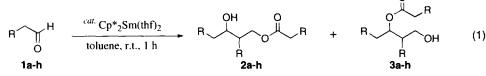


Tetrahedron Letters 39 (1998) 6901-6902

TETRAHEDRON LETTERS


Trimerization of Aliphatic Aldehydes to 1,3-Diol Monoesters Catalyzed by Cp*₂Sm(thf)₂

Akira Miyano, Daisuke Tashiro, Yumi Kawasaki, Satoshi Sakaguchi and Yasutaka Ishii* Department of Applied Chemistry, Faculty of Engineering & High Technology Research Center, Kansai University, Suita, Osaka 564-8680, Japan

Received 27 April 1998; revised 2 July 1998; accepted 10 July 1998

Abstract : Aliphatic aldehydes underwent trimerization in the presence of a catalytic amount of $Cp_2^*Sm(thf)_2$ under ambient conditions to form 1,3-diol monoesters in good yields. For example, the reaction of acetoaldehyde catalyzed by $Cp_2^*Sm(thf)_2$ gave 4-acetoxy-2-butanol (**2a**) and 3-acetoxy-1-butanol (**3a**) in 86% yield. © 1998 Elsevier Science Ltd. All rights reserved.

The trimerization of aldehydes, which produces 1,3-diol monoesters, is known to be facilitated by a weak base such as magnesium alkoxide¹ and by polynuclear carbonylferrates.² Recently, the aldol reaction of aldehydes is efficiently catalyzed by Ln(O'Pr)₃, in particular La(O'Pr)₃, under mild conditions,³ while lanthanide compounds such as EtLnI (Ln = Pr, Nd, Sm) catalyze the Tishchenko reaction of aldehydes.⁴ In addition, SmI₂ is reported to catalyze the Tishchenko reduction of β -hydroxy ketones with aldehydes⁵ and the Reformatsky-type reaction of bromo acetates.⁶ Similar Tishchenko reduction of β -hydroxy ketones with aldehydes has also been catalyzed by Cp₂ZrH₂.⁷ In recent years, it has been reported that normal and asymmetrical aldol-Tishchenko reactions of aldehydes with ketones are respectively promoted by BuTi(O'Pr)₄Li⁸ and by asymmetric heterobimetallic catalysts consisted of La and Li.⁹ However, there has been little study on the trimerization of aldehydes is catalyzed by samarium complexes such as Cp*₂Sm(thf)₂.¹⁰ In the course of this study, we found that Cp*₂Sm(thf)₂ catalyzes the trimerization of alightatic aldehydes at room temperature to give 1,3-diol monoesters in fair to good yields. In this paper, we wish to report the trimerization of aldehydes to 1,3-diol monoesters catalyzed by Cp*₂Sm(thf)₂ (Eq. 1).

A typical reaction is carried out as follows. To a solution of $Cp*_2Sm(thf)_2$ (0.1 mmol) in toluene (1 mL) was added acetaldehyde (1a) (3 mmol), and the mixture was stirred under ambient conditions for 1 h. After quenching with wet ether, the solvent was removed under reduced pressure. Column chromatography on silica gel, with hexane/ethyl acetate (4/1 v/v %) gave an 81:19 mixture of 4-acetoxy-2-butanol (2a) and 3-acetoxy-1-butanol (3a) in 86% yield. The ratio of 2a and 3a was ditermined by GC and ¹H-NMR.

Table 1 shows the representative results for the trimerization of **1a** by various lanthanide compounds. $Cp*_2Yb(thf)_2$ also promoted the present reaction, but it was slightly less active than the corresponding samarium complex (Run 2). Although the amount of $Cp*_2Sm(thf)_2$ was halved, the results were almost the same as those of Run 1 (Run 3). To improve the selectivity for the trimerization of **1a**, the reaction was carried out at 0 °C under these conditions. However, the ratio of **2a** to **3a** was not improved as expected (Run 4). SmI₂ did not catalyze the trimerization of **1a** at room temperature, but when the reaction was carried out at 50 °C, about a 1:1 mixture of **2a** and **3a** was obtained in 74% yield (Run 5).

The trimerization using a samarium (III) compound as catalyst was examined. The reaction of **1a** by $Sm(O^{i}Pr)_{3}^{11}$ which is thought to act as a base rather than a Lewis acid afforded a 75:25 mixture of **2a** and **3a** in

Run	Catalyst	Solvent	Temp. / °C	Total Yield / %	Ratio of 2a / 3a
1	Cp* ₂ Sm(thf) ₂	toluene	r.t.	86	81/19
2	Cp* ₂ Yb(thf) ₂	toluene	r.t.	59	73 / 27
3 ^b	Cp* ₂ Sm(thf) ₂	toluene	r.t.	84	77 / 23
4	$Cp*_2Sm(thf)_2$	toluene	0	63	80 / 20
5	Sml ₂	THF	50	74	51/49
6	Sm(O ⁱ Pr) ₃	THF	r.t.	70	75/25
7	$Sm(OTf)_3$	THF	r .t.	no reaction	
8	SmI ₃	THF	50	trace	

 Table 1. Trimerization of Acetaldehyde (1a) to 4-Acetoxy-2-butanol (2a) and

 3-Acetoxy-1-butanol (3a) Catalyzed by Various Lanthanoid Compounds^a

^{*a*} **1a** (3 mmol) was allowed to react in the presence of catalyst (0.1 mmol) in toluene (1 mL) at room temperature for 1 h under Ar atmosphere. ^{*b*} Cp*₂Sm(thf)₂ (0.05 mmol) was used.

70% yield, while $Sm(OTf)_3$ which serves as a Lewis acid did not catalyze the trimerization of **1a** (Runs 6 and 7). Unlike SmI_2 , SmI_3 was inactive even at 50 °C (Run 8). Okano *et al.* have recently reported that $La(O^iPr)_3$ promotes efficiently the aldol reaction of aliphatic aldehydes at 0 °C to give the corresponding aldols in good yields,³ but the formation of a trimerization product is not indicated.

On the basis of these results, a variety of aldehydes were allowed to react in the presence of $Cp*_2Sm(thf)_2$ at room temperature for 1 h (Table 2).

Aldehydes, 1b-1f, were trimerized in the same way as 1a to give the corresponding 1,3-diol monoesters, 2b-2f and 3b-3f, in good yields. For instance, propanal (1b) was trimerized to form 1,3-diol monoesters, 2b and 3b, in about a 3:1 ratio in 82% yield. The resulting monoesters 2b as well as 3b were found to consist of a 1:1 diastereoisomeric mixture. The trimerization of butanal (1c) and pentanal (1d) took place in a similar manner as 1b to give the corresponding 1,3-diol monoesters. Hexanal (1f) afforded monoesters, 2f and 3f, in a slightly lower yield (51%) (Run 5).

Run	Aldehyde			Product (Yield / %) ^b		Ratio of 2/3
1	P~~H	R = CH ₃	(1b)	2b + 3b	(82)	73 / 27
2	0	$R = C_2H_5$	(1c)	2c + 3c	(87)	76 / 24
3		$R = {}^{n}C_{3}H_{7}$	(1d)	2d + 3d	(95)	70 / 30
4		$R = {}^{i}C_{3}H_{7}$	(1e)	2e + 3e	(71)	86 / 14
5		$R = {}^{n}C_{4}H_{9}$	(1f)	2f + 3f	(51)	82/18

Table 2. Trimerization of Various Aldehydes to 1,3-Diol Monoesters Catalyzed by Cp*2Sm(thf)2^a

^{*a*} Aldehyde (3 mmol) was allowed to react in the presence of $Cp*_2Sm(thf)_2$ (0.1 mmol) in toluene (1 mL) at room temperature for 1 h under Ar atmosphere. ^{*b*} Aldehydes were almost consumed in every run.

Acknowledgment This work is supported by a Grant-in-Aid for Scientific Research (No. 10132262) on Priority Areas (No. 283, "Innovative Synthetic Reactions" from Monbusho.

References and Footnotes

- 1. Kulpinski, M. S.; Nord, F. F. J. Org. Chem. 1943, 8, 256-270.
- 2. Ito, K.; Kamiyama, N.; Nakanishi, S.; Otsuji, Y. Chem. Lett. 1983, 657-660.
- 3. Okano, T.; Satou, Y.; Tamura, M., Kiji, T. Bull. Chem. Soc. Jpn. 1997, 70, 1879-1885.
- 4. Yokoo, K.; Mine, N.; Taniguchi, H.; Fujiwara, Y. J. Organomet. Chem. 1985, 279, C19.
- 5. Evans, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1990, 112, 6447-6449.
- 6. Molander, G. A.; Etter, J. B. J. Am. Chem. Soc. 1987, 109, 6556-6558.
- 7. Umekawa, Y.; Sakaguchi, S.; Nishiyama, Y.; Ishii, Y. J. Org. Chem. 1997, 62, 3409-3412.
- 8. Mahrwald, R.; Costisella, B. Synthesis, 1996, 1087-1089.
- 9. Yamada, Yoichi M. A.; Yoshikawa, N.; Sasai, H.; Shibasaki, M. Angew. Chem. Int. Ed. Engl. 1997, 36, 1871-1872.
- 10. Takeno, M.; Kikuchi, S.; Morita, K.; Nishiyama, Y.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 1995, 60, 4974-4975.
- 11. Sm(O'Pr)₃ was purchased from High Purity Chemicals Laboratory Co.Ltd..