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ABSTRACT: The first intermolecular carbonyl arylations
via transfer hydrogenative reductive coupling are
described. Using rhodium catalysts modified by tBu2PMe,
sodium formate-mediated reductive coupling of aryl
iodides with aldehydes occurs in a chemoselective fashion
in the presence of protic functional groups and lower
halides. This work expands the emerging paradigm of
transfer hydrogenative coupling as an alternative to pre-
formed carbanions or metallic reductants in CX
addition.

Since the seminal work of Butlerov (1863),1a,b Reformatsky
(1887),1c and Grignard (1900),1d the use of pre-formed

organometallic reagents in carbonyl addition has remained a
cornerstone of chemical synthesis.2 Countless protocols for the
addition of non-stabilized carbanions and their equivalents
(e.g., arylboron reagents)3f,g to carbonyl compounds and
imines now exist, including enantioselective methods.3 Never-
theless, the requisite organometallic nucleophiles complicate
large-volume applications due to issues of safety, the frequent
requirement of cryogenic conditions, and the separation/
disposal of metallic byproducts. While metal-catalyzed
reductive coupling represents an alternative to discrete
organometallic reagents in carbonyl addition, the terminal
reductants often utilized in such processes are metallic (Zn,
Mn), toxic (CrCl2), pyrophoric (BEt3, ZnEt2, AlMe3), or
expensive/mass-intensive (R3SiH).

4 Using hydrogen, 2-prop-
anol, and formic acid, which are relatively benign, inexpensive,
low-molecular-weight reductants, diverse catalytic enantiose-
lective carbonyl and imine reductive coupling reactions were
developed in our laboratory,4b,d,e,g,i,l including aldol addition-
s,5a vinylations,5b allylations,4l,5c−e and propargylations.4l,5f,g

Here, we report the f irst examples of intermolecular carbonyl
arylation via metal-catalyzed transfer hydrogenation, representing
the f irst intermolecular carbonyl−aryl halide reductive couplings
beyond metallic reductants (Figure 1).6,7

Aside from the Nozaki−Hiyami−Kishi reaction,6,7 surpris-
ingly few intermolecular metal-catalyzed aryl halide−aldehyde
reductive couplings have been reported, all of which are
mediated by elemental zinc8 (or an Mn−Cr alloy)8c or are
conducted electrochemically.9 Reductive aldehyde arylations

via hydrogenation or transfer hydrogenation have not been
described, almost certainly due to competing hydrogenolysis of
the aryl halide.10 Despite this lack of precedent, a hydrogen-
mediated Grignard-type cyclization was recently developed in
our laboratory.11 While these conditions were not applicable to
intermolecular carbonyl reductive couplings, related redox-
neutral aryl halide−aldehyde couplings to form ketone
products have been reported.12 In these processes, Ar−X
oxidative addition is followed by carbonyl insertion to form a
metal alkoxide, which upon β-hydride elimination and H−X
reductive elimination returns the metal to its low-valent form.
It was posited that interception of the metal alkoxide derived
upon carbonyl arylation by 2-propanol or a formate salt might
enable reductive arylation to form secondary alcohol products.
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Figure 1. Classical carbonyl arylation and related catalytic reductive
couplings.
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With this strategy in mind, piperonal 1a (100 mol%) and 4-
iodotoluene 2a (200 mol%) were exposed to 2-propanol or
sodium formate in the presence of diverse palladium or
rhodium complexes. Using the catalyst derived from Rh(acac)-
(CO)2 (5 mol%) and PCy3 (11 mol%) with NaO2CH (300
mol%) as reductant and Cs2CO3 (100 mol%) as base in
dioxane (0.2 M) at 130 °C, the desired reductive coupling
product 3a was formed in 12% isolated yield (Table 1, entry
1). A range of other ligands were evaluated under these
conditions (Table 1, entries 1−8). It was found that the
catalyst formed in situ from Rh(acac)(CO)2 (5 mol%) and
tBu2PMe (11 mol%) delivered the benzhydryl alcohol 3a in
40% isolated yield (Table 1, entry 8). Increased efficiencies
were observed for reactions conducted in tert-amyl alcohol
(Table 1, entry 9) and dimethoxyethane (Table 1, entry 10),
which provided 64% and 72% isolated yields of 3a,
respectively. Deviation from the latter conditions did not
improve the yield of 3a (Table 1, entries 11−20). Lower
loadings of NaO2CH or 2a decreased the isolated yield of 3a.
NHC-modified rhodium complexes did not promote reductive
coupling.8g

To evaluate reaction scope, optimal conditions identified for
the formation of 3a were applied to aldehydes 1a−1u and aryl
iodides 2a−2u (Table 2). Both aromatic (1a−1p) and
aliphatic aldehydes (1q−1u) underwent reductive coupling
efficiently, and diverse functional groups, including those that
are incompatible with main-group organometallic reagents,
were tolerated. As illustrated in the formation of compounds

3b, 3f, 3j, 3o, and 3p, aryl iodides may be activated in the
presence of aryl chlorides and bromides. Additionally, as
illustrated by the formation of 3c−3e, 3h, 3j−3l, 3n, and 3o,
fluorine-containing functional groups are tolerated. Notably, 2-
fluoro- and 2-chloro-containing 1-iodobenzenes 2l and 2o
were converted to adducts 3l and 3o, respectively, without
competing aryne formation.13 The formation of products 3g, 3i
and 3s, which incorporate alcohol, carbamate, and sulfonamide
groups, respectively, demonstrates the tolerance of acidic OH-
and NH-containing functional groups. Adducts 3e, 3h, and 3o,
which incorporate aromatic N-heterocycles, are formed
efficiently, as are adducts 3i and 3m, which contain methyl
sulfide and methyl ester moieties. The tolerance of ortho-
substituted iodides, as demonstrated by the formation of
adducts 3c, 3e, 3j−3l, 3n−3p, 3r, and 3tin particular the
formation of adduct 3c, derived from an ortho,ortho-

Table 1. Selected Optimization Experiments in the
Rhodium-Catalyzed Transfer Hydrogenative Aldehyde
Arylationa

aYields are of material isolated by silica gel chromatography.
tBu2PMe·HBF4 was employed as ligand precursor. PtBu3 was used
as a 1.0 M solution in toluene. Lithium formate was used as the
monohydrate. The loading of bidentate ligands was 5.5 mol%. The
loading of dimeric rhodium pre-catalysts was 2.5 mol%. See
Supporting Information for further experimental details. bReaction
was conducted without Cs2CO3.

c75 °C in DME or 130 °C in
diglyme. d2a (150 mol%).

Table 2. Rhodium-Catalyzed Transfer Hydrogenative
Coupling of Aldehydes 1a−1u and Aryl Iodides 2a−2u To
Form Products of Reductive Arylation, 3a−3ua

aAll reactions were performed on a 0.20 mmol scale. Yield of material
isolated by silica gel chromatography. See Supporting Information for
further experimental details. b[RhCl(CO)2]2 (2.5 mol%) was used.
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disubstituted mesityl iodideis also notable. Finally, linear
and branched aliphatic aldehydes were converted to adducts
3q−3u without competing aldol dimerization. The primary
side reactions observed are reduction of the aldehyde,
dehydrohalogenation, or reductive dimerization of the aryl
iodide and ketone formation.12

To gain insight into the catalytic cycle, deuterium labeling
experiments were undertaken (eqs 1 and 2 in Scheme 1).
Exposure of the aldehyde deuterio-1a to 4-iodotoluene 2a
under standard reaction conditions resulted in the formation of
deuterio-3a, which completely retains deuterium at the carbinol
position (>95:5 2H) (eq 1). In a second experiment, aldehyde
1a and 4-iodotoluene 2a were subjected to standard reaction
conditions using NaO2CD (eq 2). The product 3a did not
incorporate deuterium. These results refute intervention of
ketone intermediates that might arise via β-hydride elimination
from the rhodium alkoxide derived upon carbonyl insertion
into the aryl−rhodium bond.14 Exposure of aryl ketones to the
standard reaction conditions results in only trace quantities of
carbonyl reduction product.
Based on the collective data, the following catalytic cycle is

proposed (Scheme 1, bottom). Rhodium(I)-mediated aryl
iodide oxidation addition15 delivers the arylrhodium(III)
complex I. Aldehyde coordination precedes insertion of the
aldehyde CO bond into the metal−aryl bond to form the
rhodium(III) alkoxide II.14 Counterion exchange provides the
rhodium(III) formate complex III, which upon β-hydride
elimination releases CO2 and forms the alkoxyrhodium(III)
hydride IV. Finally, O−H reductive elimination16 releases the
product of carbonyl arylation and returns rhodium to its low-
valent form. The role of Cs2CO3 appears to extend beyond the
deprotonation of tBu2PMe·HBF4. Lower isolated yields are
observed when other carbonate bases are used or the loading
of Cs2CO3 is decreased. Studies aimed at elucidating more
precise details of the reaction mechanism are underway.

In summary, we report the first example of reductive
carbonyl arylation using a non-metallic reductant, sodium
formate. This process is non-cryogenic and can be applied in
the presence of functional groups that are typically not
compatible with traditional main-group organometallic re-
agents. This work, along with other hydrogen-transfer-
mediated carbonyl reductive couplings developed in our
laboratory, defines a departure from the use of pre-metalated
reagents in chemical synthesis. Future studies will focus on
development of related transfer hydrogenative couplings of
vinylic and saturated alkyl halides.
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