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Treatment of triarylstibanes with boron trichloride followed
by derivatization with methanol and 1,3-propanediol afforded
arylboronates in good yield with all three aryl groups on the
antimony being utilized. Theoretical calculation of the reaction
pathway revealed that the transformation proceeds through
boro-induced ipso-deantimonation and the reactivity of Ph3M
(M = P, As, Sb, and Bi) should be governed by the stability
of the corresponding cations Ar2M

þ.

The utility of arylboronic acids and their esters in organic
synthesis has attracted much attention in recent years, particular-
ly through developments in the Suzuki–Miyaura coupling
reaction.1,2 Several approaches for the synthesis of arylboron
derivatives have been reported.2–4 Among these, it is known that
the propensity of arylsilanes5 and -stannanes6 to undergo ipso-
substitution allows smooth transmetallation from silicon and
tin to boron by treatment with boron halides (BX3), leading to
ArBX2. However, the transmetallation of organo-pnictogen
(group 15 element: P, As, Sb, and Bi) compounds into arylboron
compounds has not been reported so far. Herein, we describe the
first approach of the metal exchange reaction from group 15
element to boron. In the present studies, treatment of triarylsti-
banes (Ar3Sb) with boron trichloride (BCl3) followed by deriva-
tization with methanol and 2,2-dimethyl-1,3-propanediol afford-
ed boronates in good yield with all three aryl groups on the
antimony being utilized.

We first examined the reaction of triphenylpnictogens 1–4
with BCl3 (3.6 equiv.), followed by quenching with methanol
and derivatization with 2,2-dimethyl-1,3-propanediol. The re-
sults including reaction conditions are summarized in Table 1.
Triphenylstibane 3a (M = Sb) was effectively converted to
phenylboronate 7a, though 1 (M = P) and 2 (M = As) showed
no ability to transform (Entries 1–3). It should be noted that all
three phenyl groups on the antimony participated in the reaction
of 3a with BCl3. On the other hand, the reaction of 4 (M = Bi)
with BCl3 gave a side product Ph2B–O–BPh2.H2O, which might
result from the reaction of Ph2BCl with water during work-up of
the reaction mixture. This result indicates that the Ph–Bi bond in
4would be more reactive than the Ph–Sb bond in 3a, and PhBCl2
initially formed can react with the phenylbismuthane derivatives
to form Ph2BCl (Entries 4 and 5). Thus, only 3awas converted to
dichloroborane intermediate 5, which was transformed to 7a via
6 by successive treatment with methanol and 1,3-propanediol.7

Also apparent was that treatment of Ph2SbCl and PhSbCl2 with
BCl3 (2.4 and 1.2 equiv., 0 �C/2 h) resulted in similar trans-
metallation to afford 7a in 61 and 54% yields, respectively.

These results revealed that the three phenyl groups on the
antimony in 3a reacted with BCl3 one by one via Ph2SbCl
and PhSbCl2.

In order to evaluate the generality and applicability of this
transmetallation, we attempted a reaction between BCl3 and a
variety of triarylstibanes, and the results are summarized in
Table 2. Triarylstibanes 3b–3g were treated under the standard
conditions employed for entry 3 in Table 1. In all cases, the
corresponding arylboronates 7b–7g were formed in good yield

Table 1. Reaction of Ph3M (M = P, As, Sb, and Bi) with BCl3
a

Ph B
O

O Me
Me

3

Ph B
Cl

Cl

3 Ph B
OMe

OMe

3

1) BCl3

2) MeOH
3) 2,2-Dimethyl-1,3-propanediol

HO

HO

Me

Me

5 6

7a

BCl3

MeOH

Ph3M

1 4

Entry M
Conditions Yield/%c

�C/h 7a Ph3M:Recovery

1 P (1) 0/2 0 97
2 As (2) 0/2 0 98

3 Sb (3a) 0/2 88 0
4b Bi (4) 0/2 35 0

5b Bi (4) �78/4 44 0

aAll reactions were carried out using Ph3M (1mmol), BCl3 (3.6
mmol), MeOH (3mL), and 2,2-dimethyl-1,3-propanediol (10
mmol). bThere was a by-product [Ph2B–O–BPh2.H2O (Entry 4;
54%, Entry 5; 16%)]. cIsolated yield.

Table 2. Boro-induced ipso-deantimonationa

Ar B
O

O Me
Me

3Ar3Sb
1) BCl3

2) MeOH
3) 2,2-Dimethyl-1,3-propanediol3b 3g 7b 7g

Entry Substrate Ar Yield/%b

1 3b 4-Methoxyphenyl 57 (7b)
2 3c 4-Methylphenyl 85 (7c)

3 3d 4-Fluorophenyl 83 (7d)
4 3e 4-Chlorophenyl 92 (7e)

5 3f 2-Methylphenyl 68 (7f)
6 3g 1-Naphthyl 80 (7g)

aAll reactions were carried out using Ar3Sb (1mmol), BCl3 (3.6
mmol), MeOH (3mL), and 2,2-dimethyl-1,3-propanediol
(10mmol). bIsolated yield.
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with all three aryl groups on the antimony being used.8 Also
apparent was that the position of the substituent on the aryl group
was retained during the reaction. These results imply that the re-
action took place through boro-induced ipso-deantimonation,
which will be the first example of the ipso-attack against organo-
stibanes by boron halide.

We next examined a theoretical calculation (RHF/Lan
L2DZ level) to reveal the difference in the reactivity toward
the above transmetallation (Figure 1).9 The reaction initially
proceeds from an electrophilic attack of BCl3 on the ipso-posi-
tion of 1–4 to form transition state 8 whose structure is similar
to those of Wheland complexes. The transformation of Ph3M
into 8may be the rate-determining step for all substrates; activa-
tion energies are 16.1 kcalmol�1 for M = Bi, 19.4 kcalmol�1

for M = Sb, and 24.2 kcal mol�1 for M = As. Then, the Ph2M
moiety rearranges on the ortho-position to give intermediate 9
which can be described as a resonance hybrid between 9a and
9b. In the second step, one of the chloride ions moved rapidly
toward M to give the product 5 and Ph2MCl. Structures of the
transition states 10 are similar to those of 9. A similar pathway
for 1 (M = P) was also found at the same theoretical level,
though the Wheland complex 8 was obtained as an intermediate
accompanied by two transition states in front and behind. The
Ph2P moiety in 9b moved on other ortho-position in order to
change the conformation of the phenyl rings, which make the
chloride transfer feasible. Calculated activation energy of this
reaction was 28.7 kcalmol�1. All these proposed mechanisms
are supported by the experimental results such as the ipso-attack
and the order of reactivity. It has become apparent that the reac-
tivity of this type of reaction is governed by the stability of the
intermediate 9, or, more essentially, by the stability of the cation
Ar2M

þ. These results imply that information concerning the
stability of the cations provides guidelines for the synthesis of
various arylboronates.

In conclusion, we have disclosed a novel transmetallation
of triarylstibanes into arylboronates based on boro-induced

ipso-deantimonation and its divisional theoretical calculation
of the reaction pathway was made. Synthetic application and
work on the detailed reaction mechanism are in progress.
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4 a) P.-E. Broutin, I. Čerňa, M. Campaniello, F. Leroux, F. Colobert,
Org. Lett. 2004, 6, 4419. b) M. Murata, T. Oyama, S. Watanabe, Y.
Masuda, J. Org. Chem. 2000, 65, 164, and reference cited therein.

5 For recent examples, see: a) Z. Zhao, V. Snieckus, Org. Lett. 2005,
7, 2523. b) E. Hupe, M. I. Calaza, P. Knochel, Chem. Commun.
2002, 1390. c) M. Pottländer, N. Palmer, P. Knochel, Synlett
1996, 573.

6 For recent examples, see: a) G. J. P. Britovsek, J. Ugolotti, A. J. P.
White,Organometallics 2005, 24, 1685. b) M. Schulte, F. P. Gabbaı̈,
Can. J. Chem. 2002, 80, 1308. c) B. Schilling, V. Kaiser, D. E.
Kaufmann, Chem. Ber. 1997, 130, 923.
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Figure 1. Calculated reaction coordinates for 1–4 to give 5.
Numbers in parentheses are relative energies against reactants.
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