitz et al.⁵ who have reported that fluorination of CClF₃ by CrF₃ does not occur. As explained earlier for our absence of the observation of the formation of CF₄ from CCl₂F₂, the value of the C–Cl bond strength of the CCl₃F molecule (361 kJ mol⁻¹) results in too high an activation energy for the exchange reaction.

Second, another TPR was conducted over $CrCl_3$ to investigate the possibility of the chlorination reaction on this catalyst. The chromium(III) oxide (0.2 g) was loaded in the microreactor; it was heated under He (25 cm³ min⁻¹, 101 kPa) to 623 K and was left at this temperature for 45 min and then was chlorided by 4% CCl₄ in He (25 cm³ min⁻¹, 101 kPa).

Figure 13 shows the temperature-programmed reaction of $CClF_3$ over $CrCl_3$ from room temperature to 773 K. There was no indication of any reaction. Therefore, the $CClF_3$ does not

Figure 13. Temperature-programmed reaction of CClF₃ over CrCl₃.

react on the $CrCl_3$ catalyst either. This is probably because this molecule has the highest C-F bond strength, and the exchange of the fluorine atom by a chlorine atom is likely to have a high activation energy.

Conclusion

The activation energies of 53 and 54 kJ mol⁻¹ for the simultaneous mono- and bi-exchange of the chlorine atoms of CCl₃F with the surface fluoride ions of a prefluorided chromia are lower than that found for CCl₄ (65 kJ mol⁻¹). It is probable that this is due to the stronger C–F bond formed in CCl₂F₂ and CClF₃, the C–Cl bond strengths in CCl₄ and CCl₃F being roughly the same.

It is suggested that mono-exchange occurs through a fourcenter intermediate in which the breaking of a C–Cl bond is compensated for by the formation of a C–F bond. Bi-exchange is thought to occur by the adsorption of CCl_3F by the bonding of two Cl atoms to two appropriately spaced Cr ions on the CrF surface.

Mono-exchange predominates by a factor of 10^2 even though the activation energies are nearly the same. It is suggested that this is due to the scarcity of specific sites on the CrF surface for the adsorption of CCl₃F through two chlorine atoms to two surface Cr ions.

Mono-exchange only is observed in the reaction of CCl_2F_2 , the activation energy for which is 84 kJ mol⁻¹. This higher activation energy is due to the higher C–Cl (~318 kJ mol⁻¹) bond strength in CCl_2F_2 than in CCl_3F (D(C-Cl) = 305 kJ mol⁻¹). The absence of the occurrence of bi-exchange producing CF_4 is thought to be due to the instantaneous formation of $CCIF_3$ on the intermediate, which is adsorbed through two chlorine atom where bi-exchange should have been possible. The C–Cl bond strength in $CCIF_3$ is 361 kJ mol⁻¹, this high value prohibiting bi-exchange. This result suggests that, whereas the results of bi-exchange of CCl_2F_2 suggest simultaneous two atom exchange, the detailed dynamics occur by one fluorine/chlorine exchange occurring with CCl_2F_2 being held in a bidentate mode on the Cr–F surface. The second exchange occurs immediately afterward without desorption of the reaction.

No exchange of the C–Cl bond of $CClF_3$ with the surface CrF was observed. This is probably due to the high bond strength of the C–Cl bond (~361 kJ mol⁻¹) in this molecule.

The mechanism presented here accounts for the formation of the fluorohydrocarbon (**134a**) by reaction of 1,1,2-trichloroethene with HF over a prefluorided Cr_2O_3 . Exchange of the chlorine atoms of the adsorbed chlorofluorocarbon occurs with the surface fluoride ions, the resulting surface chloride ion being replaced by exchange with the HF.

References and Notes

(1) Farrokhnia, A.; Sakakini, B.; Waugh, K. C. J. Catal. 1998, 174, 219.

(2) Farrokhnia, A.; Sakakini, B.; Waugh, K. C. Catal. Lett. 2001, 76 (3-4), 241.

(3) Gasser, R. P. H. An Introduction to Chemisorption and Catalysis by Metals; Clarendon Press: Oxford, U.K., 1985.

(4) West, R. C., Ed. *Handbook of Chemistry and Physics*, 67th ed.; CRC Press: Boca Raton, FL, 1987.

(5) Kemnitz, E.; Hansen, G.; Heb, A.; Kohne, A. J. Mol. Catal. 1992, 77, 193.