Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Phase equilibria in Zr-Ni-Sb ternary system at 870 K

L. Romaka^{a,*}, A. Tkachuk^b, Yu. Stadnyk^a, V.A. Romaka^c

^a Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Street 6, 79005 Lviv, Ukraine
^b Department of Chemistry, University of Alberta, T6G 2G2 Edmonton, Alberta, Canada

^c National University "Lvivska Politechnika", Bandera Street 12, 79013 Lviv, Ukraine

ARTICLE INFO

Article history: Received 12 February 2008 Received in revised form 6 March 2008 Accepted 7 March 2008 Available online 29 April 2008

Keywords: Intermetallics Phase diagram Crystal structure

ABSTRACT

The isothermal section of the phase diagram of the Zr–Ni–Sb ternary system at 870 K in the whole concentration range has been constructed by means of X-ray and metallographic analyses. Eight ternary intermetallic compounds Zr_6NiSb_2 (Zr_6CoAl_2 -type), $Zr_5Ni_{0.5}Sb_{2.5}$ (W_5Si_3 -type), $Zr_5Ni_{0.9}Sb_3$ (Hf_5CuSn_3 -type), $ZrNi_2Sb$ ($ZrPt_2Al$ -type), ZrNiSb (TiNiSi-type), $Zr_3Ni_3Sb_4$ ($Y_3Au_3Sb_4$ -type), $Zr_2Ni_{0.7}Sb_{3.3}$ (Zr_2CuSb_3 -type), and Zr_3NiSb_7 (own structure type) are formed in this system at 870 K.

© 2008 Elsevier B.V. All rights reserved.

ALLOYS AND COMPOUNDS

1. Introduction

In the course of scientific and technological progress large attention is paid to the development of new functional materials based on intermetallic compounds. In search of new intermetallics having specific thermoelectric properties we focus on the investigation of the ternary systems with elements of IVb group, 3d-metals and Sn or Sb. The MeNiSn (Me = Ti, Zr, Hf) and TiCoSb compounds with MgAgAs structure type are semiconductors with narrow band [1–3]. It is very important to study an influence of 3d-metals and p-elements on the physical properties of intermetallics for optimization of their thermoelectric characteristics.

The contributions to the investigation of the Me–Me'–Sb ternary systems (Me–V, Ti, Zr, Hf; Me'–Mn, Fe, Co, Cu) have been made by our research team with the study of the phase equilibria in the V–Mn–Sb [4], Ti–Mn–Sb [5], Zr–Fe–Sb [6], Ti–Co–Sb [7] and {Ti, Zr, Hf}–Cu–Sb [8–10] systems.

In the present paper we report for the first time the phase equilibria constructed for the Zr–Ni–Sb ternary system at 870K and the crystal structure data for ternary intermetallics formed in this system.

The phase diagram of Zr–Ni binary system as assessed by Massalski [11] and Villars and Calvert [12] has been used for our investigation. Six binary phases were observed at 870K in the Zr–Ni system: ZrNi₅ (AuBe₅-type), Zr₂Ni₇ (Zr₂Ni₇-type), Zr₈Ni₂₁ (Hf₈Ni₂₁-type), ZrNi (Tll-type), Zr₇Ni₁₀ (Zr₇Ni₁₀-type) and Zr₂Ni (Cu₂Al-type). The high temperature phase Zr₉Ni₁₁ (Zr₉Pt₁₁-type) exists above 1250 K and ZrNi₃ (CdMg₃-type) is characterized by narrow temperature range.

The phase diagram for Zr–Sb binary system is not completely studied up to now. According to version from Massalski compilation [11] there are four binary compounds: $ZrSb_2$ (PbCl₂-type), Zr_5Sb_3 (Mn₅Si₃-type), Zr_2Sb (La₂Sb-type) and Zr_3Sb (Ni₃P-type). The ZrSb compound (own structure type) was investigated in Ref. [13].

The data concerning the phase diagram and crystallographic characteristics of binaries of Ni–Sb system were assessed in Massalski compilation [11]. At 870 K four phases are observed: NiSb₂ (FeS₂-type), NiSb (NiAs-type), Ni₃Sb (Cu₃Ti-type) and Ni_{2.64}Sb (BiF₃-type, ht modification, formed above 582 K).

2. Experimental details

The alloys were synthesized by arc-melting of the elemental components (zirconium, purity 99.96 wt.%; nickel-99.99 wt.% and antimony-99.99 wt.%) under high-purity argon gettered with Ti. A 5 wt.% excess of Sb was required to compensate the evaporative losses during arc-melting. The ingots were then sealed in evacuated fused-silica tubes and annealed at 870 K for 720 h. After the heat treatment, the ingots were quenched in cold water. The phase purity and final sample composition of the obtained alloys were controlled by X-ray powder diffraction and for some alloys were defined by energy-dispersive X-ray (EDX) analyses on a scanning electron microscope. The data for the crystal structure refinements were collected on lnel powder diffractometer (Cu K α radiation, CPS 120 detector). The crystal structure calculation was performed by the Rietveld method using LHPM-Rietica program [14]. For the single crystal investigation intensity data were obtained on Bruker Platform/SMART 1000 CCD diffractometer with graphite-monochromated

^{*} Corresponding author. E-mail address: romakal@franko.lviv.ua (L. Romaka).

^{0925-8388/\$ -} see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2008.03.030

Table 1

Crystallographic characteristics of compounds in the Zr-Ni-Sb system

Compound	Structure type	Space group	Lattice parameters	Lattice parameters (nm)			
			a	b	С		
Zr ₆ NiSb ₂	Zr ₆ CoAl ₂	PĒ2m	0.77255(7)	-	0.36850(8)	0.19047(4)	
Zr ₅ Ni _{0.5} Sb _{2.5}	W ₅ Si ₃	I4/mcm	1.11035(4)	-	0.55327(3)	0.68211(5)	
Zr ₅ Ni _{0.9} Sb ₃	Hf5CuSn3	PG_3/mcm	0.85881(5)	-	0.58049(3)	0.37078(4)	
ZrNi ₂ Sb	ZrPt ₂ Al	P6 ₃ /mmc	0.42106(2)	_	0.82991(4)	0.12742(1)	
ZrNiSb	TiNiSi	Pnma	0.67408(3)	0.41627(2)	0.75251(3)	0.21116(2)	
Zr ₃ Ni ₃ Sb ₄	Y ₃ Au ₃ Sb ₄	I-43d	0.90624(3)	_	_	0.74428(4)	
Zr ₂ Ni _{0.7} Sb _{3.3}	Zr ₂ CuSb ₃	PĀm2	0.39564(1)	-	0.87626(3)	0.13716(1)	
Zr ₃ NiSb ₇	Zr ₃ NiSb ₇	Pnma	1.7516(1)	0.39266(4)	1.4396(1)	0.9901(1)	

Mo K α radiation. Calculations were carried out using SHELXTL package [15].

3. Results and discussion

The isothermal section of Zr–Ni–Sb ternary system was constructed at 870 K using X-ray and metallographic analyses of 77 ternary and binary alloys (Fig. 1).

During X-ray phase analysis of the Zr–Ni–Sb ternary samples the existence of the previously known Zr_6NiSb_2 [16], $Zr_5Ni_{1-x}Sb_{2+x}$ [17], Zr_5NiSb_3 [18], ZrNiSb [19] and $Zr_3Ni_3Sb_4$ [20] compounds has been confirmed and three new ternary compounds $Zr_2Ni_{0.7}Sb_{3.3}$, Zr_3NiSb_7 and $ZrNi_2Sb$ were found. Crystallographic data of the compounds in the Zr–Ni–Sb system, obtained in the present work, are listed in Table 1.

The structure of Zr₂Ni_{0.7}Sb_{3.3} compound was determined using X-ray powder diffraction method. The powder pattern reflections were indexed on the basis of a tetragonal lattice with cell parameters a = 0.39285(3), c = 0.87329(8) nm. Futher analysis of the h k l reflections and their intensities allowed determining the Zr₂CuSb₃ structure type (space group $P\bar{4}m2$) [21]. All relevant crystallographic data and experimental details are presented in Table 2. The final atomic parameters, refined to $R_p = 0.068$, $R_{wp} = 0.095$, $R_{Bragg} = 0.033$, are listed in Table 3. The observed, calculated and difference X-ray patterns of Zr₂Ni_{0.7}Sb_{3.3} compound are shown in Fig. 2. The interatomic distances in the Zr₂Ni_{0.7}Sb_{3.3} structure are close to the sum of the respective atomic radii of the components.

According to Ref. [22] ZrNi₂Sb compound crystallizes in MnCu₂Al structure type. During phase analysis of the samples near composition ${\sim}Zr_{25}Ni_{50}Sb_{25}$ the formation of compound

Fig. 1. Isothermal section of the Zr-Ni-Sb system at 870 K.

Table 2

Crystal data and structure refinement for Zr₂Ni_{0.7}Sb_{3.3}

Formula	Zr ₂ Ni _{0.76(3)} Sb _{3.24(3)}
Space group	<i>P</i> 4 <i>m</i> 2 (No. 115)
a (nm)	0.39566(1)
c (nm)	0.87631(3)
V(nm ³)	0.13718(1)
Ζ	1
$\rho_{\rm calc} ({\rm g}{\rm cm}^{-3})$	7.545
2θ range	$15.0 \le (Cu \ K\alpha_1) \le 110.0^{\circ}$
No. of reflection	75
No. of variables	23
$R_{\rm B}, R_{\rm p}, R_{\rm wp}$	0.033, 0.068, 0.095

Table 3

Atomic and thermal parameters for Zr₂Ni_{0.7}Sb_{3.3} compound

Atom	Wyckoff position	x/a	y/b	z/c	$B_{\rm iso} \times 10^2 \ ({\rm nm^2})$
Zr	2g	0	1/2	0.7315(4)	0.34(3)
M1 ^a	1a	0	0	0	0.9(3)
M2 ^b	1 <i>b</i>	1/2	1/2	0	0.6(2)
Sb	2g	0	1/2	0.3825(3)	0.65(8)

^a M1 = 0.12(3)Ni + 0.88(3)Sb.

^b M2 = 0.64(3)Ni + 0.36(3)Sb.

with MnCu₂Al structure at 870 K was not confirmed. The powder pattern reflections of ZrNi₂Sb were indexed on the basis of a hexagonal lattice with cell parameters a = 0.42106(2) nm, c = 0.82991(4) nm corresponding to ZrPt₂Al structure type (space

Fig. 2. The observed, calculated and difference X-ray patterns of $Zr_2Ni_{0.7}Sb_{3.3}$ compound.

ladie 4	
Crystal data and structure refinement for ZrNi2S	b

	Single crystal method	Powder method
<i>a</i> (nm)	0.42131(3)	0.42106(2)
<i>c</i> (nm)	0.83092(10)	0.82991(4)
V (nm ³)	0.1277(2)	0.1274(1)
$\rho_{\rm calc} ({\rm g}{\rm cm}^{-3})$	8.59	8.61
2θ range	$9.8^\circ \le (Mo \ K\alpha) \le 66.1^\circ$	$15^\circ \leq (Cu \ K\alpha_1) \leq 105^\circ$
No. of total reflections	1471 (<i>R</i> _{int} = 0.026)	
No. of unique reflections	119 (113 3 $F^2 > 2\sigma(F^2)$)	43
No. of variables	9	19
Agreement factors	R(F) = 0.017	$R_{\rm B} = 0.085, R_{\rm p} = 0.093,$
	$R_{\rm w}(F^2) = 0.040$	R _{wp} = 0.123

Formula: ZrNi₂Sb; space group, Z: P6₃/mmc (No. 194), 2.

Table 5 Atomic and thermal parameters for ZrNiaSh compound

Atomic and thermal parameters for 2111200 compound						
Atom	Wyckoff position	x/a	y/b	z/c	$U_{\rm eq}/B_{\rm iso} imes 10^2 \ ({\rm nm^2})$	
Single c	rystal method					
Zr	2c	1/3	2/3	1/4	0.0090(2)	
Ni	4f	1/3	2/3	0.5955(1)	0.0106(2)	
Sb	2a	0	0	0	0.0101(2)	
Powder	method					
Zr	2c	1/3	2/3	1/4	0.58(5)	
Ni	4f	1/3	2/3	0.5963(3)	0.43(6)	
Sb	2a	0	0	0	0.68(4)	

group *P*6₃/*mmc*). All relevant crystallographic data and experimental details for powder and single crystal methods are presented in Table 4. The final atomic and thermal parameters are listed in Table 5. The observed, calculated and difference X-ray patterns of ZrNi₂Sb compound are shown in Fig. 3. The interatomic distances in the ZrNi₂Sb structure are close to the sum of the corresponding atomic radii of the components (the main distances are: Zr–Ni–0.27504(4) nm, 0.28707(9) nm; Zr–Sb–0.31987(2) nm; Ni–Ni–0.25677(17) nm; Ni–Sb–0.25586(3) nm).

During this work the crystal structures of $Zr_5Ni_{0.53}Sb_{2.47}$ and $Zr_5Ni_{0.9}Sb_3$ antimonides were refined by powder method. The crystal structure refinements of these compounds confirmed the structure of W_5Si_3 and Hf_5CuSn_3 -types, respectively. All relevant crystallographic data and experimental details are presented in Tables 6 and 8, respectively. The refined atomic and thermal parameters are listed in Tables 7 and 9. The observed, calculated and

Fig. 3. The observed, calculated and difference X-ray patterns of $ZrNi_2Sb$ compound.

Table 6

Crystal data and structure refinement for Zr₅Ni_{0.5}Sb_{2.5}

Formula	Zr ₅ Ni _{0.53(4)} Sb _{2.47(4)}
Space group	<i>I4/mcm</i> (No. 140)
a (nm)	1.11035(4)
<i>c</i> (nm)	0.55327(3)
V(nm ³)	0.68211(5)
Ζ	4
$\rho_{\text{calc}} (\text{g cm}^{-3})$	7.669
2θ range	$15^{\circ} \leq (Cu \ K\alpha_1) \leq 100^{\circ}$
No. of reflection	111
No. of variables	23
$R_{\rm B}, R_{\rm p}, R_{\rm wp}$	0.025, 0.074, 0.102

Table 7

Atomic parameters for Zr₅Ni_{0.5}Sb_{2.5} compound

Atom	Wyckoff position	x/a	y/b	z/c	$B_{\rm iso} imes 10^2 \ ({\rm nm^2})$
Zr1	16 <i>k</i>	0.0790(4)	0.2181(4)	0	1.19(9)
Zr2	4b	0	1/2	1/4	0.5(1)
Ma	4a	0	0	1/4	0.8(2)
Sb	8h	0.1646(3)	x + 1/2	0	0.33(9)

^a M = 0.53(4)Ni + 0.47(4)Sb.

Fig. 4. The observed, calculated and difference X-ray patterns of $Zr_5Ni_{0.5}Sb_{2.5}$ compound.

Fig. 5. The observed, calculated and difference X-ray patterns of $Zr_5Ni_{0.9}Sb_3$ compound.

Table 8

Crystal data and structure refinement for Zr₅Ni_{0.9}Sb₃

Formula	Zr ₅ Ni _{0.91(2)} Sb ₃
Space group	<i>P</i> 6 ₃ / <i>mcm</i> (No. 193)
a (nm)	0.85881(5)
<i>c</i> (nm)	0.58049(3)
V(nm ³)	0.37078(4)
Ζ	2
$\rho_{\rm calc} ({\rm g}{\rm cm}^{-3})$	7.831
2θ range	$20^\circ \leq (Cu \ K\alpha_1) \leq 100^\circ$
No. of reflection	85
No. of variables	22
$R_{\rm B}, R_{\rm p}, R_{\rm wp}$	0.049, 0.097, 0.125

Table 9

Atomic and thermal parameters for Zr₅Ni_{0.9}Sb₃ compound

Atom	Wyckoff position	x/a	y/b	z/c	$B_{\rm iso}\times 10^2~(\rm nm^2)$
Zr1	6g	0.2611(3)	0	1/4	0.73(7)
Zr2	4d	1/3	2/3	0	0.59(7)
Ni ^a	2 <i>b</i>	0	0	0	0.17(2)
Sb	6g	0.6121(2)	0	1/4	0.50(6)

^a Occupation 0.91(2).

Table	10
-------	----

Atomic and thermal parameters for Zr_3NiSb_7 compound

Atom	Wyckoff position	x/a	y/b	z/c	$B_{\rm iso} \times 10^2 ({\rm nm}^2)$
Zr1	4 <i>c</i>	0.34664(4)	1/4	0.19076(5)	0.00788(14)
Zr2	4 <i>c</i>	0.37045(4)	1/4	0.47072(5)	0.00721(13)
Zr3	4 <i>c</i>	0.39237(4)	1/4	0.90990(5)	0.00782(14)
Ni	4 <i>c</i>	0.43680(5)	1/4	0.68908(6)	0.00903(18)
Sb1	4 <i>c</i>	0.02147(3)	1/4	0.29766(3)	0.00871(11)
Sb2	4 <i>c</i>	0.03748(2)	1/4	0.07626(3)	0.00790(10)
Sb3	4 <i>c</i>	0.07123(3)	1/4	0.56057(3)	0.00977(11)
Sb4	4 <i>c</i>	0.09131(3)	1/4	0.82504(3)	0.00823(10)
Sb5	4 <i>c</i>	0.22833(3)	1/4	0.35390(3)	0.00918(11)
Sb6	4 <i>c</i>	0.24792(2)	1/4	0.02153(3)	0.00875(11)
Sb7	4 <i>c</i>	0.28995(3)	1/4	0.68532(4)	0.01218(11)

difference X-ray patterns of Zr₅Ni_{0.53}Sb_{2.47} and Zr₅Ni_{0.9}Sb₃ compounds are shown in Figs. 4 and 5, respectively.

The new antimony-rich compound at composition $\sim Zr_{30}Ni_{10}Sb_{60}$ was found and its crystal structure was solved by single crystal method. Single crystal used for structure refinement was isolated from a crushed ingot of the annealed $Zr_{27}Ni_9Sb_{64}$ sample. Zr_3NiSb_7 antimonide crystallizes in the orthorhombic space group *Pnma* (*Z* = 4, *a* = 1.75165(19) nm, *b* = 0.39266(4) nm, *c* = 1.43968(15) nm), and represents a new structure type. The refined atomic and thermal parameters are listed in Table 10. The detailed description and analysis of crystal structure investigation of Zr_3NiSb_7 compound will be published in our next manuscript.

X-ray analysis shows the formation of $Zr_xNi_{1-x}Sb$ substitutional solid solution based on NiSb binary compound (NiAs-type) up to about 5 at.% of Zr. The cell parameters change from a = 0.3934 nm, c = 0.5138 nm (for NiSb) to a = 0.3959(1) nm, c = 0.5141(2) nm (for $Zr_5Ni_{45}Sb_{50}$ composition).

For examination the process of solid solution formation between Zr_5NiSb_3 (Hf₅CuSn₃ structure type) and Zr_5Sb_3 (Mn₅Si₃-type) or Zr_5Sb_4 (Ti₅Ga₄-type) additional alloys in the Zr_5Sb_3 - Zr_5NiSb_3 - Zr_5Sb_4 region were prepared. X-ray phase analysis of obtained samples showed the existence of solid solution formed by the nickel insertion into the Zr_5Sb_3 binary to the final composition $Zr_{59}Ni_6Sb_{35}$ (a = 0.8429(5) nm, c = 0.5759(5) nm).

Compared with the previously studied Zr–Fe–Sb (four intermediate compounds) and Zr–Cu–Sb (three intermediate compounds) systems, the Zr–Ni–Sb system presents a higher number of compounds. The isostructural compounds only with W_5Si_3 -type appear in all three systems. On the other hand it worth to note the close analogy between the crystal structure, stoichiometries of the ternary phases in the Zr–Fe–Sb and Zr–Ni–Sb systems, especially in the Zr-rich region.

References

- R.V. Skolozdra, Stannides of Rare Earths and Transition Metals, Svit, Lviv, Ukraine, 1993, p. 195.
- [2] O.A. Avetysan, Y.M. Goryachev, S.B. Kalchenko, R.V. Skolozdra, Y.V. Stadnyk, Ukr. Phys. J. 36 (1991) 773.
- [3] Yu. Stadnyk, Yu. Gorelenko, A. Tkachuk, A. Goryn, V. Davydov, O. Bodak, J. Alloys Compd. 329 (2001) 37.
- [4] A.V. Tkachuk, Y.K. Gorelenko, Y.V. Stadnyk, O.I. Bodak, J. Alloys Compd. 317–318 (2001) 280.
- [5] A. Tkachuk, Y. Gorelenko, Y. Stadnyk, B. Padlyak, A. Jankowska-Frydel, O. Bodak, V. Sechovsky, J. Alloys Compd. 319 (2001) 74.
- [6] G. Melnyk, A. Leithe-Jasper, P. Rogl, R. Skolozdra, J. Phase Equilib. 20 (5) (1999) 497.
- [7] Y. Stadnyk, L. Romaka, A. Horyn, A. Tkachuk, Y. Gorelenko, P. Rogl, J. Alloys Compd. 387 (2005) 251.
- [8] N.O. Koblyuk, L.P. Romaka, O.I. Bodak, J. Alloys Compd. 309 (2000) 176.
- [9] N. Melnychenko, L. Romaka, Yu. Stadnyk, D. Fruchart, O. Bodak, J. Alloys Compd. 352 (2003) 89.
- [10] N. Melnychenko-Koblyuk, L. Romaka, L. Akselrud, V.V. Romaka, Y. Stadnyk, J. Alloys Compd. (2007), doi:10.1016/j.jallcom.2007.07.012.
- [11] T.B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, OH, 1990.
- [12] P. Villars, L.D. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases, ASM, Metals Park, OH, 1991.
- [13] E. Garcia, J.D. Corbett, J. Solid State Chem. 73 (1988) 452.
- [14] B. Hunter. LHPM-Rietica, Version 1.7.7, International Union of Crystallography Commission on Powder Diffraction Newsletter, no. 20 (summer), 1998.
- [15] G.M. Sheldrick, SHELXTL Version 5. 1, University of Göttingen, Germany, 1997.
- [16] G.A. Melnyk, D. Fruchart, L.P. Romaka, J.V. Stadnyk, R.V. Skolozdra, J. Tobola, J. Alloys Compd. 267 (1998) L1.
- [17] Y.U. Kwon, S.C. Sevov, J.D. Corbett, Chem. Mater. 2 (1990) 550-556.
- [18] E. Garcia, H.C. Ku, R.N. Shelton, J.D. Corbett, Solid State Commun. 65 (7) (1988) 757.
- [19] H. Kleinke, Z. Anorg, Allg. Chem. 624 (1998) 1272.
- [20] M. Wang, R. McDonald, A. Mar, Inorg. Chem. 38 (1999) 3435.
- [21] N. Koblyuk, G. Melnyk, L. Romaka, O. Bodak, D. Fruchart, J. Alloys Compd. 317–318 (2001) 284.
- [22] J. Soltys, K. Turek, Acta Phys. Pol. Ser. A 47A (3) (1975) 335.