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ABSTRACT: The Rh-catalyzed C−H alkylation of benzylamine derivatives with unactivated 1-alkenes that proceeds via a
picolinamide directing group is reported. The crucial role of an acid additive in this transformation is confirmed. Aromatic acids
showed high linear selectivity, and aliphatic acids provided branched alkylation products as the major product. The reaction has a
broad scope for benzylamines and alkenes. Deuterium labeling experiments suggest that a Rh-carbene intermediate is involved in the
case of linear product formation. A different reaction pathway, however, appears to be involved in the case of branched alkylation
products, and this pathway also appeared to be a minor pathway in linear-selective reactions.

The formation of C−C bonds via reactions using
unactivated alkenes is a subject of current interest in

the field of C−H bond activation.1 A pioneering example of
C−H alkylation with alkenes was reported by Murai in 1993
who used ruthenium catalysts in conjunction with a ketone as a
directing group to achieve ortho-C−H selective alkylation.2

Since then, many reports on this subject have appeared but the
scope of alkenes in C−H alkylation is still limited to activated
alkenes, such as α,β-unsaturated carbonyl compounds, styrene
derivatives, and norbornene.1 Furthermore, only a few cases of
branch-selective C−H alkylation using unactivated alkenes
have been reported.3

Given the fact that benzylamine skeletons are widely found
in various pharmaceutical and synthetic molecules,4 its C−H
functionalization with unactivated alkenes is a subject of
interest. The reported method for the C−H alkylation of
benzylamines involves the use of alkyl halides as coupling
partners with the use of stoichiometric amounts of a base,5

which results in the generation of hazardous products as waste
materials (Scheme 1a).6 On the other hand, C−H alkylation
with alkenes offers a much more environmentally friendly
reaction because all the molecules of the substrates and alkenes
are fully utilized in forming the desired products. Given our
ongoing interest in C−H alkylation reactions,7 we investigated
the ortho-alkylation of benzylamines with unactivated alkenes.
In our previous work, we reported the Rh-catalyzed linear-
selective, picolinamide chelation assisted C−H alkylation of
benzylamine derivatives with activated alkenes, such as
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Scheme 1. ortho-Alkylation of Benzylamines
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acrylates, styrenes, and maleimides.7l Our objective in this
study was to pursue the C−H alkylation of benzylamine
derivatives with unactivated 1-alkenes. The results of our
investigation highlight the crucial role of acid additives in
achieving a high linear selectivity as well as methods for tuning
the regioselectivity between linear and branch products
(Scheme 1b). The results of deuterium labeling experiments
suggest that two different reaction pathways are operative, one
for linear and another for branch products.
The reaction was optimized by using the N-pyridinecarbonyl

protected 2-methylbenzylamine 1a and 1-heptene as model
substrates. We screened a series of acid additives8 for this
reaction using 5 mol % of Rh2(OAc)4 as a catalyst and 5 equiv
of 1-heptene at 170 °C under neat conditions for 16 h (Table
1). We initially examined aromatic acids as additives, and

among them, 2-trifluoromethylbenzoic acid provided 64%
linear selectivity. Finally, to our delight, the use of 2,6-
difluorobenzoic acid gave excellent yields (96% NMR yield) of
2a and 2a′ with a linear/branch ratio of 85/15. In the absence
of an acid additive, only a 30% yield of product was observed
with a nearly 1:1 ratio of linear and branch products. After
screening several aliphatic acids, we found that the formation
of the branched product was slightly favored over the linear
product. Finally, phenylpropiolic acid provided the desired
product in high yield with the ratio 60/40 in favor of the
branched product 2a′. We were not able to improve the ratio
for branch selectivity further. However, it is noteworthy that
the acid used in the reaction plays a crucial role in tuning the

ratio of linear and branched alkylation products and the
reaction involves a rare example of branch-selective C−H
alkylation with unactivated alkenes.
With the optimized reaction conditions in hand, we next

examined the substrate scope for this linear-selective alkylation
reaction by using 2 equiv of 2,6-difluorobenzoic acid as an
additive (Scheme 2). The reaction of 1a with 1-heptene gave
the desired product 2a in 84% isolated yield with an 85/15 = l/
b (linear/branch) ratio. The use of 5-methyl-1-hexene gave 2c
in good yield and high selectivity (71%, l/b = 91/9). Some

Table 1. Effect of an Additive in the C−H Alkylation of 1a
with 1-Heptenea

aReaction conditions: 1a (0.2 mmol), 1-heptene (1.0 mmol),
Rh2(OAc)4 (0.01 mmol), acid additive (0.4 mmol) at 170 °C for
16 h. Yields and linear/branch (l/b) ratios were determined by 1H
NMR analysis of the crude mixture. n.d. = not detected.

Scheme 2. Scope of Alkenes and Amines (Linear Selective)a

aReaction conditions: 1 (0.2 mmol), 1-alkene (1.0 mmol),
Rh2(OAc)4 (0.01 mmol), 2,6-difluorobenzoic acid (0.4 mmol) at
170 °C for 16 h. Linear/branch (l/b) ratio was determined by 1H
NMR analysis of the crude mixture. Isolated yields are shown. bGram
scale (5 mmol scale) reaction was performed where 2 mL toluene was
additionally used as solvent. c0.5 mL of toluene was additionally used
as solvent. dDue to the complexity of the NMR spectrum of the crude
material, the linear/branch (l/b) ratio was determined after isolation.
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functional groups were suitable for use in this reaction, such as
acetate (2d), ketone (2f), and cyano (2h), and all provided the
desired products in good to high yields. This alkylation
reaction was selective for monosubstituted alkenes over
disubstituted alkene moieties; thus, 2e was exclusively obtained
and the disubstituted alkene moiety remained intact. 4,4-
Disubstituted and allyl substituted alkenes (2i−2l) generally
showed an increased ratio of linear/branch products
containing an ester (2j) and other functionalities with
satisfactory yield and up to 95% linear selectivity (2i).
Biologically active substrates9 also reacted to afford the
corresponding alkylation products (2m and 2n). Vinyl-
cyclohexene was one of the more suitable alkenes for this
reaction, providing 2o in high yield and with high selectivity.
Next, the scope of benzylamines for this reaction was
examined. The 2-methoxybenzylamine derivative was reacted
with vinylhexane to obtain 2p in good yield with high
selectivity. The electron-deficient 2-trifluoromethyl substituent
also provided the desired product 2q in high yield and
excellent regioselectivity (l/b = 97/3). A naphthylmethylamine
(2r) derived substrate was well tolerated for this reaction.
The scope for branch-selective reaction was then inves-

tigated using phenylpropiolic acid as the additive (Scheme 3).

It was found that 1-hexadecene (2b′) also gave the desired
products with up to 65% branch selectivity and 2c′ was
obtained from 5-methyl-1-hexene in high yield with a 62/38
ratio. Some functional groups such as ester (2d′) and ketone
(2f′)-containing alkenes successfully led to the formation of
branch products as major products. These results are only
preliminary results, indicating that the reaction was branch-
selective, but that further optimization would still be needed.
After the successful removal of the picolinamide directing

group,10 an excellent yield was achieved with the complete
retention of linear/branch (l/b) selectivity (Scheme 4).

Deuterium labeling experiments were conducted in order to
elucidate the reaction mechanism for this alkylation reaction
(Scheme 5). When the substrate 1a-D was reacted in the

absence of the alkene coupling partner in both systems, H/D
scrambling at the ortho-position was observed in the recovered
starting material in both cases (Scheme 5a and b), indicating
that the ortho-C−H bond cleavage is reversible. When the
deuterated substrate 1a-D was reacted with 1-heptene under
the optimized catalytic conditions using 2,6-difluorobenzoic
acid as the additive for a shorter reaction time, 0.40 D was
incorporated at the x position (Scheme 5c). However,
deuterium incorporation was also observed at the y position
although to a lesser extent (0.19 D). These data imply that the
deuterium atom of the ortho C−D bond in 1a-D is transferred
to both the x and y positions. It therefore appears that the
reaction proceeds via two different mechanisms for the
formation of linear-selective product. On the other hand,
when the branch-selective reaction was carried out using 1a-D
in the presence of phenylpropiolic acid as the additive,
deuterium incorporation was only observed at the x position
(0.37 D) and no deuterium incorporation was detected at the y
position (0.00 D) (Scheme 5d). This result suggests that the
branch-selective reaction proceeds via one major pathway

Scheme 3. Scope of Alkenes (Branch Selective)a

aReaction conditions: 1 (0.2 mmol), 1-alkene (1.0 mmol),
Rh2(OAc)4 (0.01 mmol), phenylpropiolic acid (0.4 mmol) at 170
°C for 16 h. Branch/linear (b/l) ratio was determined by 1H NMR
analysis of the crude mixture. Isolated yields were shown.

Scheme 4. Deprotection of Directing Group

Scheme 5. Deuterium Labelling Experiments
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where the deuterium atom from ortho C−D bond is transferred
only to the x position.
A reaction mechanism is proposed based on the results of

deuterium labeling experiments (Scheme 6). Throughout the

proposed catalytic cycle, we used the term [Rh] as a rhodium
center because no clear evidence was obtained to confirm that
the structure of the actual catalytic species of rhodium was
either monometallic or bimetallic.3h,11 The oxidative addition
of a N−H bond to a Rh-center gives the Rh(IV) species A.12

Two different catalytic cycles from the rhodium intermediate A
are proposed to explain the formation of linear and branch
products. Alkene insertion into the Rh−H bond in A gives the
intermediate B.7l In the next step, α-elimination of the
carboxylic acid in B results in the formation of a carbene
intermediate C which appears to be the major pathway for
producing the linear alkylation product.7e,j,l From C, C−H
insertion into the carbene occurs to give intermediate D.13

This is consistent with the deuterium labeling experiment in
which a deuterium atom of the ortho C−D bond is largely

transferred to the x position (Scheme 5c). Finally, reductive
elimination occurs in the presence of the carboxylic acid to
give the desired linear product 2a and regeneration of the Rh-
species continues the catalytic cycle. The other mechanism for
the formation of branched products involves the elimination of
the carboxylic acid from A to generate the intermediate E.
Oxidative addition of the ortho C−H bond in E leads to the
formation of F via a reversible pathway. As a result, H/D
scrambling occurs at the ortho C−D bond (Scheme 5a and b).
An alkene insertion generates both intermediate G (as
evidenced by the incorporation of 0.37 D at the x position
of 5′, Scheme 5d) or H (as evidenced by the incorporation of
0.19 D at the y position of 5, Scheme 5c). Subsequent
reductive elimination in the presence of a carboxylic acid takes
place from G to furnish the branch product 2a′ and from H to
give the linear product 2a. In this pathway, the ortho C−H
bond is transferred to the y position in the branch product 2a′.
This path also appears to be the minor pathway for the linear
alkylation reaction 2a.
In summary, we report herein the Rh(II)-catalyzed C−H

alkylation of benzylamine derivatives with unactivated alkenes
by utilizing a picolinamide directing group. The crucial role of
acid additives for producing high yields as well as a high linear/
branch ratio was realized. Though there is still room for
improving the branch selectivity, it is noteworthy that this
preliminary investigation reports a rare example of the
production of branch-selective alkylation products with
unactivated alkenes. Mechanistic investigations indicate that
two different reaction pathways are operative for product
formation. A carbene mechanism is proposed as a major
pathway for the formation of a linear product, and a reversible
hydrometalation pathway is operative in the case of the
formation of the branch product as well as the minor pathway
for linear alkylation. Further studies directed to improving
branch selectivity and a detailed understanding of the role of
the acid additive in tuning the branch/linear ratio are currently
underway in our laboratory.
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