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A convergent synthesis of the tetrasaccharide subunit in the proposed structure of durantanin I is reported.
The signature step is represented by the unique assembly of apiofuranoside ring by the sequential Pd Ru
metal catalysis. Per-dihydroxylation at the late stage delivered the target compound in a highly efficient
manner. In addition, a tetrasaccharide derivative possessing unnatural apiose unit was also synthesized
with comparable efficiency to that for the natural form.
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Triterpenoid saponins are found in a wide variety of dicoty-
ledonous plants as a constituents of the cell membrane. Their
diverse structures and unique biological/pharmacological
activities have drawn considerable attention not only from
the field of natural product chemistry but also from that of
synthetic organic chemistry.1 Durantanin I, a member of
triterpenoid-type saponin, was isolated from the leaves of
Duranta repens by Hiradate and co-workers.2,3 This com-
pound exhibits significant plant growth inhibitory activities.
Its structure was elucidated as polygalacic acid-3-O-β-D-
glucopyranoside combined with unique tetrasaccharide
subunit consisting of 28-O-[α-L-rhamnopyranosyl-(1 ! 30)-
β-D-apiofuranosyl-(1 ! 4)-α-L-rhamnopyranosyl-(1 ! 2)-
α-L-arabinopyranoside] (Scheme 1). This tetrasaccharide
moiety bearing an apiofuranose residue poses a great syn-
thetic challenge. However, access to this fragment has
remained unknown, despite previous studies on the prepa-
ration of various apiofuranose glycosides.4 Here, we wish
to report a first synthesis of the proposed structure for this
tetrasaccharide moiety. A key event involves palladium-
catalyzed asymmetric intermolecular hydroalkoxylation of
alcohol nucleophile in combination with the ring-closing-
metathesis that assembles the apiofuranose unit in a highly
efficient manner. 5–7

On the basis of our own experience in the de novo
β-apiofuranoside synthesis,6 we envisaged that the
tetrasaccharide unit can be constructed from the tetraene pre-
cursor 1 by the late-stage per-dihydroxylation.8 The proposed
substrate-driven stereoselectivity of the dihydroxylation of
BCD ring is verified by the related studies.6,8 In addition, we
were confident that the stereoselectivity of the unprecedented
dihydroxylation of the ring A may be effectively controlled
by the cis-1,2-bis-alkoxy groups installed in the ring A. The
intermediate 1 can be prepared in a convergent manner from

the allylic alcohol 2 and alkoxyallene 3 by way of the Pd Ru
sequential metal catalysis discussed above.6 Notably, a skele-
ton of the β-D-apiofuranoside (ring C) is welded by this trans-
formation. Both of these intermediates can be readily derived
from commercially available 3,4-di-O-acetyl-6-deoxy-L-
glucal 4 by Lewis acid-mediated coupling reaction (Ferrier
reaction).9 Of the two reactions, construction of the AB ring
seemed to be more challenging because it generates a disac-
charide component. Thus, we decided to explore first the
assembly of 3.
The initial stage of the work commenced with the asym-

metric synthesis of the cyclic benzylic acetal intermediate
10 (Scheme 2). For example, commercially available alco-
hol 7 (1 equiv) was combined with benzyloxyallene
8 (2 equiv) in the presence of Pd2(dba)3 (2.5 mol %), ligand
(S,S)-L (5 mol %) and catalytic amount of Et3N (0.1 equiv)
in CH2Cl2 at 20 �C. As depicted in Scheme 1, this reaction
successfully produced acyclic acetal 9 in ~99% yield. Sub-
sequent ring-closing-metathesis (RCM) reaction employing
first generation Grubbs catalyst at 40 �C gave cyclic acetal
10 in 86% yield and 95% ee (for the determination of ee
and absolute configuration, see the SI). At this point, we
reasoned that compound 6 could be obtained from 10 by
way of syn-epoxide formation (compound 11) and the ensu-
ing base-mediated opening reaction. As anticipated, initial
efforts toward direct epoxidation (such as m-
chloroperbenzoic acid or dimethyldioxirane) provided the
isomeric anti-product as the major product. This unsuccess-
ful preliminary result led us to consider a well-known pro-
tocol mediated by the bromohydrin formation.10 Indeed,
reaction of 10 with N-bromosuccinimide (2.5 equiv) in
dimethylsulfoxide/H2O and the subsequent addition of NaH
(1.5 equiv) generated the desired syn-epoxide 11 in 69%
(over two steps). Treatment of this compound with strong
base (such as t-BuLi) failed to produce 6 in a reproducible
manner. Thus, we decided to rely on an indirect method†These authors contributed equally to this work.
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producing allylic alcohol from the epoxide precursor.11 Fol-
lowing a related protocol, epoxide 11 was first treated with
(PhSe)2 (0.8 equiv) and NaBH4 (1.6 equiv) in EtOH. Sub-
sequent oxidation with H2O2 under reflux successfully gave
allylic alcohol 6 in 75% yield (over two steps).12 Conver-
sion of the alcohol into the benzyl ether and the subsequent
Os-catalyzed dihydroxylation reaction produced cis-1,-
2-arabinopyranoside 60 in 81% yield (over two steps) as a
single diastereomer, as anticipated. The relative and abso-
lute stereochemistry of this compound were rigorously
established by the comparison of the spectral data with the
literature values (see the SI).13

With allylic alcohol 6 in hand, preparation of disaccha-
ride (AB ring) was then investigated. Initial efforts using
strong Lewis acid-mediated Ferrier-type glycosylation
showed only formation of untractable mixture of com-
pounds, presumably due to the instability of the anomeric
centers in 12 (Scheme 3). Notably, employing
Pd(MeCN)2Cl2 (10 mol %) catalyst based upon Galan’s
work14 generated 12, albeit in low ~20% yield. Increasing
the catalyst loading (30 mol %) under diluted condition in
CH2Cl2 delivered 12 in significantly higher 84% yield as
an inseparable mixture of two anomers (α:β = 8:1).15 Sub-
sequent deacetylation using catalytic K2CO3 (0.2 equiv)
proceeded uneventfully to produce 13 in diastereomerically
pure form in 81% yield after column chromatography.
From this allylic alcohol, alkoxyallene 3 was prepared via a
two-step event combining propargylation and base-
catalyzed isomerization16 in 68% yield (over two steps).
Unlike 6, achiral allylic alcohol 5 was smoothly converted

to the corresponding acetal 14 in 80% yield by the Ferrier-
type glycosylation using sub-stoichiometric amount of
BF3�Et2O (0.4 equiv). Deacetylation of this compound pro-
vided alcohol 15 in 87% yield. Introduction of O-benzyl
group using NaH (1.2 equiv) and BnBr (1.2 equiv) followed
by desilylation reaction employing TBAF (1.2 equiv) gener-
ated alcohol substrate 2 in 80% yield (over two steps,
Scheme 4)
Having secured the coupling partners 2 and 3, we exam-

ined the key sequential catalysis that assembles
furanoglycoside (ring C). As depicted in Scheme 5, acyclic
acetal 16a was obtained from 2 and 3 in 94% yield by
employing Pd2(dba)3 (2.5 mol %) and (R,R)-L (5 mol%) at
40 �C. The subsequent RCM reaction employing first genera-
tion Grubbs catalyst (10 mol %) at 40 �C gave the desired
tetrasaccharide 1 as the exclusive diastereomer in 95% yield
(dr = 24:1).17 Final per-dihydroxylation reaction of this com-
pound using OsO4 (5 mol %) and N-methylmorpholine oxide
(NMO) (13 equiv) produced octa-ol 17a in 81% yield as a
single diastereomer. Due to the troublesome separation from
residual NMO, this compound was converted into the per-
acetyl derivative 18a. This task was accomplished in 75%
yield by the treatment of 17a with Et3N (16 equiv), Ac2O
(10 equiv) in the presence of N,N-dimethylaminopyridine
(1 equiv). Thus, the target compound 18a was obtained from
benzyloxyallene 2 in 14 (longest linear) steps. Remarkably,

Scheme 1. Retrosynthetic analysis of durantanin I.

Scheme 2. Synthesis of intermediate 6.

Scheme 3. Preparation of the alkoxyallene 3.
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the chemoselective metal catalysis allowed for the facile syn-
thesis of potentially labile tetraene 1, which was per-
dihydroxylated at the late stage to deliver the desired target
octa-ol 17a in a highly efficient manner.
In addition to the natural form 17a, its unnatural analog

17b possessing β-L-apiofuranoglycoside was also easily
synthesized by simply changing the ligand to the enantio-
meric (S,S)-L form for the palladium-catalyzed hydro-
alkoxylation reaction (Scheme 6). This reaction required
somewhat higher catalyst loading (10 mol %) for the com-
plete conversion. Nevertheless, the desired compound 10

was obtained in pure form after RCM reaction in 90% yield
over two steps (dr = 1:13).17 The subsequent per-
dihydroxylation with OsO4 (5 mol %) and NMO (13 equiv)
gave octa-ol 17b in 83% yield, which was also converted
into the per-acetyl derivative 18b in 70% yield. This facile
synthesis of the diastereomeric form illustrates another ben-
eficial feature of the proposed synthesis, which should find
further use for the derivatization of the natural products.

In summary, the first synthetic route to the tetra-
saccharide subunit of durantanin I and its diastereomer was
devised. The key reaction utilizes the Pd-catalyzed hydro-
alkoxylation of alcohol followed by Ru-catalyzed ring-closing-
metathesis reaction. Currently, we are working on the total
synthesis of durantanin I as well as expanding the utility of the
sequential metal catalysis for the synthesis of other saponin
oligosaccharides.
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