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ABSTRACT: Chiral α-sulfenylated ketones are versatile building blocks, although there are still several limitations with 
their preparation. Here we report a new two-step procedure, consisting in a Pd-catalyzed hydrothiolation of propargylic 
alcohols followed by an enantioselective Rh-isomerization of allylic alcohols. The isomerization reaction is the key step for 
obtaining the ketones in their enantioenriched form. The new methodology has high atom economy, no waste is produced 
and induces good to high levels of enantioselectivity. A mechanism involving a Rh-hydride-enone intermediate is proposed 
for the isomerization reaction. 

INTRODUCTION
Finding efficient catalytic systems able to promote new carbon-

sulfur (C-S) bonds is a challenge, since sulfur reagents are known 
to poison metallic catalysts. Sulfur is present in several synthetic 
drugs and biologically active natural products.1 Indeed, 
approximately 20% of the approved FDA drugs contain sulfur 
atoms and 31 of them contain a thioether moiety.2 In addition, 
molecules bearing a thioether on a stereogenic carbon are also 
important from the point of view of organic synthesis, since they 
can be transformed to other relevant molecules in an 
enantioespecific fashion.3 The sp3-hybridized C-S bond in 
thioethers can be activated towards other functional groups if 
desired. For example, it could participate in cross-coupling 
reactions,4 and be transformed into olefins5, organometallics6 and 
halides3,7. 
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Figure 1. Chiral α-sulfenylated compounds with biological 
activity.

The enantioselective α-sulfenylation of carbonyl compounds is 
currently the most straightforward methodology for preparing 
highly versatile building blocks bearing a sulphide moiety.1b,d,8 

Furthermore, chiral α-sulfenylated carbonyl compounds have 
shown biological activity (Figure 1).9 However, the typical 

sulfenylating agents used in this transformation, generate 
stoichiometric amounts of chemical waste. In addition, the 
substrate scope is quite narrow since cyclic and/or activated 
carbonyl compounds such as oxindoles10, β-ketoesters,11 
azalactones,12 and benzolactones11e,g are often employed (Scheme 
1a).  As far as we know, only two efficient catalytic methodologies 
have been reported for the preparation of chiral α-sulfenylated 
ketones (Scheme 1b).13 However, these methodologies have low 
atom economy. 
Scheme 1. Catalytic routes to prepare chiral α-
sulfenylated ketones
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In 2011, Coltart and co-workers reported the first catalytic 
asymmetric process to prepare such type of compounds, via in situ 
formed nitrosoalkenes.13a The main advantage of this 
transformation is that simple thiols instead of electrophilic sulphur 
reagents can be employed. Later, Denmark et al. published an 
enantioselective Lewis based-catalyzed α-sulfenylation of silyl 
enol ethers.13b Despite these achievements, the scope of 
sulfenylated ketones and the accomplished enantioselectivities 
should be further improved. In addition, in order to reach more 
sustainable processes, new methodologies with a high atom 
economy are desired. 

Our group reported a greener strategy to prepare racemic α-
sulfenylated ketones, consisting in the tandem 
hydrothiolation/isomerization of propargylic alcohols, via 
sulfenylated allylic alcohols as intermediates.14 In one of these 
studies, Pd(OAc)2 was found to be an efficient catalyst for the 
hydrothiolation of primary propargylic alcohols.14d By using the 
same conditions, we have been able to synthesize a range of 
racemic sulfenylated secondary allylic alcohols. We hypothesized 
that in the presence of a chiral catalyst, these could isomerize to 
provide chiral α-sulfenylated ketones (Scheme 1c). Only very 
recently, Zhao has reported the Rh-catalyzed isomerization of 
racemic allylic, homoallylic and bishomoallylic secondary alcohols 
to produce ketones with α-, β-, and γ-tertiary stereocenters, 
respectively.15,16 Inspired by this pioneering work, we were able to 
find a catalytic system, composed by RhCl3.H2O and the 
commercially available ligand (S)-DIFLUORPHOS, which can 
enantioselectively promote the redox-isomerization of allylic 
alcohols containing a sulphide group. Thus, we report here a two-
step procedure to prepare enantiopure α-sulfenylated ketones, 
which overcomes the problem of low-atom economy of the existing 
methodologies (Scheme 1c). 
Table 1. Ligand screening for the asymmetric Rh-
catalyzed isomerization of 1a.a

aRhCl3 
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79% yield
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38% yield
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RhCl3.H2O (2.5 mol%)
L* (7.5 mol%)

Tol / 55 (°C) / 36 h
Ph

OH

S
*

1a 2a

(2.5 mol%), ligand (7.5 mol%), 1a (0.2 M); NMR yields                         

were determined using 1,3,5-trimethoxybenzene as internal-
standard and er through HPLC analysis.

RESULTS AND DISCUSSION
Initially, several bisphosphines were screened in the 

isomerization of allylic alcohol 1a. In general, only biaryl-type 
phosphines were able to catalyse the isomerization reaction (Table 
1). Among them, the most electrondeficient (S)-
DIFLUOROPHOS provided the highest enantioselectivity (88:12 
er). With the ligand of choice, we optimized reaction conditions 
(Table 2). It was found that the simple inorganic salt RhCl3.H2O 
performed better than [Rh(COD)]BF4 or [Cp*RhCl2]2 (entries 1-3). 
Interestingly, anhydrous RhCl3 provided very low conversion 
(entry 4). This observation suggests that water could have an 
important role in mediating a proton-transfer process. Therefore, 
we studied the water effect on the reaction performance. It was 
observed that our system can operate in the presence of small 
amounts of water, although the catalytic performance didn’t 
improve by increasing water concentration (see Supporting 
Information). 
Table 2. Optimization of the asymmetric 
isomerization of secondary alcohol 1aa

Ph

O

S

[Rh]/(S)-DIFLUOROPHOS

Tol / 55 (°C) / 36 hPh

OH

S1a 2a

Entry [Rh] solvent % 
yieldb

er c

1 [Rh(COD)]BF4 Tol 43% 71:29

2 [Cp*RhCl2]2 Tol 75% 50:50

3 RhCl3.H2O Tol 96% 88:12

4 RhCl3 Tol 28% -

5 RhCl3.H2O THF 93% 73:27

6 RhCl3.H2O hexane 98% 88:12

7 RhCl3.H2O cylohe
xane

89% 88:12

8d RhCl3.H2O Tol 53% 86:14

9e RhCl3.H2O Tol 28% -

10f RhCl3.H2O Tol 82% 88:12

11g RhCl3.H2O Tol 97% 50:50

12h RhCl3.H2O Tol 95% 87:13

13 i RhCl3.H2O Tol 90% 85:15

a[Rh]-precursor (2.5 mol%), (S)-DIFLUORPHOS (7.5 mol%), 
1a (0.2 M). bNMR yields using 1,3,5-trimethoxybenzene as 
internal-standard. cDetermined by HPLC. d AgBF4

 was added. 
eReaction performed at 0.1 M of 1a. fReaction performed at 0.4 
M of 1a. gReaction performed at RT. hReaction performed at 
80 °C. iReaction performed at 90 °C.

Enantioselectivities were higher in apolar solvents, hence, 
toluene, hexane and cyclohexane provided similar values (entries 
3, 6-7). Nevertheless, we chose toluene since is considered a more 
benign solvent.17 The addition of both organic and inorganic bases 
inhibited the reaction completely, which was unexpected since 
many methodologies for the metal-catalyzed isomerization of 
allylic alcohols require the use of catalytic amounts of base (see 
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Supporting Information).15f,16,18 Exchange of chlorine atoms by 
non-coordinating BF4

- didn’t improve the catalytic performance 
(entry 8). Variations on the concentration didn’t show any increase 

on the enantioselectivity either (entries 9-10). Finally, we observed 
that 

Table 3. Scope of the Rh-catalyzed isomerization of secondary allylic alcohols.a

Ph

O

S
Ph

OH

S1 2

RhCl3.H2O (2.5 mol%)
(S)-DIFLUOROPHOS (7.5 mol%)

Tol / 55 (°C) / 36 h

Entry Ketone % yieldb erc Entry Ketone % yieldb erc

1 Ph

O

S
m-Me-C6H42a

90 88:12 9 Ph

O

S
p-NO2-C6H42i

15d -

2 Ph

O

S
Ph2b

71 >99:1 10 Ph

O

S
o-Me-C6H42j

75 75:25

3 Ph

O

S
p-Me-C6H42c

79 88:12 11 Ph

O

S
Cy2k

88 84:16

4 Ph

O

S
p-tBu-C6H42d

82 88:12 12

O

S
Ph2l

92 60:40

5 Ph

O

S
p-iPr-C6H42e

71 87.5:12.5 13 p-Me-C6H4

O

S
Ph2m

80 83.5:16.5

6 Ph

O

S
p-OMe-C6H42f

85 87:13 14 o-Me-C6H4

O

S
Ph2n

74 85:15

7 Ph

O

S
p-Br-C6H42g

70 82:18 15

O

S
Ph2oS

57 85:15

8 Ph

O

S
p-F-C6H42h

86 82:18 16 Py

O

S
Ph2p

No reaction -

a[Rh]-precursor (2.5 mol%), (S)-DIFLUOROPHOS (7.5 mol%), 1a (0.2 M). bIsolated yields. cDetermined by HPLC. d NMR yield 
using 1,3,5-trimethoxybenzene as internal-standard.

by lowering the temperature, the enantioselectivity was completely 
lost (entry 11), while it remained the same at high temperatures 
(entry 12). A slight loss in the enantioselectivity was observed at 
90 C° (entry 13). This suggests that two competing pathways might 
operate, where only one is enantioselective. The desired 
enantioselective pathway requires thermal activation, while the 
competing non-enantioselective pathway operates at room 
temperature. We have shown in our previous reports that Lewis 
acidic Au(I) and Cu(I) species are able to promote a 1,2-H-shift on 
sulfenylated allylic alcohols.14 Therefore, traces of free Rh(III) 
species could be the responsible of the competing non-
enantioselective isomerization.

 To study the scope of the reaction, different secondary allylic 
alcohols were subjected to isomerization under the optimized 

reaction conditions (Table 3). All compounds were easily obtained 
through the regioselective hydrothiolation of propargylic alcohols 
catalyzed by Pd(OAc)2, which allows the introduction of a 
thioether moiety exclusively at the β-position of the alcohol (see 
Supporting information).14d,19 A range of substrates bearing 
different substituents on the aryl of the thioether moiety were 
isomerized in high yields and good to high enantioselectivities 
(substrates 2a-2h). We were pleased to see that ketone 2b, bearing 
a thiophenyl moiety, was obtained with perfect enantiopurity 
(>99:1 er). As far as we know, this is the highest enantioselectivity 
obtained for the isomerization of racemic allylic secondary 
alcohols.16 The reaction tolerated the presence of alkyl groups in 
para-position and also the more electron donating methoxy group 
(substrates 2c-2f), maintaining good enantioselectivities (~88:12 
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er). The presence of halogen groups slightly lowered the 
enantioselectivity (substrates 2g-2h). The introduction of an 
electron withdrawing nitro group on the arylthioether moiety 
resulted in almost no conversion to ketone 2i. Allylic alcohol with 
a non-aromatic cyclohexyl thioether group, generated the 
corresponding ketone with similar enantioselectivity (2k). 

Similarly, when the aromatic ring next to the carbonyl was 
changed by a methyl group, the reaction showed poor 
enantioselectivity (2l). On the other hand, we could obtain ketones 
2m and 2n, having an o-, or p-methyl group on the phenyl group, 
with good enantiomeric ratios. The phenyl ring could be also 
changed for a thiophene, keeping a good level of enantioselectivity 
(2o).  Finally, the presence of a pyridine ring completely inhibited 
the reaction, probably due to coordination of the nitrogen atom to 
the metal centre (2p). It should be noted that the current 
methodology only allows the formation of ketones with a methyl 
next to the C-thioether moiety. This is because the Pd-catalyzed 
hydrothiolation reaction used for the preparation of allylic alcohols, 
is limited to terminal alkynes due to reactivity and regioselectivity 
issues. We have therefore only studied the scope of terminal 
secondary allylic alcohols.
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Figure 2. Proposed catalytic cycle for the Rh-catalyzed 
isomerization of secondary allylic alcohols.

Three different mechanisms have been proposed for the metal-
catalyzed isomerization of allylic alcohols, all of them involving 
metal-hydride species.20 The first one, involving alkylmetal 
intermediates, requires the use of a metal-hydride complex as a 
catalyst, either isolated or generated in situ.21 The second 
mechanism proceeds through π-allyl intermediates and it has been 
usually proposed for low valent metals that can undergo an 
oxidative addition/reductive elimination sequence.20 The last one, 
proposed by Trost, involves a coordinated enone as a key 
intermediate.22 This mechanism was also supported by Gimeno, 
Sordo and co-workers with theoretical calculations.18 Among all 
mechanistic proposals, this is the only one that assigns a role on the 
oxygen atom of the allylic alcohol. As suggested by Zhao and co-
workers, our catalyst would follow a similar mechanism as the one 
proposed by Trost (Figure 2).16a First, coordination of the substrate 
followed by HCl formation would generate alkoxide intermediate 
B. It should be noted that the substrates used in this study contain a 
thioether group, which is known to be a good ligand for transition 
metals. Consequently, off-cycle species resembling to A’ might be 

formed. Subsequent β-hydride elimination leads to the enone-Rh-
hydride intermediate C, where the chirality of the starting material 
would be lost, enabling a steroconvergent process. Next, this 
intermediate undergoes 1,2-insertion, leading to D, which will form 
the enolate F through tautomerization on specie E. Finally, 
enantioselective protonation of the enolate provides the chiral 
ketone and catalyst regeneration. 

To support the proposed reaction mechanism, we performed 
deuterium labelling experiments shown in Scheme 2. Isomerization 
of deuterated substrate 1b-D under the optimized conditions 
(Scheme 2a), showed 38% of deuterium incorporation in both, α-, 
and β-positions of the ketone (2:3). When non-deuterated allylic 
alcohol 1b was isomerized in presence of deuterium oxide, the 
ketone with the same deuterium distribution (2:3) was obtained, 
albeit with 92% of deuterium content (Scheme 2b). Both 
experiments show a proton-deuterium scrambling between α-, and 
β-positions. Since hydrated RhCl3 is used, an exchange between the 
hydride and water present on the system could originate the H/D 
scrambling (Figure 2, species C and C’). To corroborate this 
hypothesis, water was added in the isomerization of deuterated 
alcohol 1b-D (Scheme 2c). No deuterium was incorporated in the 
final product. In addition, we observed a loss of enantioselectivity 
when deuterium oxide was added in the reaction mixture (Scheme 
2b).23 This suggests that water could participate in the protonation 
of the enolate, which should be the enantio-determining step. 
Therefore, water has an important role, as suggested during the 
optimization of reaction conditions (see Table 2, entry 4 vs 3).  In 
summary, deuterium experiments support a mechanism involving 
a Rh-hydride-enone intermediate. However, all attempts for 
trapping any reaction intermediate failed. 

Scheme 2. Deuterium experiments 
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In conclusion, we have shown that the asymmetric 
isomerization of allylic alcohols can be used to obtain chiral α-
sulfenylated ketones, which are highly versatile building blocks. 
The starting allylic alcohols can easily be prepared from readily 
available propargylic alcohols and thiols in presence of Pd(OAc)2. 
Although good enantioselectivties could be obtained in some cases 
(typically 87:13 er and >99:1 for substrate 1b), the system is 
limited to allylic alcohols containing arylthioether groups and aryl 
ketones. We hope that this report will inspire researchers to further 
develop benign methodologies to prepare enantioenriched α-
sulfenylated carbonyl compounds. 

EXPERIMENTAL SECTION

General information. All commercially available 
reagents were purchase from Sigma-Aldrich Company and 

Page 4 of 10

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



used as received without any purification. Solvents were 
obtained from VAC purification system and nitromethane was 
purchased in anhydrous grade from Sigma Adrich. Chiral 
phosphine ligands were purchased from Aldrich or Strem. 
Rhodium(III) chloride hydrate was purchased in Apollo 
Scientific. All reactions were carried out using standard 
Schlenk techniques under an atmosphere of argon with oven-
dried glassware. Analytical thin-layer chromatography (TLC) 
was conducted using Merck analyticl TLC plates (silica gel 60 
F-254). Compounds were visualized by ultraviolet light. Flash 
column chromatography was performed on silica gel (35-70 
micron). Proton and carbon nuclear magnetic resonance 
(NMR) spectra were obtained using a Bruker 400 MHz 
spectrometer. Chemical shifts were recorded as δ values in 
ppm. Coupling constants (J) are given in Hz. High resolution 
mass spectrometry was recorded on Bruker Daltonics 
MicrOTOF. Chiral separation was performed with HPLC (YL-
Clarity HPLC instrument) using Daicel Chiralcel columns AD 
and OJ-H. Optical rotations were recorded in a Perkin-Elmer 
241 Polarimeter. The absolute configuration of the obtained 
chiral ketones was assigned by comparison of the chiral HPLC 
trace and optical rotation of compound 2b with the reported 
in the literature.13b Non-commercially available propargylic 
alcohols were prepared as reported in the literature.24 Yields 
for allylic alcohols 1a-1p were from low to moderate since they 
decomposed during the purification in silica.

Experimental procedures for the synthesis of allylic 
alcohols 1a-1p and their spectroscopic data. Pd(OAc)2 (4.5 
mg, 2 mol%) was weighed and transferred to a 5 mL 
microwave vial containing a small magnet. The vial was 
capped tightly and 2.0 mL of dry toluene (compounds 1a-1j, 
1o-1p) or nitromethane (compounds 1j-1n) followed by the 
corresponding propargylic alcohol (1 mmol) were added and 
stirred at room temperature for 5 minutes. The desired thiol 
(1.1 mmol) was added and the reaction mixture was heated at 
80 °C (oil bath) for 16 h (compounds 1a,1c-1i, 1l-1n), at 80 °C 
(oil bath) for 48 h (compounds 1k, 1p) or at 55 °C (oil bath) for 
16 h (compounds 1b, 1j, 10). After completion of the reaction 
toluene was evaporated under reduced pressure and the 
residue was purified by silica-gel column chromatography to 
afford the desired product. 

1-Phenyl-2-(m-tolylthio)prop-2-en-1-ol (1a): yellow oil, (167 
mg, 65% yield), (SiO2-chromathography, 10% (v/v) ethyl 
acetate / petroleum ether); 1H NMR (400 MHz, CDCl3): δ = 
7.46 – 7.33 (m, 5H), 7.26 – 7.24 (m, 3H), 7.15 – 7.12 (m, 1H), 5.63 
(d, J = 1.2 Hz, 1H), 5.30 (d, J = 4.0 Hz, 1H), 2.45 (d, J = 4.4 Hz, 
1H), 2.36 (s, 3H) ppm; 13C{1H} NMR (101 MHz, CDCl3): δ = 148.2, 
141.1, 139.1, 133.6, 132.4, 130.0, 129.1, 128.8, 128.4, 128.1, 126.7, 115.1, 
76.2, 21.2 ppm; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for 
C16H16OSNa 279.0814; Found 279.0809.

1-Phenyl-2-(m-phenylthio)prop-2-en-1-ol (1b)25: yellowish 
oil, (146 mg, 60% yield), (SiO2-chromathography, 10% (v/v) 
ethyl acetate / petroleum ether); 1H NMR (400 MHz, CDCl3): 
δ = 7.45 – 7.32 (m, 9H), 5.65 (d, J = 1.2 Hz, 1H), 5.30 (d, J = 4.0 
Hz, 1H), 5.17 (d, J = 0.6 Hz, 1H), 2.39 (d, J = 4.3 Hz, 1H) ppm; 
13C{1H} NMR (101 MHz, CDCl3): δ = 148.0, 140.9, 133.0, 132.5, 
129.3, 128.5, 128.2, 128.0, 126.7, 115.2, 76.1 ppm; HRMS (ESI-TOF) 
m/z: [M + Na]+ Calcd for C15H14OSNa 265.0658; Found 
265.0666. 

1-Phenyl-2-(p-tolylthio)prop-2-en-1-ol (1c): yellowish oil, 
(139 mg, 52% yield), (SiO2-chromathography, 10% (v/v) ethyl 

acetate / petroleum ether); 1H NMR (400 MHz, CDCl3): δ = 
7.45 – 7.33 (m, 7H), 7.18 – 7.15 (m, 2H), 5.55 (d, J = 1.2 Hz, 1H), 
5.30 (bs, 1H), 5.07 (d, J = 0.6 Hz, 1H), 2.37 (s, 3H); 13C{1H} NMR 
(101 MHz, Toluene-d8): δ = 149.7, 141.9, 137.6, 133.5, 129.9, 129.6, 
128.0, 126.8, 112.5, 76.0, 20.6 ppm; HRMS (ESI-TOF) m/z: [M + 
Na]+ Calcd for C16H16OSNa 279.0814; Found 279.0802. 

2-((4-(tert-Butyl)phenyl)thio)-1-phenylprop-2-en-1-ol (1d): 
yellowish oil (89 mg, 30% yield), (SiO2-chromathography, 10% 
(v/v) ethyl acetate / petroleum ether); 1H NMR (400 MHz, 
Toluene-d8): δ = 7.40 – 7.37 (m, 2H), 7.35 – 7.31 (m, 2H), 7.20 – 
7.16 (m, 2H), 7.12 – 7.09 (m, 3H), 5.56 (d, J = 1.2 Hz, 1H), 5.19 – 
5.06 (m, 2H), 1.76 (d, J = 4.1 Hz, 1H), 1.17 (s, 9H) ppm; 13C{1H} 
NMR (101 MHz, Toluene-d8): δ = 150.7, 149.3, 141.9, 133.1, 129.7, 
128.1, 126.8, 126.2, 113.1, 76.0, 34.2, 30.8 ppm; HRMS (ESI-TOF) 
m/z: [M + Na]+ Calcd for C19H22OSNa 321.1284; Found 321.1287.

2-((4-Isopropylphenyl)thio)-1-phenylprop-2-en-1-ol (1e): 
yellowish oil (153 mg, 54% yield), (SiO2-chromathography, 10% 
(v/v) ethyl acetate / petroleum ether); 1H NMR (400 MHz, 
CDCl3): δ = 7.43 (m, 2H), 7.41 – 7.33 (m, 5H), 7.20 (d, J = 8.1 Hz, 
2H), 5.57 (d, J = 1.2 Hz, 1H), 5.30 (s, 1H), 5.11 (d, J = 0.6 Hz, 1H), 
2.91 (m, 1H), 1.27 (d, J = 6.9 Hz, 6H) ppm; 13C{1H} NMR (101 
MHz, CDCl3): δ = 149.2, 148.8, 141.1, 133.5, 129.1, 128.4, 128.0, 
127.4, 126.7, 114.1, 76.2, 33.8, 23.8 ppm; HRMS (ESI-TOF) m/z: 
[M + Na]+ Calcd for C18H20OSNa 307.1127; Found 307.1124. 

2-((4-Methoxyphenyl)thio)-1-phenylprop-2-en-1-ol (1f): 
colorless solid (208 mg, 76%, yield), (SiO2-chromathography, 
15% (v/v) ethyl acetate / petroleum ether); 1H NMR (400 MHz, 
Toluene-d8): δ = 7.46 – 7.44 (m, 2H), 7.41 – 7.32 (m, 5H), 6.91 – 
6.88 (m, 2H), 5.46 (d, J = 1.1 Hz, 1H), 5.31 (d, J = 4.1 Hz, 1H), 4.92 
(d, J = 0.5 Hz, 1H), 3.84 (s, 3H), 2.33 (d, J = 4.3 Hz, 1H) ppm; 
13C{1H} NMR (101 MHz, Toluene-d8): δ = 160.1, 150.0, 141.1, 136.0, 
128.4, 128.1, 126.7, 122.3, 114.9, 111.8, 76.2 ppm; HRMS (ESI-TOF) 
m/z: [M + Na]+ Calcd for C16H16O2SNa 295.0763; Found 
295.0766. 

2-((4-Bromophenyl)thio)-1-phenylprop-2-en-1-ol (1g): 
colorless solid (139 mg, 43% yield), (SiO2-chromathography, 
10% (v/v) ethyl acetate / petroleum ether); 1H NMR (400 MHz, 
Toluene-d8): δ = 7.47 – 7.44 (m, 2H), 7.42 – 7.34 (m, 5H), 7.29 
– 7.26 (m, 2H), 5.70 (d, J = 1.2 Hz, 1H), 5.28 (bs, 1H), 5.22 (d, J = 
0.6 Hz, 1H), 2.30 (bs, 1H) ppm; 13C{1H} NMR (101 MHz, 
Toluene-d8): δ = 147.4, 140.8, 134.2, 132.4, 132.1, 128.5, 128.2, 
126.7, 122.1, 116.2, 76.2 ppm; HRMS (ESI-TOF) m/z: [M + Na]+ 
Calcd for C15H13BrOSNa 342.9763; Found 342.9733. 

2-((4-Fluorophenyl)thio)-1-phenylprop-2-en-1-ol (1h): 
colorless solid (121 mg, 46% yield), (SiO2-chromathography, 
10% (v/v) ethyl acetate / petroleum ether); 1H NMR (400 MHz, 
CDCl3): δ = 7.44 – 7.32 (m, 7H), 7.07 – 7.03 (m, 2H), 5.59 (d, J = 
1.2 Hz, 1H), 5.30 (b, 1H), 5.04 (s, 1H), 2.33 (d, J = 3.7 Hz, 1H) 
ppm; 13C{1H} NMR (101 MHz, CDCl3): δ = 162.8 (d, 1JC-F = 248.7 
Hz), 148.8, 140.9, 135.7 (d, 3JC-F = 8.3 Hz), 128.5, 128.2, 127.4 (d, 
4JC-F = 3.3 Hz), 126.7, 116.5 (d, 2JC-F = 22.0 Hz), 113.8, 76.3 ppm; 
HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C15H13FOSNa 
283.0563; Found 283.0559. 

2-((4-Nitrophenyl)thio)-1-phenylprop-2-en-1-ol (1i): yellow 
oil (155 mg, 54% yield), (SiO2-chromathography, 20% (v/v) 
ethyl acetate / petroleum ether); 1H NMR (400 MHz, CDCl3): 
δ =  8.08 (d, J = 9.0 Hz, 2H), 7.39 – 7.29 (m, 7H), 6.13 (d, J = 1.3 
Hz, 1H), 5.69 (d, J = 0.8 Hz, 1H), 5.25 (s, 1H) ppm; 13C{1H} NMR 
(101 MHz, CDCl3): δ = 144.9, 143.5, 140.5, 137.0, 128.9, 128.6, 
128.5, 126.7, 124.0, 123.9, 76.6, 30.9 ppm; HRMS (ESI-TOF) m/z: 
[M + Na]+ Calcd for C15H13NO3SNa 287.0616; Found 287,0627. 

1-Phenyl-2-(o-tolylthio)prop-2-en-1-ol (1j): yellow oil (111 
mg, 43% yield); 1H NMR (400 MHz, CDCl3): δ = 7.47 – 7.44 (m, 
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3H), 7.43 – 7.33 (m, 3H), 7.30 – 7.25 (m, 2H), 7.24 – 7.18 (m, 1H), 
5.51 (d, J = 1.2 Hz, 1H), 5.32 (s, 1H), 4.78 (d, J = 0.5 Hz, 1H), 2.31 
(s, 3H) ppm; 13C{1H} NMR (101 MHz, CDCl3): δ = 147.7, 141.7, 
141.1, 135.0, 130.8, 128.9, 128.4, 128.2, 127.4, 126.8, 126.6, 111.7, 
76.3, 20.4 ppm; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for 
C16H16OSNa 279.0814; Found 279.0810.

2-(Cyclohexylthio)-1-phenylprop-2-en-1-ol (1k): yellow oil 
(116 mg, 47% yield), (SiO2-chromathography, 10% (v/v) ethyl 
acetate / petroleum ether); 1H NMR (400 MHz, CDCl3): δ = 
7.46 – 7.29 (m, 5H), 5.60 (d, J = 1.1 Hz, 1H), 5.27 (d, J = 5.1 Hz, 
1H), 5.19 (s, 1H), 2.97 – 2.91 (m, 1H), 2.46 – 2.44 (m, 1H), 2.03 – 
1.97 (m, 2H), 1.80 – 1.73 (m, 2H), 1.64 – 1.59 (m, 1H), 1.39 – 1.23 
(m, 5H) ppm; 13C{1H} NMR (101 MHz, CDCl3): δ = 146.8, 141.3, 
128.3, 127.9, 126.5, 112.2, 77.1, 44.3, 32.9 (x2), 26.0 (x2), 25.8 ppm; 
HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C15H20OSNa 
271.1127; Found 271.1111. 

3-(Phenylthio)but-3-en-2-ol (1l): yellow oil (92 mg, 51% 
yield), (SiO2-chromathography, 10% (v/v) ethyl acetate / 
petroleum ether); 1H NMR (400 MHz, C6D6): δ = 7.33 (dd, J = 
8.1, 1.4 Hz, 1H), 7.11 (m, 2H), 6.95 – 6.88 (m, 2H), 5.34 (d, J = 1.2 
Hz, 1H), 4.94 (d, J = 0.6 Hz, 1H), 4.08 (d, J = 6.6 Hz, 1H), 1.24 
(d, J = 6.4 Hz, 3H) ppm; 13C{1H} NMR (101 MHz, C6D6): δ = 
150.4, 133.3, 132.7, 129.1, 112.5, 69.9, 22.8 ppm; HRMS (ESI-TOF) 
m/z: [M]+ Calcd for C10H12O+ 180,0609; Found 180,0672. 

2-(Phenylthio)-1-(p-tolyl)prop-2-en-1-ol (1m): yellow oil (98 
mg, 38% yield), (SiO2-chromathography, 10% (v/v) ethyl 
acetate / petroleum ether); 1H NMR (400 MHz, CDCl3): δ = 
7.45 – 7.42 (m, 2H), 7.37 – 7.31 (m, 5H), 7.21 – 7.19 (m, 2H), 5.64 
(d, J = 1.2 Hz, 1H), 5.26 (d, J = 4.2 Hz, 1H), 5.16 (d, J = 0.7 Hz, 
1H), 2.38 (s, 3H), 2.28 (d, J = 4.4 Hz, 1H) ppm; 13C{1H} NMR (101 
MHz, C6D6): δ = 148.3, 138.2, 138.0, 133.1, 132.9, 129.4, 129.3, 
128.0, 126.8, 115.0, 76.1, 21.3 ppm; HRMS (ESI-TOF) m/z: [M + 
Na]+ Calcd for C16H16OSNa 279.0814; Found 279.0806. 

2-(Phenylthio)-1-(o-tolyl)prop-2-en-1-ol (1n): yellow oil (80 
mg, 32% yield), (SiO2-chromathography, 10% (v/v) ethyl 
acetate / petroleum ether); 1H NMR (400 MHz, CDCl3): δ = 
7.53 (dd, J = 2.4 Hz, 6.8 Hz  1H), 7.46 (m, 2H), 7.38 – 7.32 (m, 
3H), 7.27 – 7.22 (m, 2H), 7.16 (m, 1H), 5.48 (d, J = 1.3 Hz, 1H), 
5.45 (d, J = 3.9 Hz, 1H), 5.20 (d, J = 0.8 Hz, 1H), 2.30 (bs, 1H), 
2.28 (s, 3H) ppm; 13C{1H} NMR (101 MHz, CDCl3): δ = 147.4, 
138.7, 136.0, 133.2, 132.5, 130.4, 129.2, 128.1, 128.0, 126.4, 126.2, 
115.5, 72.6, 19.1 ppm; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd 
for C16H16OSNa 279.0814; Found 279.0827. 

2-(Phenylthio)-1-(thiophen-3-yl)prop-2-en-1-ol (1o): yellow 
oil (90 mg, 36% yield), (SiO2-chromathography, 10% (v/v) 
ethyl acetate / petroleum ether); 1H NMR (400 MHz, Toluene-
d8): δ = 7.32 – 7.29 (m, 2H), 7.01 – 7.69 (m, 5H), 6.85 (dd, J = 
5.0, 3.0 Hz, 1H), 5.52 (d, J = 1.2 Hz, 1H), 5.08 (s, 1H), 5.07 (d, J = 
0.6 Hz, 1H) ppm; 13C{1H} NMR (101 MHz, Toluene-d8): δ = 
148.4, 143.2, 133.3, 132.8, 129.0, 127.5, 126.2, 125.3, 122.0, 114.0, 72.4 
ppm; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C13H12OS2Na 
271.0222; Found 271.0216. 

2-(Phenylthio)-1-(pyridin-3-yl)prop-2-en-1-ol (1p): yellow oil 
(142 mg, 58% yield), (Al2O3-chromathography, 99% (v/v) ethyl 
acetate / triethylamine); 1H NMR (400 MHz, CDCl3): δ = 8.60 
(m, 1H), 8.52 (dd, J = 4.9, 1.6 Hz, 1H), 7.81 (dt, J = 7.9, 1.8 Hz, 
1H), 7.38 – 7.36 (m, 2H), 7.34 – 7.28 (m, 4H), 5.65 (d, J = 1.1 Hz, 
1H), 5.31 (s, 1H), 5.18 (s, 1H), 2.49 (bs, 1H) ppm; 13C{1H} NMR 
(101 MHz, CDCl3): δ = 148.4, 147.8, 147.4, 134.9, 133.0, 129.4, 
128.3, 123.6, 115.7, 73.9 ppm; HRMS (ESI-TOF) m/z: [M + Na]+ 
Calcd for C14H13NOSNa 243.0718; Found 243.0727. 

General procedure for the isomerization of allylic 
alcohols 1a-p and characterization data for ketones 2a-p. 
RhCl3.H2O (0.52 mg, 2.5 mol%) and (S)-DIFLUORPHOS (5.12 
mg, 7.4 mol%) were weighed and transferred to a 5 mL 
microwave vial containing a small magnet. The vial was 
capped tightly and 0.25 mL of dry toluene solvent was added 
and stirred at room temperature for 15 minutes. Next, a 
solution of the allylic alcohol (0.1 mmol) in toluene (0.25 mL) 
was added and the reaction mixture was heated at 55 °C (oil 
bath) for 36 h. After completion of the reaction, the reaction 
mixture was filtered through a plug of silica washed with 
EtOAc. The crude was evaporated under reduced pressure and 
the residue was purified by silica-gel column chromatography 
to afford the desired ketone.

1-Phenyl-2-(m-tolylthio)propan-1-one (2a): yellowish oil (23 
mg, 90% yield), (SiO2-chromathography, 5% (v/v) ethyl 
acetate / petroleum ether); 1H NMR (400 MHz, CDCl3): δ = 
7.97 (dd, J = 8.4, 1.6 Hz, 2H), 7.60 – 7.56 (m, 1H), 7.49 – 7.45 
(m, 2H), 7.20 – 7.17 (m, 3H), 7.15 – 7.11 (m, 1H), 4.65 (q, J = 6.8 
Hz, 1H), 2.32 (s, 3H), 1.57 (d, J = 6.8 Hz, 3H) ppm;  13C{1H} NMR 
(101 MHz, CDCl3): δ = 196.4, 138.7, 135.9, 135.0, 133.0, 131.7, 131.3, 
129.4, 128.7, 128.6, 128.5, 46.5, 21.2, 17.1 ppm; HRMS (ESI-TOF) 
m/z: [M + Na]+ Calcd for C16H16OSNa 279.0814; Found 
279.0810; HPLC analysis: Daicel Chiralcel OJ-H column, n-
Hexane: isopropanol = 90:10, flow rate 1 mL/min, λ = 254 nm 
(channel 1), 232 nm (channel 2): t1 (major) = 10.2 min, t2 
(minor) = 19.6 min; 76% ee. 

(R)-1-Phenyl-2-(penyllthio)propan-1-one (2b)13b: yellowish 
oil (17 mg, 71% yield), (SiO2-chromathography, 5% (v/v) ethyl 
acetate / petroleum ether); 1H NMR (400 MHz, CDCl3): δ = 
8.02 – 7.89 (m, 2H), 7.65 – 7.56 (m, 1H), 7.48 (dd, J = 8.3, 6.9 
Hz, 2H), 7.41 – 7.29 (m, 5H), 4.66 (q, J = 6.9 Hz, 1H), 1.55 (d, J 
= 6.9 Hz, 3H) ppm; 13C{1H} NMR (101 MHz, CDCl3): δ = 196.3, 
135.6, 134.8, 133.2, 131.5, 129.0, 128.7, 128.6, 46.1, 17.0 ppm; HRMS 
(ESI-TOF) m/z: [M + Na]+ Calcd for C15H14OSNa 265.0658; 
Found 265.0654; [α]24

D = +48.3 (c = 1.000, CHCl3); HPLC 
analysis: Daicel Chiralcel OJ-H column, n-Hexane: 
isopropanol = 98:2, flow rate 1 mL/min, λ = 254 nm (channel 
1), 232 nm (channel 2): t1 (major) = 29.1 min, t2 (minor) = 59.2 
min; >99% ee (R).

1-Phenyl-2-(p-tolylthio)propan-1-one (2c): yellowish oil (20 
mg, 79% yield), (SiO2-chromathography, 5% (v/v) ethyl 
acetate / petroleum ether); 1H NMR (400 MHz, CDCl3): 8.00 – 
7.97 (m, 2H), 7.61 – 7.56 (m, 1H), 7.50 – 7.46 (m, 2H), 7.26 (d, J 
= 8.1 Hz, 2H), 7.11 (d, J = 8.6 Hz, 2H) 4.58 (q, J = 6.8 Hz, 1H), 
2.35 (s, 3H), 1.53 (d, J = 6.8 Hz, 3H); 13C{1H} NMR (101 MHz, 
CDCl3): 196.1, 139.0, 135.8, 135.2, 133.0, 129.7, 128.7, 128.5, 127.7, 
46.2, 21.2, 16.8; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for 
C16H16OSNa 279.0814; Found 279.0804; HPLC analysis: Daicel 
Chiralcel AD column: n-Hexane: isopropanol = 98:2, flow rate 
1 mL/min, λ = 254 nm (channel 1), 232 nm (channel 2): t1 
(major) = 8.4 min, t2 (minor) = 9.1 min; 76% ee.    

2-((4-(tert-Butyl)phenyl)thio)-1-phenylpropan-1-one (2d): 
yellowish oil (24 mg, 82% yield), (SiO2-chromathography, 5% 
(v/v) ethyl acetate / petroleum ether); 1H NMR (400 MHz, 
CDCl3): δ = 7.96 (dd, J = 8.0, 1.2 Hz, 2H), 7.60 – 7.55 (m, 1H), 
7.48 – 7.44 (m, 2H), 7.30 (s, 4H), 4.61 (q, J = 6.8 Hz, 1H), 1.55 
(d, J = 6.8 Hz, 3H), 1.32 (s, 9H) ppm; 13C{1H} NMR (101 MHz, 
CDCl3): δ = 196.5, 152.0, 135.8, 134.7, 133.0, 128.7, 128.5, 128.0, 
126.00, 46.2, 34.7, 31.2, 16.9 ppm; HRMS (ESI-TOF) m/z: [M + 
Na]+ Calcd for C19H22OSNa 321.1284; Found 321.1286; HPLC 
analysis using: Daicel Chiralcel OJ-H column, n-Hexane: 
isopropanol = 99.5:0.5, flow rate 1 mL/min, λ = 254 nm 
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(channel 1), 232 nm (channel 2): t1 (major) = 13.2 min, t2 
(minor) = 15.1 min; 76% ee.

2-((4-Isopropylphenyl)thio)-1-phenylpropan-1-one (2e): 
yellowish oil (20 mg, 71% yield), (SiO2-chromathography, 5% 
(v/v) ethyl acetate / petroleum ether); 1H NMR (400 MHz, 
CDCl3): δ = 7.97 (dd, J = 8.4, 1.3 Hz, 2H), 7.57 (m, 1H), 7.46 (t, J 
= 8.3 Hz, 2H), 7.33 – 7.25 (m, 2H), 7.15 (d, J = 8.0 Hz, 2H), 4.60 
(q, J = 6.9 Hz, 1H), 3.03 – 2.80 (m, 1H), 1.54 (d, J = 6.8 Hz, 3H), 
1.25 (d, J = 7.0 Hz, 6H) ppm; 13C{1H} NMR (101 MHz, CDCl3): δ 
= 196.4, 149.8, 135.8, 135.1, 133.0, 128.7, 128.5, 128.2, 127.1, 46.3, 
33.8, 23.9, 23.8, 16.9 ppm; HRMS (ESI-TOF) m/z: [M + Na]+ 
Calcd for C18H20OSNa 307.1127; Found 307.1126; HPLC analysis: 
Daicel Chiralcel OJ-H column, n-Hexane: isopropanol = 90:10, 
flow rate 1 mL/min, λ = 254 nm (channel 1), 232 nm (channel 
2): t1 (major) = 8.6 min, t2 (minor) = 11.9 min; 75% ee.

2-((4-Methoxyphenyl)thio)-1-phenylpropan-1-one (2f): 
white solid (23 mg, 85 % yield), (SiO2-chromathography, 10% 
(v/v) ethyl acetate / petroleum ether); 1H NMR (400 MHz, 
CDCl3): δ = 8.00 – 7.97 (m, 2H), 7.61 – 7.56 (m, 1H), 7.50 – 7.46 
(m, 2H), 7.30 – 7.27 (m, 2H), 6.84 – 6.82 (m, 2H), 4.52 (q, J = 
6.8 Hz, 1H), 3.82 (s, 3H), 1.50 (d, J = 6.8 Hz, 3H) ppm; 13C{1H} 
NMR (101 MHz, CDCl3): δ = 196.0, 160.6, 137.6, 135.9, 132.9, 
128.6, 128.6, 121.4, 114.5, 55.3, 46.3, 16.5 ppm; HRMS (ESI-TOF) 
m/z: [M + Na]+ Calcd for C16H16O2SNa 295.0763; Found 
295.0760; HPLC analysis: Daicel Chiralcel OJ-H column, n-
Hexane: isopropanol = 90:10, flow rate 1 mL/min, λ = 254 nm 
(channel 1), 232 nm (channel 2): t1 (major) = 50.9 min, t2 
(minor) = 58.3 min; 74% ee.

2-((4-Bromophenyl)thio)-1-phenylpropan-1-one (2g): white 
solid (23 mg, 70% yield), (SiO2-chromathography, 5% (v/v) 
ethyl acetate / petroleum ether); 1H NMR (400 MHz, CDCl3): 
δ = 7.98 – 7.96 (m, 2H), 7.62 – 7.58 (m, 1H), 7.51 – 7,47 (m, 2H), 
7.42 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 4.64 (q, J = 6.9 
Hz, 1H), 1.54 (d, J = 6.9 Hz, 3H) ppm; 13C{1H} NMR (101 MHz, 
CDCl3): δ = 195.9, 136.2, 135.5, 133.2, 132.1, 130.6, 128.6, 128.7, 
123.3, 46.0, 16.9. ppm; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd 
for C15H13BrOSNa 342.9763; Found 342.9756; HPLC analysis: 
Daicel Chiralcel AD column, n-Hexane: isopropanol = 95:5, 
flow rate 1 mL/min, λ = 254 nm (channel 1), 232 nm (channel 
2): t1 (major) = 7.9 min, t2 (minor) = 8.8 min; 64% ee.

2-((4-Fluorophenyl)thio)-1-phenylpropan-1-oneone (2h)26: 
yellowish oil (22 mg, 86% yield), (SiO2-chromathography, 5% 
(v/v) ethyl acetate / petroleum ether); 1H NMR (400 MHz, 
CDCl3): δ = 7.97 (dd, J = 8.4, 1.4 Hz, 2H), 7.62 – 7.57 (m, 1H), 
7.50 – 7.46 (m, 2H), 7.35 – 7.32 (m, 2H), 7.01 – 6.97 (m, 2H), 
4.58 (q, J = 6.8 Hz, 1H), 1.52 (d, J = 6.8 Hz, 3H) ppm; 13C{1H} 
NMR (101 MHz, CDCl3): δ = 195.9, 163.4 (d, 1JC-F = 249.7 Hz), 
137.5 (d, 3JC-F = 8.4 Hz), 135.7, 128.6, 126.34 (d, 4JC-F = 3.5 Hz), 
116.0 (d, 2JC-F = 21.9 Hz), 46.1, 16.7 ppm; HRMS (ESI-TOF) m/z: 
[M + Na]+ Calcd for C15H13OFSNa 283.0563; Found 283.0567; 
HPLC analysis using Daicel Chiralcel OJ-H column, n-Hexane: 
isopropanol = 90:10, flow rate 1 mL/min, λ = 254 nm (channel 
1), 232 nm (channel 2): t1 (major) = 13.1 min, t2 (minor) = 22.2 
min; 64% ee.

1-Phenyl-2-(o-tolylthio)propan-1-one (2j): yellowish oil (19 
mg, 75% yield), (SiO2-chromathography, 5% (v/v) ethyl 
acetate / petroleum ether); 1H NMR (400 MHz, CDCl3): δ = 7.91 
(dd, J = 8.4, 1.3 Hz, 2H), 7.59 – 7.5 (m, 1H), 7.46 – 7.41 (m, 2H), 
7.36 (d, J = 7.4 Hz, 1H), 7.24 – 7.19 (m, 2H), 7.15 – 7.11 (m, 1H), 
4.68 (q, J = 6.9 Hz, 1H), 2.34 (s, 3H), 1.58 (d, J = 6.9 Hz, 3H) 
ppm; 13C{1H} NMR (101 MHz, CDCl3): δ =  196.8, 141.5, 135.6, 
134.5, 133.2, 131.9, 130.5, 128.6, 128.6, 128.5, 126.5, 46.1, 21.0, 17.1 
ppm; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C16H16OSNa 

279.0814; Found 279.0810; HPLC analysis: Daicel Chiralcel AD 
column, n-Hexane: isopropanol = 95:5, flow rate 1 mL/min, λ 
= 254 nm (channel 1), 232 nm (channel 2): t1 (major) = 6.2 min, 
t2 (minor) = 6.9 min; 50% ee.

2-(Cyclohexylthio)-1-phenylpropan-1-one (2k)14d: yellowish 
oil (22 mg, 88% yield), (SiO2-chromathography, 5% (v/v) ethyl 
acetate / petroleum ether); 1H NMR (400 MHz, CDCl3): δ = 
8.03 (dd, J = 8.4, 1.4 Hz, 2H), 7.60 – 7.56 (m, 1H), 7.50 – 7.46 
(m, 2H), 4.39 (q, J = 6.9 Hz, 1H), 2.80 – 2.73 (m, 1H), 1.98 – 1.93 
(m, 1H), 1.86 – 1.84 (m, 1H), 1.76 – 1.68 (m, 2H), 1.60 (d, J = 6.9 
Hz, 3H), 1.60 – 1.54 (m, 1H), 1.42 – 1.18 (m, 5H) ppm; 13C{1H} 
NMR (101 MHz, CDCl3): δ = 197.5, 135.9, 132.9, 128.6, 128.5, 42.6, 
42.0, 34.7, 34.3, 26.0 (x2), 25.6, 17.7 ppm; HRMS (ESI-TOF) 
m/z: [M + Na]+ Calcd for C15H20OSNa 271.1127; Found 271.1119; 
HPLC analysis using Daicel Chiralcel OJ-H column, n-Hexane: 
isopropanol = 93:7, flow rate 0.5 mL/min, λ = 254 nm (channel 
1), 232 nm (channel 2): t1 (major) = 11.6 min, t2 (minor) = 15.2 
min; 68% ee.

3-(Phenylthio)butan-2-one (2l)14d: yellowish oil (17 mg, 92% 
yield), (SiO2-chromathography, 5% (v/v) ethyl acetate / 
petroleum ether); 1H NMR (400 MHz, CDCl3): δ =  7.42 – 7.39 
(m, 2H), 7.35 – 7.30 (m, 3H), 3.79 (q, J = 7.0 Hz, 1H), 2.30 (s, 
3H), 1.44 (d, J = 7.1 Hz, 3H) ppm; 13C{1H} NMR (101 MHz, 
CDCl3): δ = 205.6, 132.8, 132.6, 129.1, 128.0, 52.1, 26.3, 16.1 ppm; 
HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C10H12OSNa 
180.0609; Found 180,0602; HPLC analysis using Daicel 
Chiralcel OJ-H column, n-Hexane: isopropanol = 90:10, flow 
rate 0.3 mL/min, λ = 254 nm (channel 1), 232 nm (channel 2): 
t1 (major) = 47.0 min, t2 (minor) = 49 min; 20% ee.

2-(Phenylthio)-1-(p-tolyl)propan-1-one (2m): yellowish oil 
(20 mg, 80% yield), (SiO2-chromathography, 5% (v/v) ethyl 
acetate / petroleum ether); 1H NMR (400 MHz, CDCl3): δ = 
7.88 (d, J = 8.4 Hz, 2H), 7.39 – 7.37 (m, 2H), 7.33 – 7.26 (m, 5H), 
4.64 (q, J = 6.8 Hz, 1H), 2.44 (s, 3H), 1.55 (d, J = 6.8 Hz, 3H) 
ppm; 13C{1H} NMR (101 MHz, CDCl3): δ = 196.0, 143.9, 134.4, 
133.1, 132.0, 129.3, 128.9, 128.8, 128.5, 46.2, 21.7, 17.1 ppm.]; HRMS 
(ESI-TOF) m/z: [M + Na]+ Calcd for C16H16OSNa 279.0814; 
Found 279.0808; HPLC analysis using Daicel Chiralcel OJ-H 
column, n-Hexane: isopropanol = 90:10, flow rate 1 mL/min, λ 
= 254 nm (channel 1), 232 nm (channel 2): t1 (major) = 11.1 min, 
t2 (minor) = 26.0 min; 67% ee.

2-(Phenylthio)-1-(o-tolyl)propan-1-one (2n): yellowish oil 
(19 mg, 74% yield), (SiO2-chromathography, 5% (v/v) ethyl 
acetate / petroleum ether); 1H NMR (400 MHz, CDCl3): δ = 
7.53 (dd, J = 7.8, 1.3 Hz, 1H), 7.38 – 7.33 (m, 3H), 7.30 – 7.23 (m, 
4H), 7.22 – 7.17 (m, 1H), 4.55 (q, J = 6.9 Hz, 1H), 2.46 (s, 3H), 
1.57 (d, J = 7.0 Hz, 3H) ppm; 13C{1H} NMR (101 MHz, CDCl3): δ 
= 200.4, 138.6, 137.4, 133.8, 132.8, 131.8, 131.2, 128.9, 128.2, 127.9, 
125.4, 49.7, 20.9, 17.1 ppm; HRMS (ESI-TOF) m/z: [M + Na]+ 
Calcd for C16H16OSNa 279.0814; Found 279.0810; HPLC 
analysis: Daicel Chiralcel OJ-H column, n-Hexane: 
isopropanol = 90:10, flow rate 1 mL/min, λ = 254 nm (channel 
1), 232 nm (channel 2): t1 (major) = 11.3 min, t2 (minor) = 21.1 
min. 70% ee.

2-(phenylthio)-1-(thiophen-3-yl)propan-1-one (2o): 
yellowish oil (14 mg, 57% yield), (SiO2-chromathography, 5% 
(v/v) ethyl acetate / petroleum ether); 1H NMR (400 MHz, 
CDCl3): δ = 8.06 (dd, J = 2.9, 1.3 Hz, 1H), 7.58 (dd, J = 5.1, 1.3 Hz, 
1H), 7.40 – 7.38 (m, 2H), 7.35 – 7,29 (m, 4H), 4.42 (q, J = 6.9 
Hz, 1H), 1.54 (d, J = 6.9 Hz, 3H) ppm; 13C{1H} NMR (101 MHz, 
CDCl3): δ = 191.0, 140.4, 134.6, 132.7, 131.8, 129.0, 128.7, 127.5, 
126.3, 48.2, 16.9 ppm; HRMS (ESI-TOF) m/z: [M + Na]+ Calcd 
for C13H12OS2Na 271.0222; Found 271.0216; HPLC analysis: 
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Daicel Chiralcel AD column, n-Hexane: isopropanol = 95:5, 
flow rate 0.5 mL/min, λ = 254 nm (channel 1), 232 nm (channel 
2): t1 (major) = 17.9 min, t2 (minor) = 19.3 min; 70% ee.

Preparation of 1-phenyl-2-(m-tolylthio)propan-1-one 
(2a) at 1 mmol scale. RhCl3.H2O (5.2 mg, 2.5 mol% ) and (S)-
DIFLUORPHOS (51.2 mg, 7.4 mol%) were weighed and 
transferred to a Schlenk-tube. Then, 2.5 mL of dry toluene 
solvent was added and stirred at room temperature for 15 
minutes. Next, a solution of allylic alcohol 1a (1 mmol) in 
toluene (2.5 mL) was added and the reaction mixture was 
heated at 55 °C (oil bath) for 36 h. After completion of the 
reaction, the reaction mixture was filtered through a plug of 
silica washed with EtOAc. The crude was evaporated under 
reduced pressure and the residue was purified by silica-gel 
column chromatography (5% (v/v) ethyl acetate / petroleum 
ether), to afford the desired ketone (205 mg, 81% yield); HPLC 
analysis: Daicel Chiralcel OJ-H column, n-Hexane: 
isopropanol = 99:1, flow rate 1 mL/min, λ = 254 nm (channel 
1), 232 nm (channel 2): t1 (major) = 8.5 min, t2 (minor) = 9.0 
min; 74% ee.
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