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Stereocontrolled Synthesis of Enantiopure
Substituted 4-Aminopyrrolidin-2-ones
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Abstract : The highly diastereoselective conjugate addition of N-benzylhydroxylamine and
benzylamine to o, f—unsaturated lactam 3 provided an efficient entry to enantiopure (4S,55)-4-amino-
5-hydroxymethylpyrrolidin-2-ones. © 1997 Elsevier Science Ltd.

Enantiomerically pure 4-aminopyrrolidin-2-ones are useful precursors of interesting bioactive
products such as y-lactam bridged dipeptides.! Furthermore, the related 3-aminopyrrolidines, readily
obtained by carbony! reduction, are constituents of several medicinal compounds,2 particularly of
antibacterial quinolones.3
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To synthesize the amino y-lactams 1 and 2, we anticipated efficient conjugate addition of primary
amines to unsaturated derivatives of (S)-pyroglutaminol 3 and 4,4 although N-nucleophiles have received
little attention in Michael addition to o,B-ethylenic lactams.5-7 Indeed, easy diastereoselective 1,4-addition
of N-alkyl hydroxylamines to 3 and 4 was already observed during previous studies as side-reaction,? and as
an extension of this work, we report here the addition of N-benzylhydroxylamine and N-benzylamine
following two types of experimental conditions.

Thus, N-benzylhydroxylamine was added to 3 either in refluxing toluene by method a (amine 1.2
equiv., 4 h) or by using a mixture of amine (1.8 equiv.) and H20 (5 equiv.) at room temperature (method b).
The method 3 led to the adduct 5 in 85% yield (Scheme 2) as a single diastereomer along with 10% unreacted
3. According to previous observations,8 the reaction proceeded faster in the presence of water (method b) ; it
went to completion in less than 2 h and gave slightly improved yield (90%). The same method was applied
to N-benzylamine addition to 3 giving rise to 6 in 88% yield.9
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Scheme 2

Starting from the N-Boc derivative 4 and N-benzylhydroxylamine, the aminolactam 7 was isolated in
68% yield by method a.10 This lower yield could be explained by the presence of a carbamate as nitrogen
protective group. This electron withdrawing group makes the lactam carbonyl more sensitive to nucleophilic
1,2-addition with ring opening. Thus, treatment of 4 with N-benzylamine following method b led to the
kinetically favoured 1,4-adduct 8 (60%), together with a small amount of the acyclic N-benzyl-3-
benzylamino-4-(tert-butoxycarbonyl)aminopentanamide derivative 9 (9%, Scheme 3).
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In each case, the nucleophilic attack occurred with high facial selectivity since only one 1,4-adduct
could be detected. These results can be compared with high stereoselectivity of phenylthioacetate and
malonatel1.12 or ethyl thioglycolate!3 Michael addition to o,B-unsaturated lactams derived from (S)-
pyroglutaminol.

The predictable 1,2 asymmetric induction led to assign a trans relationship between the two
substituents of the lactam ring and consequently the S configuration at the newly created asymmetric center.
This assignment was confirmed in 5, since a strong nOe was observed between the proton C-6-H and one of
the protons at C-4. Furthermore, we established chemical correlations between N-benzylhydroxylamine and
benzylamine adducts to prove their identical configuration at these asymmetric centers. The reductive
cleavage of the N-O bond of 5 and 7 was accomplished by treatment with TiCl3 at room temperature, 4

which furnished 6 (80%) and 8 (65%, Scheme 2), respectively.
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An enolization of the starting o.,B-unsaturated pyrrolidinones 3 and 4 cannot be excluded although the
compound 3 recovered after addition reaction was optically pure. In the case of rigid bicyclic 3, a
diastercospecific reprotonation at C-5 could be anticipated. Such a stereospecificity induced by the C-2
asymmetric center, should lead to retention of the 55 configuration according to previous results related to the
concept of "self-reproduction of chirality” by Seebach (Scheme 4).15-17
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However, an enolization of 4 before the conjugate addition could be responsible for the epimerization
at C-5. The optical rotations of the common deprotected products (45,55)-4-(N-benzyl-N-hydroxy)amino-5-
hydroxymethylpyrrolidin-2-one 1 and 4-(N-benzyl)amino-5-hydroxymethylpyrrolidin-2-one 2 (prepared
from 3 and 4 by acid hydrolysis of 5-8 with trifluoroacetic acid, 100%, Scheme 4) were compared to clarify
this point. A partial racemization was observed for the compound 2 synthesized from 4, following method
b.18.19

Therefore, these results prove the greater potential of bicyclic ¢,B-unsaturated y-lactam 3 for
asymmetric syntheses of 3-aminopyrrolidine containing compounds.

The application of this work to the preparation of interesting bioactive examples is under
investigation.
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