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Three different N-silyl-protected allylamines, i.e., N-TMS, N-TBDMS, and N-TIPS allylamine, were lihtiated by reaction with excess n-butyllithium.
Crystallization of the resulting dianions and X-ray structure determination yields three uniquely different aggregates.
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Treatment of allyl alcohol and allylamine derivatives with secondary allylamines. This reaction is observed exclusively
strong base effects reactions in which synthetically useful upon reaction ofN-monoalkyl andN-silyl allylamine with

allyl anions are formed. For example, deprotonation of allyl alkyllithium reagents as depicted in Scheme 1. Several
ethers leads to a Wittig rearrangeméf:Indenyl carbam-

ates react witm-butyllithium and electrophiles at either the _

carbon adjacent to the heteroatom or at the carbtmthe
heteroatom to yield enol ether or substituted allyl derivatives.

Recent attention has been directed toward developing the

chemistry of chiral allyllithium complexes either with
covalently attached chiral auxiliarfeoor with the bis-
chelating ligand sparteirfe A model for predicting the
stereochemical
carbanion complexes was derived from X-ray diffraction
analysis®

An alternative to allylic deprotonation is observed with
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course of the reactions of these chiral
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examples of this vinylic anion forming reaction are docu-
mented® The vinyllithium reagents generated in this reaction
are necessarily formed as dianions wittstereochemistry
exclusively. Thes&-vinyllithium reagents react with various
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electrophiles to produce a wide variety of heterocyclic suitable for X-ray diffraction analysis was obtained repro-
compounds, including borazoles, silylazoles, benzazepines,ducibly in varying yields from 20 to 50%. Quite surprisingly,
indoles, and pyrroles. each of the dianion§—3 was obtained in a different and

Corriu et al. first noted the relatively mild conditions, i.e., wholly unique aggregation state despite the fact that the only
0 °C, diethyl ethern-BulLi, required to form the dianion of  differences among the separate reactions are the alkyl groups
N-trimethylsilyl (TMS) allylamine. Hence, we set out to attached to the silicon.
generate the dianion ®-TMS allylamine and to crystallize Thetert-butyl dimethyl silyl (TBDMS) substituted dianion
it in an attempt to determine the aggregation state, the 1 crystallizes as the hexamer depicted in FigurfeNote
coordination number, and the geometry of the anionic centers
in these species. In so doing we have discovered three nov
and unique aggregates derived from the dianiondNof
trimethylsilyl, N-triisopropylsilyl, and N-tert-butyldimeth-
ylsilyl allylamines (—3).

The monoN-silyl amines depicted in Scheme 1 were
prepared in one step from allylamine and the trialkylsilyl
chlorides. Reaction of these amines dissolved in diethyl ether
under identical conditions with slightly more than 2 equiv
of n-butyllithium yielded the dianiond—3. Formation of
the dianions was established by quenching the reaction®
mixtures with DO followed by analysis of the product for Si2Al
deuterium incorporation. In all cases, GC-MS analysis
revealed >90% deuterium incorporation at the terminal
vinylic position. Solutions of the dianions were allowed to
stand for an extended period ranging from overnight to
several days at-20 °C, and crystalline material directly
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in Figure 2. This aggregate consists of two cubes which shar
a common face. This motif is also known for a few alkali
metal amido complexées.
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Figure 3. Anion aggregate derived from lithiation of trimethyl-
silylallylamine with n-butyllithium. Aggregate is composed of six
TMS-allylamine dianions, two TMS-allylamine monoanions, two
molecules oh-butyllithium, two solvating diethyl ethers, and two

Figure 2. Tetrameric aggregate of the lithium diani@rderived Li,O molecules

from tris-triisopropylsilylallylamine.

Finally, the dianion derived froml-trimethylsilyl (TMS) present. The distinguishing feature in all of the aggregates
allylamine crystallizes in the wholly different and unique is the coordination of the terminal vinylic carbon to more
aggregate depicted in Figure 3. This aggregate is not directlythan two lithiums. It is entirely unclear to us why the change
comparable to those depicted in Figures 1 or 2 because thign the silyl substitutents leads to such diverse aggregates in
unique structure consists of six dianions derived fi¢iMS the crystal structures. We are attempting to correlate these
allylamine, two monoanionic allylamine residues, two bu- solid-state structures with the solution aggregation states and
tyllithium residues? two solvating molecules of ether, and to assess their relative stabilities
two nearly octahedrally coordinatedQanions. The origin

of the Li,O in this structure is not known although thé O Acknowledgment. This work is supported by the Na-
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In the aggregates depicted in Figures3l all lithium—
carbon contacts less than 2.45 A are shown. The dianion
aggregates in Figures—B are built from units of the
monomeric dianiond—3 shown in Scheme 1. Indeed, this
monomeric dianion motif is present in these aggregates
although several additional carbelithium interactions are ~ OL006045M
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