Hydrogenation of CO₂ to formic acid in the presence of the Wilkinson complex

N. N. Ezhova,^a N. V. Kolesnichenko,^b* A. V. Bulygin,^b E. V. Slivinskii^b, and S. Han^c

^aInstitute of High Temperatures, Russian Academy of Sciences, 13/19 ul. Izhorskaya, 127412 Moscow, Russian Federation. Fax: +7 (095) 485 0922
^bA. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky prosp., 119991 Moscow, Russian Federation. Fax: +7 (095) 230 2224
^cKorean Institute of Science and Technology, 130-650 Seoul, Korea. Fax: (+82 2) 958 5229

Formic acid was synthesized in a high yield at room temperature in the presence of the Wilkinson complex and an excess of PPh₃. The catalytic properties of the rhodium complex depend strongly on the reaction conditions. The mechanism of the rhodium catalyst deactivation was studied by the kinetic method and ³¹P NMR spectroscopy. The methods for the stabilization of the rhodium catalyst were found.

Key words: hydrogenation, carbon dioxide, formic acid, Wilkinson complex, triphenylphosphine, ³¹P NMR spectroscopy.

Hydrogenation to formic acid is an attractive method for CO_2 fixation because only 1 mole of H_2 is needed for the formation of formic acid and the reaction occurs without oxygen loss to CO_2 . The process is thermodynamically unfavorable¹ but can result in a high yield in the presence of tertiary amines binding the acid

 $CO_2 + H_2 + Et_3N \rightarrow HCOOH \cdot NEt_3.$

Two main approaches to this reaction are presently known. Formic acid is obtained under supercritical conditions in the presence of the ruthenium complexes.² In solutions of the rhodium complexes modified by the $R_2P(CH_2)_nPR_2$ bidentate phosphine ligands, the process is carried out at room temperature and a low pressure.³ This is precisely the direction of studies which presently seems most promising from the viewpoint of utilization of carbon dioxide and a decrease in its emission. In this work, the results of studying CO₂ hydrogenation in the presence of the Wilkinson complex (RhCl(PPh₃)₃) are presented. The conditions under which the reaction occurs with a high yield were found, and the routes of possible deactivation of catalytically active complexes were studied.

Experimental

The hydrogenation of CO_2 was carried out at 25 °C in a stainless steel autoclave (150 mL) with an electromagnetic stirrer. Before the reaction, the rhodium complex with the ligands was dissolved upon stirring in a solvent—NEt₃ mixture in an

atmosphere of one of the following gases: air, argon, CO_2 , or H_2 . Then H_2 and CO_2 were consecutively introduced into the reactor until a specific pressure was achieved. This moment was considered as the beginning of the reaction. Samples of the liquid product, which was spectroscopically analyzed, were taken during the reaction. Formic acid was detected by ¹H NMR spectroscopy, and products of transformation of triphenyl-phosphine and triphenylphosphine-rhodium complexes were detected by ³¹P NMR spectroscopy. Dimethylformamide (¹H) and triphenyl phosphate (³¹P) were used as internal standards. Products precipitated from the solution were molded with KBr to form pellets and analyzed by IR spectroscopy. NMR and IR spectra were recorded on Varian (200, 300, and 600 MHz) and MIDAC FTIR instruments, respectively.

The efficiency of the catalyst operation was estimated from two parameters: the achieved concentration of formic acid and the turnover number of the catalyst (*TON*), which is equal to the ratio of the number of moles of the product formed per mole of the catalyst used.

The RhCl(PPh₃)₃,⁴ HRh(PPh₃)₄,⁵ Rh(acac)CO₂,⁶ HRh(CO)(PPh₃)₃,⁷ and [RhCl(CO)₂]₂⁸ complexes and the ligand etriolphosphite (ETPO)⁹ were synthesized using known procedures. Commercial reagents (Fluka) RhCl₃, PPh₃, 2,2'-di-pyridyl (2,2'-bipy), bis(1,4-diphenylphosphino)butane (dppb), bis(1,2-diphenylphosphino)ethane (dppe), OPPh₃, PBuⁿ₃, and DMSO were used without additional purification. Triethylamine was distilled before use.

Results and Discussion

The results of CO_2 hydrogenation to formic acid using various ligands are presented in Table 1. Formic acid is

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2008–2012, December, 2002.

1066-5285/02/5112-2165 \$27.00 © 2002 Plenum Publishing Corporation

Entry	Rh complex	Ligand	ΤΟΝ	[HCOOH \cdot NEt ₃] /mol L ⁻¹	
1	Rh(acac) (CO) ₂	_	0	0	
2	$[RhCl(CO)_2]_2$	_	0	0	
3	RhCl ₃	_	0	0	
4	$HRh(PPh_3)_4$	_	40	0.04	
5	HRh(CO)(PPh ₃) ₃	_	60	0.06	
6	RhCl(PPh ₃) ₃	_	330	0.33	
7	$Rh(acac)(CO)_2$	2,2-bipy	0	0	
8	$Rh(acac)(CO)_2$	OPPh ₃	0	0	
9	$Rh(acac)(CO)_2$	Dppe	30	0.03	
10	$Rh(acac)(CO)_2$	Dppb	60	0.06	
11	$Rh(acac)(CO)_2$	PPNCl	0	0	
12	$Rh(acac)(CO)_2$	ETPO	0	0	
13	$Rh(acac)(CO)_2$	PBu ⁿ ₃	200	0.20	
14	$Rh(acac)(CO)_2$	PPh ₃	500	0.50	
15	$[RhCl(CO)_2]_2$	PPh ₃	440	0.44	
16	$HRh(PPh_3)_4$	PPh ₃	470	0.47	
17	RhCl ₃	PPh ₃	500	0.50	
18	HRh(CO)(PPh ₃) ₃	PPh ₃	540	0.54	
19	RhCl(PPh ₃) ₃	PPh ₃	950	0.95	
20	RhCl(PPh ₃) ₃	OPPh ₃	480	0.48	
21	$HRh(PPh_3)_4$	OPPh ₃	60	0.06	

Table 1. Hydrogenation of CO_2 to HCOOH \cdot NEt₃ in the presence of the Rh complexes modified by various ligands

Table 2. Hydrogenation of CO_2 in the presence of the Wilkinson complex^a

Entry	Solvent	$T/^{\circ}\mathrm{C}$	Medi-	[HCOOH]	[MeOH]	[MF] ^b
			um ^c		mol L^{-1}	
1	Heptane	25	Ar	0	0	0
2	Benzene	25	Ar	0	0	0
3	THF	25	Ar	0	0.09	0
4	DMSO	25	Ar	0.87	0	0
5	DMSO	25	CO_2	0.55	0	0
6	DMSO	25	Air	0.40	0	0
7	DMSO	25	H_2	0.96	0	0
8	DMSO ^d	25	H_2	0.26	0	0
8´	DMSO	19	H_2	0.70	0	0
8″	DMSO	40	H_2	0.20	0	0
9	H ₂ O	25	H_2	Traces	0.01	0
10	DMSO-		-			
	-MeOH	25	H_2	1.50	_	0.12
	(50 wt.%)		-			
11	MeOH	25	H_2	2.50	_	0.22

^{*a*} Reaction conditions: RhCl(PPh₃)₃ + 3 PPh₃, 25 °C, [Rh] =

 $1 \cdot 10^{-3}$ g-at. L⁻¹, $p_{CO_2} = 40$ atm, $p_{H_2} = 20$ atm, 20 h.

^b MF is methyl formate.

^c The medium of catalyst formation.

 d [Rh] = 1 · 10⁻⁴ g-at. L⁻¹.

Note. Hydrogenation conditions: $p_{CO_2} = 40$ atm, $p_{H_2} = 20$ atm, [Rh] = $1 \cdot 10^{-3}$ g-at. L⁻¹, [NEt₃] = 1.45 mol L⁻¹, P : Rh = 6, DMSO, 20 h.

not formed in the presence of the rhodium complexes without a phosphine ligand (see Table 1, entries 1-3). For example, Rh(acac)(CO)₂, nonmodified or modified by 2,2'-bipy (entry 7) or OPPh₃ (entry 8), is inactive in CO₂ hydrogenation and gains activity only after the addition of phosphine (entries 9, 10, 13, and 14). $[RhCl(CO)_2]_2$ and $RhCl_3$ behave similarly (entries 2, 3, 15, and 17).

All Rh complexes containing phosphine in the coordination sphere are active (see Table 1, entries 4-6). The Wilkinson complex in the presence of PPh₃ exhibits the highest activity (entry 19).

The catalytic properties of the Wilkinson complex are strongly affected by the conditions of formation of catalytically active sites (solvent, gaseous medium) and reaction conditions.

As can be seen in Table 2, in such solvents as heptane, benzene, and THF, the Wilkinson complex is inactive (entries 1-3), and in a DMSO solution (entries 4-8), the hydrogenation of CO_2 to formic acid occurs. When DMSO is replaced by water, the reaction is almost completely suppressed (entry 9). The addition of methanol (50 wt.%) to DMSO (entry 10) results in a considerable increase in the yield of formic acid and in the appearance of a significant amount of methyl formate (MF). The

complete replacement of DMSO by methanol increases sharply the yields of formic acid and MF (entry 11).

The activity of the catalyst changes, depending on the gaseous atmosphere used during the dissolution of the Wilkinson complex in DMSO. The dissolution of the catalytic system in the presence of an oxidative atmosphere (in air or under the CO_2 pressure) decreases the yield of formic acid. The yield of the acid increases when argon or dihvdrogen is used. The highest vield of formic acid is achieved when the catalyst is formed in a hydrogen atmosphere.

The yield of formic acid depends strongly on the temperature of hydrogenation (see Table 2, entries δ , δ' , and 8"). It increases with the temperature increase from 19 to 25 °C but diminishes with the further temperature rise (to 40 °C).

The P : Rh ratio also has a substantial effect on the yield of formic acid. When the P: Rh ratio changes from 0 to 6 (Fig. 1, curve 1), the concentration of formic acid increases drastically. The further increase in this ratio somewhat decreases the yield of the acid. The lowest activity of the system is observed at P : Rh = 3, and the catalyst is deactivated after 4 h. Noteworthy that the plot of the change of the formic acid concentration vs. P: Rh ratio remains unchanged with a decrease in the Rh concentration by an order of magnitude. However, in this case, the maximum is more pronounced and shifts toward higher P : Rh values (see Fig. 1, curve 2).

Fig. 1. Turnover number of the catalyst (*TON*) as a function of the P : Rh ratio ($p_{CO_2} = 40$ atm, $p_{H_2} = 20$ atm, [NEt₃] = 1.45 mol L⁻¹, DMSO, 20 h) at [Rh] = 1 \cdot 10^{-3} (*I*) and $1 \cdot 10^{-4}$ g-at. L⁻¹ (*2*).

The maximum concentration and yield of formic acid were achieved at 30 atm of CO₂ and 20 atm of H₂ (*TON* = 1000) (Fig. 2). At p_{CO_2} = 40 atm and p_{H_2} = 50 atm, *TON* = 600.

These results suggest that for the studied interval of parameters the acid is formed with the highest yield at 25 °C, $p_{CO_2} = 30-40$ atm, $p_{H_2} = 20$ atm, and P : Rh = 6, and the most active catalyst is formed under a hydrogen atmosphere in polar solvents (DMSO and MeOH). Under these conditions, within 20 h *TON* ~1000 in DMSO and *TON* ~2715 (acid and MF) in MeOH were achieved.

To obtain an information on the nature of the catalytically active site of CO_2 hydrogenation to formic acid, we studied the interaction of the Wilkinson complexes

Fig. 2. Influence of the CO₂ pressure (*I*) ($p_{H_2} = 20$ atm) and H₂ pressure (*2*) ($p_{CO_2} = 40$ atm) on the yield of formic acid (*C*) ([Rh] = 1 · 10⁻³ g-at. L⁻¹, [NEt₃] = 1.45 mol L⁻¹, DMSO, 20 h).

Table 3. Products of the reaction of RhCl(PPh₃)₃ with the components of the reaction medium of CO_2 hydrogenation and characteristics of their ³¹P NMR spectra

Reagent	Product	δ_P^*	$J_{ m Rh-P} / m Hz$	Refs.
Benzene	RhCl(PPh ₃) ₃	37.89	144	10
	. 5,5	54.61	191	**
DMSO	RhCl(PPh ₃) ₂ (DMSO)	20.0	125	**
	RhCl(PPh ₃)(DMSO) ₂	37.6	183	**
NEt ₃ , DMSO	$RhCl(PPh_3)_2(NEt_3)$	46.6	154	11
NEt ₃ , DMSO, air, H ₂ O	OPPh ₃	32.5	_	**
H_2 , DMSO	$H_2RhCl(PPh_3)_3$	44.5, 26.1	90	12
H_2 , NEt ₃ ,	RhCl(PPh ₃) ₂ (NEt ₃)	46.6	154	11
DMSO	Rh	_	_	**
CO ₂ , DMSO	$RhCl(CO_2)(PPh_3)_2$	35.53	152	13
CO_2 , NEt ₃ ,	Rh(CO) ₂ (OPPh ₃) ₄ ***	_	_	**
DMSO	OPPh ₃	32.5	_	**
$CO_2, H_2,$	$H_2RhCl(PPh_3)_3$	44.5, 26.1	90	**
DMSO,	$RhCl(PPh_3)_2(NEt_3)$	46.6	154	**
NEt ₃	OPPh ₃	32.5	_	**
-	$Rh(CO)_2(OPPh_3)_4^{***}$	_	_	**
	Rh	_	—	**

* Relative to the signal for P from free PPh₃.

** This work.

*** IR, v/cm⁻¹: 2038, 1919 (v(CO)); 1085, 1182, 1431, 1475 (v(P=O)); 694, 723, 743 (δ (Ph). Found (%): C, 69.0; H, 5.0. Calculated (%): C, 69.8; H, 4.7.

with the components of the reaction medium (benzene, DMSO, NEt₃, air, H₂, and CO₂) by ³¹P NMR spectroscopy (Table 3). Solid products were analyzed by IR spectroscopy.

The data in Table 3 show that the interaction of $RhCl(PPh_3)_3$ with DMSO results in the elimination of PPh₃ from the coordination sphere of rhodium: DMSO rapidly displaces the first phosphine molecule, and then the second molecule is slowly displaced. This is accompanied by the appearance of signals attributed to the RhCl(PPh_3)₂(DMSO) and RhCl(PPh_3)(DMSO)₂ complexes. In the absence of DMSO, when benzene is used as a solvent, no elimination of PPh₃ occurs.

The reaction of RhCl(PPh₃)₃ with Et₃N in DMSO is also accompanied by the elimination of PPh₃ from the coordination sphere to form the RhCl(PPh₃)₂(NEt₃) complex. This complex rapidly decomposes in air and in the presence of moisture traces: PPh₃ is rapidly oxidized to OPPh₃. It was established by special experiments that PPh₃ is oxidized only in the presence of both oxygen and moisture present in air.

The reactions of the Wilkinson complex with H_2 and CO_2 in DMSO afford the $H_2RhCl(PPh_3)_3$ and $RhCl(CO_2)(PPh_3)_2$ complexes, respectively. In the presence of amine, $H_2RhCl(PPh_3)_3$ is transformed into

Fig. 3. ³¹P NMR spectrum of the catalytic solution of CO₂ hydrogenation.

RhCl(PPh₃)₂(NEt₃), whereas it is reduced to metallic rhodium in the presence of amine in a hydrogen atmosphere. In the presence of triethylamine in a CO₂ atmosphere, the RhCl(CO₂)(PPh₃)₂ complex rapidly decomposes to form OPPh₃ and a yellow precipitate with the Rh(CO)₂(OPPh₃)₄ composition. As found by special experiments, CO₂ is the oxidant of PPh₃ to OPPh₃. The elimination of PPh₃ from RhCl(PPh₃)₃ and decomposition of the RhCl(PPh₃)₂(NEt₃), H₂RhCl(PPh₃)₃, and RhCl(CO₂)(PPh₃)₂ complexes in the presence of Et₃N are accelerated with temperature.

When RhCl(PPh₃)₃ reacts simultaneously with DMSO, NEt₃, H₂, and CO₂, CO₂ is hydrogenated to formic acid. The RhCl(PPh₃)₂(NEt₃) and H₂RhCl(PPh₃)₃ complexes, PPh₃, and OPPh₃ were found in the hydrogenation product. The most characteristic ³¹P NMR spectrum of the catalytic solution is presented in Fig. 3. It contains signals corresponding to the H₂RhCl(PPh₃)₃ $(\delta_P 44.5, J_{Rh-P} = 90$ Hz and $\delta_P 26.1)$ and RhCl(PPh₃)₂(NEt₃) (δ_P 46.6, J_{Rh-P} = 154 Hz) complexes and signals assigned to triphenylphosphine ($\delta_P 0$) and $OPPh_3$ (δ_P 32.5). An internal standard was added to a catalytic solution for the quantitative determination of concentrations of these phosphorus-containing compounds. Figure 4 shows the changes in the concentrations of formic acid, PPh₃, OPPh₃, and rhodium complexes detected during CO₂ hydrogenation in samples taken in the time moments corresponding to points A, B, C, and D.

In point *A* the acid has not yet formed. The 31 P NMR spectrum of the sample contains signals attributed to PPh₃, OPPh₃, and H₂RhCl(PPh₃)₃ (a portion of this complex exists in the insoluble form as a yellow powder).

Fig. 4. Concentration plots obtained from the ³¹P and ¹H NMR spectra of the catalytic solution during RhCl(PPh₃)₃-catalyzed CO₂ hydrogenation to formic acid ([Rh] = $1 \cdot 10^{-2}$ g-at. L⁻¹, P : Rh = 6, [NEt₃] = 1.45 mol L⁻¹, DMSO): PPh₃ (*1*); OPPh₃ (*2*); H₂PhCl(PPh₃)₃ (*3*); RhCl(PPh₃)₂(NEt₃) (*4*), and HCOOH (*5*).

Fig. 5. Changes in the concentrations of OPPh₃ (*1*, *2*) and RhCl(PPh₃)₂(NEt₃) (*3*, *4*) in time at different P : Rh ratios equal to 6 (*1*, *3*) and 9 (*2*, *4*); RhCl(PPh₃)₃, [Rh] = $1 \cdot 10^{-2}$ g-at. L⁻¹, [NEt₃] = 1.45 mol L⁻¹, DMSO.

Fig. 6. Hydrogenation of CO₂ in the presence of the Wilkinson complex: RhCl(PPh₃)₃ + 6 PPh₃ (*1*), RhCl(PPh₃)₃ (*2*); [Rh] = $1 \cdot 10^{-3}$ g-at. L⁻¹, p_{CO_2} = 40 atm, p_{H_2} = 20 atm, [NEt₃] = 1.45 mol L⁻¹, DMSO, 20 h.

The formation of formic acid starts in point *B*. The spectra exhibited additional signals assigned to RhCl(PPh₃)₂(NEt₃). The concentration of H_2 RhCl(PPh₃)₃ decreased, and that of PPh₃ increased.

In point C the hydrogenation of CO_2 occurs intensely; the spectra contain signals characteristic of RhCl(PPh₃)₂(NEt₃), PPh₃, and OPPh₃.

The hydrogenation process has stopped in point D, despite an excess of amine in the reaction medium. The spectrum does not exhibit signals from the phosphine-rhodium complexes. The concentrations of PPh₃ and OPPh₃ increased significantly.

The presented results allow a relation between the formation of formic acid and the presence of the RhCl(PPh₃)₂(NEt₃) complex to be established, namely, the beginning and end of CO₂ hydrogenation coincide with the appearance and disappearance of this complex, respectively. Based on the data obtained, we can suggest that the RhCl(PPh₃)₂(NEt₃) complex is a precursor of the catalytically active complex.

The RhCl(PPh₃)₂(NEt₃) complex decomposes during hydrogenation to yield free PPh₃, the product of its oxidation OPPh₃, metallic rhodium, and Rh(CO)₂(OPPh₃)₄. Taking into account the data in Table 3, we can say that the formation of metallic rhodium is favored by the presence of hydrogen and triethylamine.

The decomposition of RhCl(PPh₃)₂(NEt₃) and oxidation of PPh₃ to OPPh₃ (Fig. 5) are inhibited in the presence of an excess of phosphine. Metallic rhodium is not formed, and the yield of formic acid increases significantly (Fig. 6).

References

- Carbon Dioxide Chemistry: Environmental Issues, Eds. J. Paul and C.-M. Pradies, The Royal Society of Chemistry, London, 1994, 25.
- 2. P. G. Jessop, T. Ikariya, and R. Noyori, *Letters to Nature*, 1994, 368.
- 3. W. Leitner, E. Dinjus, and F. Gassner, J. Organomet. Chem., 1994, 475.
- 4. D. N. Lawson, J. A. Osborn, and G. Wilkinson, J. Chem. Soc. (A), 1966, 1728.
- 5. K. C. Dewhirst, W. Keim, and C. A. Reilly, *Inorg. Chem.*, 1968, 7, 24.
- Yu. S. Varshavskii and T. G. Cherkasov, *Zh. Neorg. Khim.*, 1967, **12**, 1709 [*J. Inorg. Chem. USSR*, 1967, **12** (Engl. Transl.)].
- 7. P. S. Hallman, D. Evans, J. A. Osborn, and J. Wilkinson, *Chem. Commun.*, 1967, 305.
- 8. Y. Fukumoto, N. Chatani, and S. Murai, J. Org. Chem., 1993, 58, 4187.
- 9. U. S. Varshavsky and T. G. Cherkasov, J. Inorg. Chem., 1967, 6, 1709.
- 10. G. Halpern, Inorg. Chim. Acta, 1981, 50, 11.
- 11. B. T. Heaton, J. A. Iggo, C. Jacob, J. Nadarajah, M. A. Fontaine, R. Messere, and A. F. Noels, *J. Chem. Soc. (A)*, *Dalton Trans.*, 1994, **19**, 2875.
- 12. P. Meakin, J. P. Jessop, and C. A. Tolman, J. Am. Chem. Soc., 1972, 94, 3240.
- 13. M. Aresta and C. F. Noble, Inorg. Chim. Acta, 1977, 24, 49.

Received November 2, 2001; in revised form April 23, 2002