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and Matthias Beller* 

Dedication to Professor Dr. Lutz-Friedjan Tietze on the occasion of his 75th birthday. 

Abstract: A new class of palladium catalysts based on heterocyclic 

diphosphines are rationally designed and synthesized. Application of 

one of these catalysts allows for novel Markovnikov-selective 

carbonylation of non-activated alkynes with heteroarenes to give the 

corresponding branched α,β-unsaturated ketones in excellent yields 

(up to 97%) and regioselectivities (b:l up to 99:1). In addition to 

heteroarenes, other common nucloephiles (alcohol, phenol, amine 

and amide) furnish the desired carbonylation products smoothly in 

high yields. 

The development of ligands plays a key role in enabling new 

transformations and fine-tuning the chemo- or regioselectivity in 

homogenous catalysis. Illustrative examples include 

polymerizations, cross-coupling reactions, carbonylations, 

hydrogenations and metathesis.[1] Although a plethora of 

nitrogen- and phosphorous-based ligands have been developed 

over the last decades, their rational design to afford highly active 

catalyst systems, which can be easily prepared and modified, 

continues to be an important topic in this area.[2]  

Among the privileged ligand classes known, especially bi- 

and multidentate derivatives create highly stable and selective 

organometallic complexes.[3] In these cases, properties and 

performance can be varied by changing either the ligand 

backbone or the substituents on the donor (e.g. phosphorus or 

nitrogen) atoms through steric and electronic effects (Scheme 

1a).[4] Inspired by the valuable DPEphos ligand[5] and pyrrole-

based monophosphines (cataCxium® P series) in various 

carbonylative transformations and cross-coupling reactions,[6] we 

had the idea to design diphosphine ligands containing N,N’-

dipyrrolylmethane backbone (Scheme 1b). Advantageously, we 

expected these novel ligands to be conveniently prepared in 

two-steps. Variation of the heterocycle and the phosphine 

building blocks should generate related derivatives in a highly 

modular manner.  

Carbonylation reactions belong to the most important 

industrial applications in the area of homogeneous catalysis and 

a variety of value-added bulk and fine chemicals are available 

via this technology.[7] Since the original work of Reppe in the 

past century, [ 8 ]  carbonylation of alkynes with various 

nucleophiles such as H2O,[9] alcohols (O-nucleophiles),[10] thiols 

(S-nucleophiles)[11] and amines (N-nucleophiles)[12] have been 

extensively studied and numerous catalysts are available for 

producing all kinds of carbonyl compounds. On the other hand,  

 

Scheme 1. a) Ligand modification and b) design of DPMPhos ligands. 

the use of C-nucleophiles which creates synthetic important 

ketones has been investigated to a lesser extent. In fact, only 

one example utilizing indoles as C-nucleophiles in alkyne 

carbonylation reactions has been reported by Alper and co-

workers and this methodology is limited to activated alkynes.[13] 

To the best of our knowledge, Markovinkov selective 

carbonylations of alkynes with heteroarenes are unknown, even 

though the potential products that would arise from such 

reactions have broad utility in organic synthesis. In this respect, 

we report herein our recent investigations on the development of 

a general and efficient palladium catalyst for the Markovinkov-

selective carbonylation of unactivated alkynes. 

Some years ago, we reported the synthesis of 1-arylpyrrolyl- 

and –indolyl-2-phosphines, which have been also 

commercialized (cataCxium® P series).[6a] Notably, these ligands 

can be easily prepared by deprotonation at the α-position of the 

heterocycle, thus allowing an efficient modular synthesis of all 

kinds of related derivatives. In order to take advantage of this 

activation for the generation of bidentate ligands, we had the 

idea to use N,N’-dipyrrolylmethanes as a new scaffold. Indeed, 

without pre-halogenation of N,N’-dipyrrolylmethanes, ligands L1 

and L2 can be smoothly synthesized via directly lithiation with 
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two equivalent of nBuLi and subsequent coupling with 

chlorodiphenylphosphine and chlorodicyclohexylphosphine, 

respectively (Scheme 2a). A palladium complex was obtained by 

treating L1 with Pd(MeCN)2Cl2 in 1,2-dichloroethane. The 

structure of Pd(L1)Cl2 was confirmed by X-ray crystallography 

(Scheme 2b).[14] 

 

 

Scheme 2. a) Preparation of bis(2-(diphenylphosphanyl)-1H-pyrrol-1-

yl)methane; b) molecular structure of Pd(L1)Cl2 in the crystal. Displacement 

ellipsoids correspond to 30% probability. Hydrogen atoms and co-crystallized 

solvent are omitted for clarity. 

With the new phosphine ligands in hand, the carbonylation of 

1-octyne 1a with N-methylpyrrole 2a was investigated. We 

observed a high yield (88%) and good selectivity (b/l = 91:9) for 

the desired α,β-unsaturated ketone 3a in the presence of L1 

(bis(2-(diphenylphosphanyl)-1H-pyrrol-1-yl)methane). However, 

L2 bearing the electron-rich dicyclohexylphosphino groups, 

suppressed this reaction. Similarly, using the imidazolyl-based 

ligand L3, no desired product was obtained. Among the known 

diphosphines with aryl-(hetero)aryl backbones L4-L6, L4 and 

rac-binap L6 showed moderate reactivity. In contrast, applying 

DPEphos L7 and dppf L8 led to high yields of 3a (81% and 80%, 

respectively), while the more rigid ligand Xantphos L9 gave 

much worse result. Other bidentate phosphine L10 and common 

monodentate ligands such as PPh3 L11, PPh2Py L12, 

cataCxium® P series L13 and L14 all exhibited no activity for this 

carbonylation process. As expected, compared to the in situ 

system using the defined Pd(L1)Cl2 complex led to the desired 

product in comparable yield (86%) and good regioselectivity (b/l 

= 90:10).  

After optimizing the reaction conditions (see Supporting 

Information, Tables S1), we explored the general applicability of 

our novel catalyst and the substrate scope. Here, at first 

reactions of various alkynes 1 with N-methylpyrrole 2a were 
studied (Scheme 3). In addition to 1a, aliphatic alkynes such as 
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Figure 1. Ligand effect for Markovnikov-selective carbonylation of 1a with 2a. 

Reaction conditions: 1a (1.0 mmol), 2a (0.5 mmol), Pd(acac)2 (1.0 mol%), 

bidentate ligand (2.0 mol%) or monodentate ligand (4.0 mol%), p-TsOH (5.0 

mol%), CO (40 bar), toluene (1.0 mL), 70 °C, 12 h. Yields (3a and 3a’) and 

regioselectivities were determined by GC analysis using isooctane as the 

internal standard. 

3-phenyl-1-propyne 1b and cyclohexylacetylene 1c were 

converted smoothly to corresponding branched α,β-unsaturated 

ketone 3b and 3c in good yields and regioselectivities. 

Increasing the steric bulk of the terminal alkyne still led to good 

branched selectivity of product 3d in moderate yield (70% yield, 

87% b-selectivity). Aromatic alkynes like phenylacetylene 

reacted smoothly and furnished an excellent yield and b-

selectivity of the desired product 3e (88% yield and 99% b-

selectivity). Alkynes containing halogen and nitrile group were 

also efficiently converted into the desired products 3f and 3g 

with good regioselectivities. Notably, when a conjugated enyne 

was used, the double bond remained intact and only the triple 

bond was selectively carbonylated to the branched ketone 3h in 

81% yield with 99% b-selectivity. In addition to terminal alkynes, 

different internal alkynes were investigated in this transformation 

as well. The symmetrical alkyl and aryl alkynes underwent 

efficient carbonylation to afford the corresponding α,β-

unsaturated ketones 3i and 3j with high stereoselectivity. The 

carbonylation of an unsymmetrical alkyne, methyl 

phenylpropiolate, gave the product 3k in 56% yield with 99% E-

selectivity. Remarkably, 1,7-octadiyne also reacted smoothly 

and gave the dicarbonylation product 3l in moderate yield. To 
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note, all the C-H carbonylation reactions preferentially occurred 

at C2 position on the pyrrole. 

 

Scheme 3. Markovnikov-selective carbonylation with different alkynes. 

Reaction conditions: alkyne 1 (1.0 mmol), N-methylpyrrole 2a (0.5 mmol), 

Pd(acac)2 (1.0 mol%), L1 (2.0 mol%), p-TsOH (5.0 mol%), CO (40 bar), 

toluene (1.0 mL), 70 °C, 12 h. In each case, the yield of isolated compound 3 

is given, and the number in the parenthesis indicates the 3/3’ ratio determined 

by GC analysis. [a] Reaction at 90 °C. [b] Reaction at 100 °C for 20 h. E/Z 

ratio is determined by GC analysis. [c] Reaction at 90 °C for 20 h. E/Z ratio is 

determined by GC analysis. 

Next, we employed structurally diverse heteroarenes as 

nucleophiles (Scheme 4). For example, benzyl (Bn) protected 

pyrrole also gave a branched selective carbonylation product 3m 

in excellent yield.[15] Due to the importance of substituted indoles 

it is exciting that N-methylindole is a suitable substrate to afford 

the C3-carbonylated ketone in high yield and regioselectivity (3n, 

96% yield, 98% b-selectivity). Exploring various indole 

derivatives, we found that substituents including –Me (3o and 

3p), –OMe (3q), –Br (3r), –Cl (3s) and –F (3t) at different 

positions on the indole nucleus are all compatible with this 

catalyst system. The desired Markovnikov products were 

obtained exclusively at C3 position in 85%–97% yields. 

Moreover, pyridine-containing scaffold 2u also worked well 

under similar conditions to give the corresponding carbonylative 

product 3u in moderate yield (67% yield). Interestingly, even 

azulene led to a good yield of 71 % for 3v owing to its high 

nucleophilicity. 

To demonstrate the generality for this catalyst, alkoxy- and 

aminocarbonylations with diverse O- and N-containing 

nucleophiles were investigated. For example, carbonylation of 

phenylacetylene with 1-butanol and benzyl alcohol led to the 

corresponding branched esters 3w and 3x efficiently. 

Additionally, phenol also furnished the desired 

alkoxycarbonylation product 3y in excellent yield and branched 

selectivity. As an example of amine as nucleophile, N-

methylaniline worked well and the desired product 3z was 

afforded in high isolated yield and selectivity. Last but not least, 

a less nucleophilic substrate, such as caprolactam also reacted 

smoothly to give the synthetically interesting imide 3aa in 99% 

yield and b-selectivity.  

 

Scheme 4. Markovnikov-selective carbonylation with various nucleophiles: 

heteroarene, alcohol, phenol, amine and amide. Reaction conditions: 

phenylacetylene 1e (1.0 mmol), nucleophile 2 (0.5 mmol), Pd(acac)2 (1.0 

mol%), L1 (2.0 mol%), p-TsOH (5.0 mol%), CO (40 bar), toluene (1.0 mL), 

70 °C, 12 h. In each case, the yield of isolated compound 3 is given, and the 

number in the parenthesis indicates the 3/3’ ratio determined by GC analysis. 

[a] Reaction at 90 °C. [b] Reaction at 100 °C. 

Finally, we were interested in demonstrating the usefulness 

of our products as intermediates in organic synthesis. Starting 

from commercially available alkynes and heteroarenes, the 

substituted cyclopentanones (4a to 4f) can be readily accessed 

in a “one-pot” process when our carbonylation reaction is 

combined with Nazarov cyclization[16] (Scheme 5). To the best of 

our knowledge, this step-economical annulation process allows 

for the most effective generation of such polycyclic ring products. 

In addition, the α,β-unsaturated ketone can be further 

converted to γ-keto ester 5 in high yield via palladium catalyzed 

alkoxycarbonylation (Scheme 6).[3f] Notably, 5 is an analogue of 

Levulinic ester, which can be similarly used for further 

valorization.[17]  
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Scheme 5. Synthetisis of substituted cyclopentanones in one-pot. [a] at 90 
o
C 

in step 1. [b] with 10 mol% p-TsOH instead of HOTf in step 2. 

 

Scheme 6. Synthetisis of γ-keto ester. 

In summary, we developed the first palladium catalyst 

system for a Markovnikov-selective carbonylation of alkynes with 

heteroarenes. By applying the novel ligand L1 (bis(2-

(diphenylphosphanyl)-1H-pyrrol-1-yl)methane), a wide range of 

unactivated alkynes and heteroarenes as well as other 

nucleophiles, such as alcohol, phenol, amine and amide, are 

efficiently transformed into the corresponding branched α,β-

unsaturated products in good yields and often with high 

regioselectivity. The general applicability of this methodology is 

demonstrated by “one-pot” synthesis of polycyclic ring products. 

In view of the easy availability of the substrates, the efficiency, 

and the good regioselectivity, this novel catalyst system is 

expected to complement the current methods for carbonylations 

in homogenous catalysis and organic synthesis. 
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