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The photochemistry of arene-linked phthalimides incorporating the carboxylate or thioether donor group
was investigated. Simple N-phthalimidophenyl alkanoates exclusively gave photoreduction (CO,H/H-
exchange) products. In contrast, ®-phthalimido-meta-phenoxy carboxylates underwent photodecarboxy-
lative cyclizations in yields of 6-48%. Likewise, catechol-linked derivatives furnished analogue cyclization
products in 18-38% yield. Using the photodecarboxylation protocol, macrocyclic target compounds with
ring sizes up to 17 could thus be realized. Two model phthalimides containing a thioether branch at the
ortho-position of the arene-linker gave the analogue seven-membered cyclization products in yields of
28% and 35%, respectively.

© 2011 Elsevier Ltd. All rights reserved.

The photochemistry of phthalimides has been intensively stud-
ied and numerous synthetically useful transformations with high
chemical and quantum yields have been developed.! Among these,
intra- and intermolecular photodecarboxylations (PDC) have been
established as simple and efficient alternatives to thermal organo-
metallic reactions.? Model reactions were furthermore realized on
macro- and micro-scales.>* We have recently described PDC cycli-
zations of w-phthalimidoalkynoates to give macrocyclic alkynes
with ring-sizes of up to 17.5 In the recent study, we expanded
the portfolio of this reaction and investigated the photochemistry
of related arene-linked phthalimides. Despite PDC-type reactions,
photoinduced electron transfer (PET) cyclizations of selected thio-
ether-containing compounds were additionally examined.®

Simple N-phthalimidophenyl carboxylic acids were initially
chosen for this study. Irradiations of their corresponding potas-
sium carboxylates 1a-e in aqueous acetone furnished solely the
‘simple’ decarboxylation (CO,H/H-exchange) products 2a-e inde-
pendent of the substitution pattern (Scheme 1, Table 1).” The
ortho- and meta-substituted carboxylates 1a and 1b gave the high-
est yields of 62% (2a) and 84% (2b), respectively, after short irradi-
ation times. As would be expected by the spatial separation of the
donor-acceptor couple (CO,~/Pht = N) by the rigid arene ring, the
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para-substituted analogue furnished 2c in only 8% yield after a
comparable time period. Consequently, prolonged irradiations
were applied for the extended carboxylates 1d and 1e and gave im-
proved yields of 28% (2d) and 15% (2e), respectively. The spectro-
scopic data of all products matched those reported in the
literature. As an example, the terminal CH3 group in 2e showed a
characteristic triplet at 0.95 ppm in the 'H NMR spectrum.®

In our previous investigation we demonstrated that w-phtha-
limido-ortho-phenoxy carboxylates undergo efficient PDC cycliza-
tions with ring-sizes up to 15 atoms.’ The corresponding
o-phthalimido-meta-phenoxy carboxylates 3a-d were conse-
quently investigated (Scheme 2, Table 2). To compensate for the
meta-substitution pattern in the ring closure step, longer carbon
linkers were specifically introduced. The pentylene (Cs) moiety fur-
nished the 11-membered macrocycle 4a in a low yield of just 6%
together with larger amounts of unidentified decomposition prod-
ucts. Yields steadily increased with increasing chain-length and
following this extension strategy, the 16-membered product 4d
was subsequently obtained in 48% yield. While the "H NMR spectra
were rather complex, all cyclization products 4a-d showed the
characteristic C-OH signal in their >*C NMR spectra at approxi-
mately 93 ppm.'° In all the cases examined, ‘simple’ decarboxyl-
ation products similar to 2 could be detected, but were not
isolated.

Catechol was additionally chosen as a central linker between two
flexible carbon chains. Four model compounds, 5a-d were prepared
and irradiated under PDC conditions (Scheme 3, Table 3). The ‘U-
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Scheme 1. Simple decarboxylation of 1a-e.

Table 1
Experimental details for PDC of 1a-e

Entry Substitution n Time (h) Yield of 2 (%)
1a Ortho 1 1 627
1b Meta 1 2 84
1c Para 1 2 8
1d Para 2 26 28
1e Para 3 24 15
2 From Ref. 9
K02C+\
O hv, 24 h
R — e
acetone/H,0
3a-d 4a-d

Scheme 2. Photodecarboxylative cyclizations of 3a-d.

Table 2
Experimental details for PDC cyclizations of 3a-d
Entry n Yield of 4 (%) Ring size
3a 5 6 11
3b 6 18 12
3c 9 38 15
3d 10 48 16
KO,C
\_);o
0 o) _man
O hv, 4 h
N
acetone/ H,O
5a-d 6a-d

Scheme 3. Photodecarboxylative cyclizations of 5a-d.

shape’ of the catechol spacer eases the necessary approach for a suc-
cessful cyclization. As a result, the cyclization products 6a-d were
isolated in moderate yields of 18-38% after just 4 h of irradiation.
All compounds showed complex "H NMR spectra but with distin-
guished signals for the aromatic isoindolinone group. In their '3C
NMR spectra, compounds 6a-d gave characteristic C-OH signals be-
tween 90 and 95 ppm.'! ‘Simple’ decarboxylation products were
again detected but could not be isolated in pure form.
Thioether-containing phthalimides can also be activated photo-
chemically for cyclizations.®'2 In contrast to the carboxylate sys-
tems 3 and 5 described above, the electron-donor moiety
remains in the product and is predominantly incorporated into
the macrocycle. When the two ortho-arene-linked phthalimides

Table 3

Experimental details for PDC cyclizations of 5a-d
Entry m n Yield of 6 (%) Ring size
5a 4 3 38 13
5b 4 6 25 16
5¢ 6 3 35 15
5d 8 3 18 17

SCH;3
Cqé : acetone : :g >):
7a,b 8a,b
Scheme 4. PET cyclizations of 7a and 7b.
Table 4

Experimental details for PET cyclizations of 7a and 7b

Entry R Time (h) Yield of 8 (%)
7a H 3 35
7b i-Pr 2 28

7a and 7b were irradiated in acetone for 2-3 h, cyclizations oc-
curred exclusively at the terminal SCHs-group and the seven-
membered products 8a and 8b were isolated in yields of 35% and
28%, respectively (Scheme 4, Table 4)."* In the '"H NMR spectrum,
the methylene protons in 8b showed two sets of doublets at
3.03/3.19 ppm and 3.53/3.89 ppm, respectively.'# For the iso-pro-
pyl-containing compound 7b, cyclization via competing C-H acti-
vation was not observed.”

The key-step in both mechanistic scenarios (Scheme 5) is an
intramolecular electron transfer from the respective donor moiety
to the triplet excited phthalimide, the latter populated by sensiti-
zation with acetone.!®!” For all carboxylate containing derivatives
1, 3 and 5, electron transfer generates an unstable carboxy radical
(path A) which undergoes rapid decarboxylation to the analogous
carbon radical. Trapping experiments with electron-deficient al-
kenes proved the existence of such radicals.’® In the cases of 3
and 5, protonation and biradical combination yields the desired
cyclization products 4 and 6, respectively. When cyclization is
not possible as with compounds 1, back electron transfer (BET)
provides a carbanion,'® which is protonated by water to furnish
the decarboxylation products 2.2° This ‘simple’ decarboxylation
was a minor route for all other carboxylates as well. For substrates
7, an alternative PET from the thioether results in a radical-ion pair
(path B). Proton rearrangement from the terminal SCH3-group fol-
lowed by radical combination subsequently gives the cyclization
products 8.512

In conclusion, the efficiency of PDC cyclizations depended crit-
ically on the substitution pattern of the arene and the extent of the
linking carbon chain(s). Short chains or remotely positioned car-
boxylates, as in compounds 1, solely gave decarboxylation. Ex-
tended carbon linkers can, however, compensate the
unfavourable meta-substitution as demonstrated for substrates 3.
The low yield and high degree of competing decomposition ob-
served during the formation of 4a suggests that the minimum
ring-size for successful cyclization may have been reached for this
compound. As for the catechol-linked derivatives 5, the ortho-sub-
stitution in combination with the flexible carbon linkers allows for
a close contact for electron transfer and cyclization. The notable
drop in yields for the larger rings may be caused by steric over-
crowding during the necessary biradical approach. Similar effects
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Scheme 5. Mechanistic scenarios.

were observed for anthranilic acid based amides and o,®-
dipeptides.
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