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ABSTRACT: An asymmetric total synthesis of (-)-spirochensilide 
A has been achieved for the first time. The synthesis features a semi-
pinacol rearrangement reaction to stereoselectively construct the 
two-vicinal quaternary chiral centers at C8 and C10, a tungsten-
mediated cyclopropene-based Pauson–Khand reaction to install the 
C13 quaternary chiral center, and a furan-based oxidative 
cyclization to stereoselectively form the spiroketal motif.

Spirochensilide A (1, Figure 1)1 is a member of an emerging and 
biologically important class of natural products with a unique 
spirocyclic core,2 and has been isolated by Gao and co-workers from 
Abies chensiensis, which is an endemic Chinese plant.3 The crude 
extracts and metabolites of the Abies species have been found to 
possess various bioactivities, including anti-tumor, anti-microbial, 
anti-ulcerogenic, anti-inflammatory, anti-hypertensive, anti-tussive, 
and central nervous system activities.4 Biologically, 1 showed a 
moderate inhibitory effect on the NO production with 30% 
inhibition at the concentration of 12.5 μg/mL, indicating 1 could be 
a useful probe for study of inflammatory diseases.5
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Figure 1. Retrosynthetic analysis of spirochensilide A (1).

The structure of 1 was determined on the basis of NMR 
spectroscopic data and single-crystal X-ray diffraction analysis. The 
structure contains two pairs of vicinal all-carbon quaternary chiral 
centers6 (C8/C10 and C13/17), an unusual spiro[4.5]ring system 
(BC ring), and an anomeric spiroketal (EF ring).7 Natural products 

bearing both quaternary chiral centers and spirocycles can impose 
conformational constraints to reduce the conformational entropy 
penalty upon binding to a protein target in a favorable geometry.8 

Herein, we report our effort on the development of an approach 
for the asymmetric total synthesis of spirochensilide A (1). The 
synthesis features a semi-pinacol rearrangement and a tungsten-
mediated cyclopropene-based Pauson–Khand (PK) reaction as key 
steps.

Figure 1 illustrates our retrosynthetic analysis. We envisioned 
that the anomeric spiroketal of 1 could be derived from furyl alcohol 
A via an intramolecular oxidative cyclization.9 A was expected to 
be constructed from ketones B and C via a furyl acetaldehyde Aldol 
condensation10 as a key step. To construct the cyclopentenone 
bearing an all-carbon quaternary chiral center in intermediate B, we 
intended to employ the PK reaction11 of enyne D because this 
reaction has been successfully applied in our total synthesis of the 
nontriterpenoid propindilactone G.12 Enyne D was expected to be 
derived from aldehyde E with a pair of vicinal quaternary chiral 
centers at C8 and C10, which was envisioned to be derived from 
epoxide F through a semi-pinacol rearrangement.13 F could be 
prepared via a sequential Pd-catalyzed Sonogashira reaction and 
epoxidation from vinyl halide G, which in turn could be prepared 
via a biomimetic cyclization of the functionalized isoprenoid 
polyene H.14

Scheme 1. Diastereoselective synthesis of enyne 8a  
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aReagents and conditions: (a) TiCl4 (0.4 equiv.), CH2Br2 (epoxide 2 was 0.2 
M in CH2Br2), -35 oC, 1 h, 90%; (b) Pd(PPh3)2Cl2 (0.05 equiv.), CuI (0.03 
equiv.), DIPA (5.0 equiv.), HC≡CTMS (3.0 equiv.), THF, 50 oC, 16 h, 93%; 
(c) TBSCl (1.3 equiv.), imidazole (2.5 equiv.), DMF, rt, 15 h, 95%; (d) 
mCPBA (2.0 equiv.), DCM, -30 oC to 0 oC; then BF3·Et2O (0.05 equiv.), 
DCM, 0 oC, 1 h, 65%, 2 steps; (e) CeCl3 (1.5 equiv.), Grignard reagent 7 (1.5 
equiv.), THF, 0 oC, 30 min; (f) K2CO3 (5.0 equiv.), MeOH, rt, 16 h; (g) 
TBSOTf (1.5 equiv.), Et3N (3.0 equiv.), DCM, -78 oC to rt, 3 h, 76%, 3 steps.
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Our synthesis began by exploring the chemistry for an 
enantioselective preparation of enyne 8 (Scheme 1). We rationed 
that a Lewis acid-induced cyclization15 of polyenoid 2 could 
enantioselectively afford halogenated decalin16 3 bearing three 
stereogenic centers at C3, C5, and C10 via a concerted cyclization 
process.17 The selectivity results from the chair-like transition state 
achieved via a sequence of biomimetic epoxide-initiated cationic 
cyclization and nucleophilic bromination reaction. 

Experimentally, we found that vinyl bromide 3 could be obtained 
in 90% yield when acetylenic epoxide 218 of 97% ee was treated 
with TiCl4 (0.4 equiv.) in CH2Br2 at -35 oC for 1 h (Scheme 1),19 and 
unlike the previously reported protocols,20 the current reaction could 
be carried out on 50 g scale.

We next turned our attention to map out an effective 
stereoselective synthesis of aldehyde 6, which bears two vicinal 
quaternary chiral centers at C8 and C10. To this end, 3 was 
converted into alkyne 4 in an 88% overall yield by a sequence of 
conventional Sonogashira and silylation reactions. After 
epoxidation of 4 with mCPBA, the resultant epoxide, formed as a 
single diastereoisomer, could undergo the proposed semi-pinacol 
rearrangement via treatment with BF3·Et2O (0.05 equiv.)21 to afford 
6 in 65% yield. The reaction of 6 with Grignard reagent 7 in the 
presence of CeCl3

22 followed by a silylation afforded 8 in 76% 
overall yield.

Scheme 2. Pauson-Khand reaction of enyne 8a
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aReagents and conditions: (a) nBuLi (1.2 equiv.), NCS (1.2 equiv.), THF, -
78 oC to rt, 87%; (b) [Rh(CO)2Cl]2 (0.5 equiv.), CO (1.0 atm), nBu2O, 160 
oC, 48 h, 33%; (c) [Rh(CO)2Cl]2 (0.5 equiv.), CO (1.0 atm), DCE, 65 oC, 48 
h, 67%.

We then turned our attention to the synthesis of the 
cyclopentenone motif in 9 by the proposed PK reaction (Scheme 2). 
Initially, we attempted various Co-mediated PK reactions of 8; 
however, desired product 9 was not observed (see SI for details). We 
attributed this failure to the low reactivity of enyne 8, and its steric 
rigidity. Since enynes bearing a chloride as a σ-electron-
withdrawing group could promote polarization and thereby reduce 
the activation barrier of the Rh-catalyzed PK reaction,23 we prepared 
chloroenyne 10. However, under different optimized conditions, 11 
or 12 was obtained in 33% or 67% yield, respectively. The formation 
of 11 indicated the expected carbonylative annulation reaction had 
indeed proceeded and provided the desired C13 quaternary center, 
but the resultant product underwent a further Rh-catalyzed 
carbonylative C–H insertion24 to afford 11. While the formation of 
12 could be a result of a double bond isomerization followed by a 
PK reaction. The structures of 11 and 12 were confirmed by X-ray 
crystallographic analysis (see SI for details).

In 2005, Fox and co-workers reported a cyclopropene-based, Co-
mediated PK reaction25 for the stereoselective synthesis of 
structurally diverse cyclopropane-based cyclopentenones. We also 
considered the fact that the inherent strain of cyclopropene26 can 

increase its reactivity in PK reactions, and their defined chiral 
environment can influence the diastereoselective outcome of the PK 
reaction.27 Since the three-membered ring can be cleaved under mild 
conditions, we identified an alternative pathway to install the CD 
ring system into the target molecule 1.

Scheme 3. Synthesis of cyclopentenones 15a and 15ba  
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aReagents and conditions: (a) CeCl3 (1.3 equiv.), lithium reagent 13 (1.3 
equiv.), pentane:Et2O = 3:2, -98 oC to -60 oC, 2.5 h, 75%; (b) TESOTf (1.2 
equiv.), Et3N (3.0 equiv.), DCM, -78 oC to 0 oC, 2 h; then MeOH, K2CO3 
(10.0 equiv.), rt, 24 h, 98%; (c) W(CO)3(MeCN)3 (1.5 equiv.), EtOH:HMPA 
= 20:1, CO (1.0 atm), rt to 80 oC, 61% (15a:15b = 1:1); (d) Ni(COD)2 (1.1 
equiv.), 2,2'-bipyridine (1.2 equiv.), toluene, CO (1.0 atm), rt, 84%, 15a:15b 
=1:4; (e) Mo(CO)3(DMF)3 (1.5 equiv.), toluene, 60 oC, 30 min, 70%, 
15a:15b = 1:2.

With these chemistries in mind, we then applied this strategy for 
the synthesis of 15a. To this end, we have developed a 
diastereoselective approach for the synthesis enyne 14 via the 
reaction of aldehyde 6 with lithium reagent 1328 (see SI for details) 
in the presence of CeCl3 at -98 oC. The resultant secondary alcohol 
was protected as its TES ether followed by removal of TMS to 
afford 14 in 73% overall yield in two steps (Scheme 3). However, 
the annulation of enyne 14, under both the conventional PK reaction 
(Co2(CO)8) and PK-type reactions (with other metal complexes 
derived from Rh, Pd, Ir, or Ru), failed to afford 15a. To further 
explore the PK reactions with other types of metal catalysts, such as 
W(CO)3(MeCN)3,29 Ni(COD)2/bipy,30 and Mo(CO)3(DMF)3,31 we 
fortunately found out that when W(CO)3(MeCN)3 was used as the 
catalyst, 15a was isolated in ca. 30% yield, together with its 
diastereoisomer 15b in 30% yield. Other catalysts, such as 
Ni(COD)2/bipy or Mo(CO)3(DMF)3, could also provide 15a and 
15b, but in favor of 15b, although the overall yields were higher 
(Scheme 3). We also attempted to improve the yield by systematic 
investigation of the W(CO)3(MeCN)3-catalyzed PK reaction for the 
formation of 15a; no better results were obtained (see SI for details).

To complete the total synthesis of 1 (Scheme 4). Initially, we 
attempted to carry out the reductive cyclopropane ring-opening 
reaction by treatment of 15a with SmI2 or nBu3SnH. However, under 
such reaction conditions, 15a was converted to 16 through 16a, 
presumably because the orbitals of the double bond in 15a 
overlapped better with its carbonyl group than orbitals of its 
cyclopropane motif. To achieve the regioselective cyclopropane 
opening, 15a underwent a selective desilylation to remove its TMS 
via treatment with tBuOK,32 and the resultant cyclopropane then 
participated in a Pd/C-catalyzed regioselective hydrogenation to 
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afford ketone 17. 17 was then subjected to a Li/NH3-mediated 
regioselective reductive ring-opening reaction followed by aprotic-
quenching33 with dichloroethane (DCE) to afford 18 bearing the 
trans-fused bicyclic CD ring with the desired C13 stereogenic center 
in 76% yield over three steps.

Scheme 4. Synthesis of spirochensilide A 1a
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aReagents and conditions: (a) SmI2 (2.0 equiv.), THF:HMPA = 10:1, rt, 30 
min, 77%; or nBu3SnH (5.0 equiv.), AIBN (0.5 equiv.), PhH, 80 oC, 6 h, 44%; 
(b) tBuOK (7.5 equiv.), tBuOH, 85 oC, 4 d, 95%; (c) 5% Pd/C (0.2 wt., type 
87L), H2 (balloon), EtOH:EA = 1:1, rt, 12 h; (d) Li-NH3, THF, -78 oC, 15 
min; then quenched with DCE, 80%, 2 steps; (e) nBu2BOTf (2.0 equiv.), 
DIPEA (2.5 equiv.), DCM, -78 oC, then furyl acetaldehyde 19 (4.0 equiv.), -
78 oC to -50 oC, 1.5 h, 97%; (f) 2-fluoro-1-methylpyridin-1-ium tosylate (3.0 
equiv.), Et3N (10 equiv.), DCM, rt, 12 h; then neutral Al2O3, rt, 1 h, 75%; (g) 
Me2CuLi (2.0 equiv.), Et2O, -78 oC to -30 oC, 5 h, 86%; (h) KH (1.5 equiv.), 
MeI (4.0 equiv.), THF, rt to -78 oC, 81%; (i) LDA (1.2 equiv.), THF, -78 oC 
to 0 oC; then PhSeCl (1.3 equiv.), -98 oC, 15 min, 46% (77% brsm); (j) m-
CPBA (1.05 equiv.), Et3N (3.5 equiv.), DCM, -78 oC to rt, 87%; (k) DIBAL 
(2.0 equiv.), DCM, -78 oC to -10 oC, 3 h, 98%; (l) methylene blue (MB) 
(10-4 M), O2 (bubble), DCM, hv (tungsten lamp), 0 oC, 2.5 min; then 
ClCH2CO2H, H2O, MeCN, rt, 1 h, 88%; (m) TBAF·3H2O (3.0 equiv.), THF, 
rt, 15 min, 97%; (n) DMP (2.0 equiv.), NaHCO3 (20 equiv.), pyridine (15 
equiv.), DCM, rt, 20 min, 95%; (o) aq. 48%~51% HF, DCM:MeCN = 1:4, 
rt, 4 h, 94%.

To regioselectively install the trans-double bond between C17-
C20, 18 was reacted with nBu2BOTf/DIPEA, and the resultant 
enolate participated in an enol-borane-mediated aldol reaction34 
with TBS-stabilized furyl acetaldehyde 19 to afford 20 as a sole 
isomer in 97% yield. The observed excellent diastereoselectivity 
should be attributed to the formation of the chair-like transition state 
TS-A35 in the presence of bulky DIPEA,36 and the structure of 20 
was confirmed by X-ray crystallographic analysis of its ester 
derivative (see SI for details). Thus, further reaction of 20 with 2-
fluoro-1-methylpyridin-1-ium tosylate37 followed by a neutral 
Al2O3-mediated syn-elimination afforded enone 21 in 75% yield. 
The trans-configurated C17-C20 double bond in 21 was confirmed 
by 2D-NMR analysis.

To diastereoselectively generate the allylic alcohol in 23, enone 
21 underwent a cuprate-mediated 1,4-addition via treatment with 
Me2CuLi, and the resultant ketone was methylated (MeI/KH) to give 
ketone 22 bearing the desired C17 and C20 stereogenic centers (see 
SI for a DFT experiment to account for the diastereoselectivity). 
Thus, further treatment of 22 with LDA followed by reaction with 
PhSeCl gave a selenide, which was then selectively oxidized with 
m-CPBA and reduced with DIBAL to afford 23 in 66% yield over 
three steps. 

To complete the total synthesis, 23 bearing a TBS group38 was 
first oxidized by singlet oxygen (generated by irradiation of oxygen 
with tungsten lamp in the presence of methylene blue), and the 
resultant 4-oxo-2-alkenoic acid intermediate39 was then treated with 
ClCH2CO2H in MeCN to afford 24 in 88% yield. Selective 
desilylation of 24 with TBAF·3H2O followed by DMP-oxidation of 
the newly generated secondary alcohol afford a C9-ketone, which 
was further subjected to a desilylation with HF to afford 1 in 87% 
yield over three steps. The structure of synthetic spirochensilide A 
was confirmed by single-crystal X-ray diffraction, and its NMR and 
optical rotation data were in agreement with those reported in the 
literature. More than 150 mg of 1 was made in our first round of 
synthesis.

In summary, the total synthesis of (-)-spirochensilide A (1) has 
been accomplished for the first time in 22 steps from epoxide 2, with 
a total yield up to 2.2%. The keys to the success of the synthesis 
were the use of 1) a semi-pinacol rearrangement of epoxide 2 to 
stereoselectively generate the chiral aldehyde 6; 2) a rarely-
investigated tungsten-mediated cyclopropene-based PK reaction to 
form 15a, bearing the spiro-bicyclic core of 1; and 3) singlet 
oxygen-mediated oxidative cyclization of furyl alcohol 23 to form 
the anomeric spiroketal motif of 1. The developed chemistry paves 
the way to the stereoselective construction of this unprecedented 
triterpenoid scaffold, which bears two spirocyclic systems and up to 
four all-carbon quaternary chiral centers.
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