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ABSTRACT: Herein, we report a new protocol for the
synthesis of sterically hindered ketones that proceeds via
palladium-catalyzed Suzuki−Miyaura cross-coupling of uncon-
ventional amide electrophiles by selective N−C(O) activation.
Mechanistic studies demonstrate that steric bulk on the amide
has a major impact, which is opposite to the traditional
Suzuki−Miyaura cross-coupling of sterically hindered aryl
halides. Structural and computational studies provide insight
into ground-state distortion of sterically hindered amides and show that ortho-substitution alleviates the N−C(O) bond twist.

The development of catalytic methods for the synthesis of
sterically hindered ketones is an important objective in

synthetic chemistry because bulky ketones are ubiquitous in
natural products, bioactive compounds, and advanced
materials and can be further exploited to access a myriad of
derivatives by the classical ipso-carbonyl addition.1−3 In this
context, transition-metal-catalyzed cross-coupling of acyl
electrophiles would represent a very attractive method for
the synthesis of sterically hindered ketones because it offers the
advantages of well-controlled cross-coupling mechanisms, high
levels of selectivity, and operational practicality.4,5 However, in
contrast to the synthesis of sterically hindered biaryls by the
traditional Suzuki−Miyaura cross-coupling of aryl halides,6

methods for the construction of sterically hindered ketones by
the cross-coupling of acyl electrophiles remain largely under-
developed.7,4 In general, very few methods for the synthesis of
di-ortho,ortho′-substituted biaryl ketones by the acyl Suzuki−
Miyaura cross-coupling have been developed.4 Mechanistically,
a key difference between the two types of cross-coupling is the
capacity of the acyl (ArC(O)−X) vs aryl (Ar−X) electrophile
to undergo productive metal insertion, which generates the
acyl−metal vs aryl−metal complex for the subsequent
transmetalation step.8,9

We were attracted by the potential of amides10−15 to serve as
electrophiles16−18 in the synthesis of sterically hindered
ketones by a catalytic mechanism involving chemoselective
metal insertion into the N−C(O) bond (Figure 1A). Herein,
we report the first general method for the synthesis of sterically
hindered ketones that proceeds via Pd-catalyzed Suzuki−
Miyaura cross-coupling of amides by selective N−C(O)
activation (Figure 1B).4

Notable features of our findings are as follows: (1) we
describe the first general protocol for the synthesis of sterically

hindered ketones by the acyl Suzuki−Miyaura cross-coupling
using readily available N-acylglutarimides as coupling pre-
cursors; (2) we present a series of mechanistic, structural, and
computational studies that demonstrate that the origin of low
reactivity of sterically hindered amides is a result of minimized
amide bond distortion. This novel protocol sets the stage for
the development of general strategies to sterically hindered
ketones by cross-coupling of unconventional amide electro-
philes.
To the best of our knowledge, very few methods for the

synthesis of sterically hindered ketones by the acyl Suzuki−
Miyaura cross-coupling have been reported.4,7,11,12 Our initial
studies focused on the cross-coupling of electronically
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Figure 1. (a) Cross-coupling of amides by N−C activation. (b) This
work: hindered ketones via Suzuki−Miyaura cross-coupling of amides.
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unbiased N-benzoylglutarimide with 2,4,6-trimethylphenylbor-
onic acid (Table 1). Upon investigating reaction parameters,

we found that the desired cross-coupling proceeds in excellent
97% yield in the presence of Mes-B(OH)2 (2.0 equiv) and
Na2CO3 (2.5 equiv) in dioxane at 120 °C (Table 1, entry 1).
No cross-coupling is observed at lower temperatures (entries 2
and 3); however, 100 °C suffices for efficient coupling (entry
4), consistent with challenging insertion and/or trans-
metalation steps.8,9 Further improvement can be realized by
increasing the stoichiometry of boronic acid and base (entries
5−7). Pd2(dba)3 was identified as another promising Pd
source, although it resulted in lower yield (entry 8).
Interestingly, K2CO3 is also an effective base (entry 9), while
K3PO4 and Cs2CO3 are not effective for this cross-coupling
(entries 10 and 11). It should be noted that H3BO3 is not
required (entries 12 and 13), suggesting that amide bond
activation by O-protonation of the glutarimide fragment is not
particularly important for this cross-coupling.18d,19 A ligand
screen revealed that PCy3 is the preferred phosphine ligand for
this cross-coupling (entries 14−22).20 The best results are
obtained using 3−4 equiv of the phosphine ligand with respect
to Pd, while a lower ratio is insufficient for the reaction.
Decreasing the electron richness in a series of PCy3, PCy2Ph,
PCyPh2, and PPh3 leads to a gradual decrease in catalytic
activity (entries 14−17) due to more challenging oxidative
insertion with less σ-donating phosphine ligands. Furthermore,
in the series of trialkylphosphines, PCy3 is vastly preferred

(entries 18−21) because the steric bulk in oxidative addition of
the acyl electrophile to Pd(0) is accommodated.9a,b

Having developed suitable conditions, the substrate scope of
this process was next investigated (Scheme 1). As shown, we

found that the developed conditions can be applied to the
synthesis of a range of sterically hindered biaryl ketones. In
addition to mesitylboronic acid (3a), the reaction can tolerate
both 2,6-dimethylphenyl (3b) and 2,6-dimethoxyphenylbor-
onic acids (3c), furnishing ortho-disubstituted biaryl ketones
in excellent yields. Products containing electronically varied
ortho,ortho′-disubstitution can be synthesized in good yields
(3d−3f). Note that this includes the challenging electronically
deactivated 2-trifluoromethylphenylboronic acid (3f). Further-
more, the cross-coupling with 1-naphthylboronic acid is
possible (3g). Moreover, tri-ortho-substituted biaryl ketones
were synthesized in excellent yields (3h−3i), thus testing the
steric limits of the cross-coupling. The use of steric hindrance

Table 1. Optimization of Reaction Conditionsa

entry catalyst ligand base yield (%)

1 Pd(OAc)2 PCy3HBF4 Na2CO3 97
2b Pd(OAc)2 PCy3HBF4 Na2CO3 <2
3c Pd(OAc)2 PCy3HBF4 Na2CO3 <2
4d Pd(OAc)2 PCy3HBF4 Na2CO3 95
5e Pd(OAc)2 PCy3HBF4 Na2CO3 >98
6f Pd(OAc)2 PCy3HBF4 Na2CO3 >98
7g Pd(OAc)2 PCy3HBF4 Na2CO3 32
8 Pd2(dba)3 PCy3HBF4 Na2CO3 68
9 Pd(OAc)2 PCy3HBF4 K2CO3 92
10 Pd(OAc)2 PCy3HBF4 K3PO4 19
11 Pd(OAc)2 PCy3HBF4 Cs2CO3 <2
12h Pd(OAc)2 PCy3HBF4 K2CO3 91
13h Pd(OAc)2 PCy3HBF4 Na2CO3 93
14 Pd(OAc)2 PCy2Ph Na2CO3 47
15 Pd(OAc)2 PCyPh2 Na2CO3 24
16 Pd(OAc)2 PPh3 Na2CO3 10
17 Pd(OAc)2 P(o-Tol)3 Na2CO3 <2
18 Pd(OAc)2 PEt3HBF4 Na2CO3 <2
19 Pd(OAc)2 P(n-Bu)3HBF4 Na2CO3 45
20 Pd(OAc)2 PMe(t-Bu)2HBF4 Na2CO3 19
21 Pd(OAc)2 P(t-Bu)3HBF4 Na2CO3 <2
22 Pd(OAc)2 Dppb Na2CO3 <2

aConditions: 1 (1.0 equiv), Ar-B(OH)2 (2.0 equiv), catalyst (3 mol
%), ligand (12 mol %), base (2.5 equiv), dioxane (0.125 M), 120 °C,
15 h. b60 °C. c80 °C. d100 °C. eAr-B(OH)2 (3.0 equiv), base (4.5
equiv). fAr-B(OH)2 (4.5 equiv), base (7.5 equiv). gAr-B(OH)2 (1.2
equiv), base (1.2 equiv). hH3BO3 (2.0 equiv). See the SI for details.

Scheme 1. Synthesis of Hindered Ketones by Pd-Catalyzed
Suzuki−Miyaura Cross-Coupling of Amidesa,b

aConditions: amide (1.0 equiv), Ar-B(OH)2 (2.0 equiv), Pd(OAc)2
(3 mol %), PCy3HBF4 (12 mol %), Na2CO3 (2.5 equiv), dioxane
(0.125 M), 120 °C, 15 h. bIsolated yields. cAr−B(OH)2 (5.0 equiv),
base (7.2 equiv).
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on the amide fragment is also feasible as illustrated by the
synthesis of 3j. Note, however, that reactions with di-ortho-
substituted sterically hindered amides were in general more
difficult (vide infra). Pleasingly, the reaction seems to be
insensitive to the electronic properties of the amide electro-
phile, furnishing the ketone products in excellent yields (3j′,
3k). The highly hindered 2-Ph-amide substrate underwent the
cross-coupling in high yield (3l). In this instance, increasing
the boronic acid and base stoichiometry significantly improved
the yield, consistent with slow transmetalation. Finally, the
reaction conditions could be applied to the synthesis of
sterically hindered heterocyclic (3m) and alkyl ketones (3n).
Thus, the scope of the reaction is broad and supersedes related
methods utilizing unstable aroyl chlorides.4,7 At the present
stage, the synthesis of tetra-ortho-substituted ketones is not
feasible (vide infra). Unactivated alkenyl and aliphatic boronic
acids are not suitable reaction partners. It is worthwhile to note
that high reactivity of N-acylglutarimides results from a
combination of minimized amidic resonance (ER = −1.40
kcal/mol)18d and high stability under the reaction con-
ditions.11e Other amides, such as N- or O-heteroaryl-activated
amides, are not suitable coupling partners.
To test the cross-coupling efficiency, we determined TON

(Scheme 2). Pleasingly, under the optimized conditions, the
cross-coupling is feasible at 0.25 mol % [Pd] loading,
consistent with highly efficient coupling.

Furthermore, we found that the reaction also proceeds with
other amide electrophiles (Scheme 3). In particular, the use of

N-Ts and N-Ms amides allows one to engage secondary amides
as cross-coupling electrophiles in this reaction manifold. The
cross-coupling using benzoyl chloride was unsuccessful under
these conditions, highlighting the robust nature of amide
electrophiles in the cross-coupling.
In order to gain insight into the reaction mechanism, we

conducted competition experiments (Schemes 4 and 5). The
cross-coupling of 1a using phenylboronic acid is slightly
preferred compared to 2,4,6-trimethylphenylboronic acid (Ph/
3,4,6-Me3C6H2 = 5.5:1) (Scheme 4A). The ratio dramatically
increases when more hindered 2,4,6-triisopropylphenylboronic
acid (Ph/3,4,6-i-Pr3C6H4 > 200:1) is used (Scheme 4B).
Competition between 2-Me-N-benzoylglutarimide (1b) and
the unsubstituted 1a revealed that although the latter is
inherently more reactive (2-MeC6H4/Ph = 1:3.0), the
difference in reactivity is very small (Scheme 5A). This sharply
contrasts with the reactivity of (1c), which is dramatically less

reactive than its unsubstituted counterpart (2,4,6-Me3C6H2/Ph
= 1:180) (Scheme 5B). Thus, our studies quantify that (1)
steric bulk on the amide has a significantly greater impact on
the coupling than on the boronic acid. This is opposite to the
traditional Suzuki−Miyaura cross-coupling of aryl halides and
consistent with a difficult metal insertion into the N−C(O)
bond.6,8,9 (2) The results show that cross-coupling of mono-
ortho-substituted amides and di-ortho-substituted arylboronic
acids is feasible, and this is further supported by our findings
with respect to the reaction scope.
To gain insight into the origin of the high reactivity of N-

benzoylglutarimides, we determined the X-ray structures of 2-
Me-N-benzoylglutarimide 1b and its di-ortho-substituted
counterpart 1c (Figure 2 and SI). An even higher amide bond
twist, τ = 89.2°, in 1b than in 1a21 places this amide at the
extreme geometry range of the amide bond22,23 (χΝ = 5.0°; N−
C(O), 1.476 Å; CO, 1.195 Å; C−C(O), 1.482 Å; the C−
C(O) bond is still planar, τ = 1.5°, Figure 2B). This
dramatically changes in the di-ortho-substituted 1c (Figure
2C). The amide bond twist of τ = 63.3° in 1c reveals a major
drop in amide bond distortion of nearly 50% compared with
1b (Figure 2D, top). The second most striking feature in 1c is
half-twisted C−C(O) bond, τ = 50.7° (Figure 2D, bottom),
which can be contrasted with fully planar C−C(O) bond in 1b

Scheme 2. Determination of TON

Scheme 3. Cross-Coupling of Secondary Amides

Scheme 4. Competition Experiments

Scheme 5. Competition Experiments
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and 1a or fully perpendicular C−C(O) in di-ortho-substituted
planar benzamides.21b Collectively, the structural features in 1b
and 1c demonstrate that di-ortho-substitution in acyclic twisted
amides leads to a decrease of amide bond distortion as a result of
nonbonding interactions between the N-substituents and the
aromatic ring; however, monosubstitution is well-compatible with
accommodating the extreme amide bond twist.
Next, computational studies were performed to determine

the effect of substitution on amide bond destabilization in 1b
and 1c (Figure 3 and SI). 2,6-Dimethyl-N-benzoylglutarimide
(1cMe2) was used as a model amide for 1c.

(1) Resonance energy (RE) of the amide bond in 1b and
1cMe2 showed that amidic resonance in 1b (RE = 0.95
kcal/mol) is practically nonexistent, while in 1cMe2 (RE
= 3.34 kcal/mol) it is consistent with a reduced amide
twist.

(2) Rotational profiles determined by systematic rotation
along the O−C−N−C angle showed that the energy
minimum in 1b is located at a 90° O−C−N−C angle (τ
= 86.31°; χN = 7.34°). In contrast, the energy minimum
of 1cMe2 is at a 60° O−C−N−C angle (τ = 64.52°; χN
= 11.18°).

(3) Calculation of N-/O-protonation affinities (ΔPA) in
amides 1b and 1cMe2 revealed that both amides strongly
favor protonation at the amide oxygen atom (1b, ΔPA =
19.9 kcal/mol; 1cMe2, ΔPA = 20.6 kcal/mol).9,24

Thus, energetic parameters in amides 1b and 1cMe2 provide
strong support for chemoselective N−C(O) bond activation
and explain the lower reactivity of the di-ortho-substituted
amide, cf. mono-ortho-substituted amide.
In summary, we have reported the first general method for

the synthesis of sterically hindered ketones via Pd-catalyzed
acyl Suzuki−Miyaura cross-coupling. The reaction proceeds
via selective N−C(O) activation in sterically hindered twisted
amides and delivers the desired hindered ketones in good to

excellent yields. Mechanistic studies quantified a major impact
of the steric bulk on the amide electrophile. Another key aspect
involved determination of steric and electronic factors of the
amide bond that govern ground-state destabilization of
sterically hindered twisted amides. Expanding the substrate
scope to tetra-ortho-substituted biaryl ketones and the
development of new sterically hindered twisted amide cross-
coupling partners is underway and will be reported shortly.
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Figure 2. (a) Crystal structure of 1b. (b) Newman projection along
the N−C(O) bond (top) and C−C(O) bond (bottom). (c) Crystal
structure of 1c. (d) Newman projection along the N−C(O) bond
(top) and C−C(O) bond (bottom). Crystallographic data have been
deposited under CCDC Nos. 1940215 (1b) and 1940216 (1c).

Figure 3. (a) Amides employed in computational studies. (b)
Rotational profile of 1bMe and 1cMe2 (ΔE, kcal/mol, vs O−C−N−C
(deg)). Rotational profile of DMAc (N,N-dimethylacetamide, ΔE =
19.51 kcal/mol) is shown for comparison.
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