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Bio-orthogonal tetrazine click reactions have recently attracted significant interest for applications span-
ning biological imaging, cancer targeting, and biomaterials science. Here, we report a simple and efficient
two-step scheme for the synthesis of an asymmetric tetrazine molecule containing a carboxylic acid han-
dle for subsequent macromolecular conjugation. Yields as high as 75% were achieved using as little as
0.005 equiv of nickel triflate catalyst, which is a significant improvement over previous methodologies.

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
Introduction

The synthesis of bio-orthogonal click chemistry reagents has
been of significant interest since the inception of the field. In addi-
tion to designing new reagents, developing synthetic routes that
improve access to these broadly useful molecules is also important
to the advancement of the field, as it facilitates the development of
new applications. For tetrazine click chemistry specifically, which
has emerged as a powerful tool for a range of applications (e.g., live
cell imaging,1,2 in vivo tumor targeting,3,4 protein modification and
conjugation,5–7 post-synthetic modification of nucleic acids,8,9 and
polymer chemistry10,11), improved methods for the nontrivial syn-
thesis of tetrazine heterocycles was recently identified as a key
challenge.12

Although the mechanism by which the heterocyclic tetrazine
ring is formed is not well understood, the synthesis of 1,2,4,5-tetr-
azines is generally achieved in two steps via the addition of hydra-
zine to an aromatic nitrile followed by oxidation of the resulting
1,2-dihydrotetrazine intermediate.13 For bioconjugate chemistry
applications, the nitrile typically must bear a reactive moiety such
as a carboxylic acid or amine for subsequent coupling to biomacro-
molecules. However, to avoid crosslinking, the tetrazine molecule
must be asymmetric and it must have only one reactive moiety.
In general, asymmetric tetrazines are more difficult to synthesize
than their symmetric counterparts, with typical yields reported
in the range of 10–20%.5,13,14

We recently demonstratedproof of concept for hydrogel cross-
linking and cellular encapsulation with tetrazine click chemistry.15

However, despite the advantages of this bio-orthogonal hydrogel
system, the low yield (�17%) and complex purification of the
asymmetric tetrazine were recognized as important barriers to
scale up for materials applications in future work. Motivated by
the fact that biomaterials applications can require large amounts
of material for characterization and testing, we began to explore
methods to improve the yield and also simplify the synthesis, work
up, and purification of the tetrazine molecule, 5-(4-(1,2,4,5-tetra-
zin-3-yl)benzylamino)-5-oxopentanoic acid. Of specific interest
was the implementation of nickel triflate as a catalyst, as Yang
et al. recently reported that Lewis acid transition metals like nickel
can catalyze the 1,2,4,5-tetrazine heterocycle formation and signif-
icantly improve the yield, possibly by coordinating with the nitrile
and promoting the nucleophilic addition of hydrazine.13

In this Letter we summarize our findings and report a facile and
efficient approach that can be used to produce large quantities of
5-(4-(1,2,4,5-tetrazin-3-yl)benzylamino)-5-oxopentanoic acid,
which reacts with dienophiles like norbornene and trans-cyclooc-
tene via an inverse electron demand Diels–Alder mechanism. The
effects of the nickel triflate concentration on the overall yield are
reported over a range of molar equivalents.
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Scheme 1. Synthesis of 5-(4-(1,2,4,5-tetrazin-3-yl)benzylamino)-5-oxopentanoic acid.

Table 1
Effect of nickel triflate catalysis on tetrazine yield

Entry Molar equivalents of Ni(OTf)2 Yield of 3a (%)

1 0 14
2 0.005 65–75
3 0.01 65–75
4 0.05 50–60

a Yields are reported for multiple reactions and reaction scales.
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1,2,4,5-Tetrazines terminated with a hydrogen at the 6th position
have previously been shown to have a combination of good stability
and high reactivity,1,14 making these molecules of high interest for
bio-orthogonal click chemistry and biomaterials. Syntheses starting
from 4-(aminomethyl) benzonitrile (1) have previously been pub-
lished.1,14,16 Thus, our approach (Scheme 1) begins with the modifica-
tion of 1 with a pentanoic acid handle by reacting with glutaric
anhydride in refluxing acetonitrile. This reaction proceeded to near
quantitative yield at large scale, and 5-(4-(cyano)benzylamino)-5-
oxopentanoic acid (2) was isolated simply by extraction with ethyl
acetate. In addition to providing a carboxylic acid functional group
for convenient coupling to amine bearing macromolecules, we
hypothesized that this modification would facilitate work up by
improving the solubility of the target molecule in organic solvents
after tetrazine heterocycle formation. Indeed, after reacting 2 with
hydrazine and formamidine acetate in the presence of elemental sul-
fur and then oxidizing with sodium nitrite, extraction with dichloro-
methane produced a crude mixture of product and starting material,
as determined by thin layer chromatography. Subsequent recrystalli-
zation from ethanol yielded 5-(4-(1,2,4,5-tetrazin-3-yl)benzyl-
amino)-5-oxopentanoic acid (3) as a pink solid that was >95% pure
by analytical HPLC (see Supplementary information). Typical yield
from recrystallization was 14%, which is only slightly lower than
what we previously achieved by flash chromatography.15

Despite the low yield, the one-pot reaction for tetrazine forma-
tion was amenable to scale up. Starting with 60.9 mmol of 2, 2.5 g
of 3 (8.3 mmol; 14% yield) was obtained after recrystallization,
which was viewed as impressive considering the simplicity of this
approach. Nevertheless, we were interested in further improving
the efficiency and yield. Yang et al. previously showed that the
addition of 0.05 equiv of nickel or zinc triflate catalysts could im-
prove the tetrazine yield by 3–4 fold over catalyst free reactions.13

Thus, to explore the effects of Lewis acid catalysis in our scheme,
we eliminated sulfur and instead reacted 2 with hydrazine and
formamidine acetate in the presence of 0.005, 0.01, and 0.05 equiv
of nickel triflate. Following oxidation with sodium nitrite in acidic
conditions, the reaction was extracted with dichloromethane, as
before. In contrast to the uncatalyzed reaction, unreacted 2 was
not detected by TLC or 1H NMR in the organic extract for any of
the nickel catalyzed reactions, suggesting improved efficiency of
these reactions. Nevertheless, impurities were observed by analyt-
ical HPLC. Thus, for the nickel catalyzed reactions, 3 was purified
by flash chromatography.

Overall, nickel triflate catalysis was highly effective, and yields as
high as 75% were obtained. These results are presented in Table 1.
Each reaction was performed several times and multiple scales were
used. Thus, to be conservative, the yields are reported as a range
rather than as a single value. Interestingly, there was no clear trend
in yield with the amount of catalyst. At 0.005 and 0.01 equiv of nickel
triflate, yields were in the 65–75% range, suggesting that very little
catalyst is actually required to boost the efficiency of the reaction.
Furthermore, there appeared to be no benefit to increasing the equiv-
alents of catalyst. At 0.05 equiv of nickel triflate, the yield was 50–
60%. While this slight reduction in yield was reproducibly observed,
the practical implications may actually be minimal as this is still a 3–
4 fold increase over the noncatalyzed reaction. Nevertheless, the
apparent reduced catalyst requirement over what has previously
been reported13 is certainly attractive for future work.

To our knowledge, the only previous report of Lewis acid catal-
ysis of tetrazine synthesis is the study by Yang et al.13 While our
results support their finding that Lewis acid transition metal catal-
ysis can significantly improve tetrazine yield, we show here that
excellent yields can be obtained with a 10-fold reduction in the
amount of catalyst. It will be interesting to see if this result can
be extended to the synthesis of other tetrazine molecules. Regard-
less, we are now able to quickly and efficiently access gram scale
quantities of 3, circumventing an important barrier to our work
with this powerful bio-orthogonal chemistry in the design of
monomers for polymeric material development. We believe that
the reported synthetic schemes may be of interest to those devel-
oping bio-orthogonal hydrogel crosslinking for encapsulation of
cells and biologics, as well as to the broader biomaterials and
bio-orthogonal click chemistry communities.

Conclusions

Here, we report a simple, high yielding synthetic scheme for a
carboxylic acid functionalized asymmetric tetrazine. This tetrazine
molecule can be readily coupled to other biomacromolecules of
interest using standard acid–amine coupling chemistries, making
it of broad interest for bio-orthogonal click chemistry applications.
The Lewis acid catalyzed synthesis of this tetrazine, however, is a
significant improvement over previously reported methods, with
yields as high as 75% being achieved with only 0.005 equiv of nick-
el triflate. This new methodology should enable broader adoption
of tetrazine click chemistry and facilitate the development of
new applications of tetrazine chemistry in materials design.
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