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The MEK-signaling pathways are complex but critical signaling cascades that correlate an extracellular
signaling event with internal cell processes. To date at least seven MEK isozymes have been identified.
MEK5, in particular, is upregulated in multiple forms of tumors. Analysis of the EGF-induced MEK5 sig-
naling cascade in cultured HEK cells has identified compounds that can inhibit MEK5 phosphorylation of
ERK5; observed biological activity is dependent on chemical variation.
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The mitogen activated protein kinase (MAPK) pathways are a
family of related, and often interconnected, signaling pathways
that relay input from extracellular origins and interpret the resul-
tant outcome in the context of the current biological milieu.1–8

There have been multiple reviews1,3,9 and several critical advances
regarding the categorization,10,11 the intrinsic biochemistry,12,13

and the relevance to human disease states9,14,15 displayed by var-
ious members of the MAPK family.

The sequence of signaling typically originates with ligand bind-
ing or extracellular stressor followed by one of three transduction
mechanisms;3,16 receptor tyrosine kinase activation, G-protein
coupled receptor activation, or hormone receptor transduction.
The MAPK pathways exist as a series of phosphorylation events
where one kinase (mitogen-activated kinase kinase kinase: MEKK)
phosphorylates a second kinase (mitogen-activated kinase kinase:
MEK), which then phosphorylates a third kinase (extracellular sig-
nal-regulated kinase: ERK). This third kinase, or ERK, is typically
translocated to effect modification of cellular function in a specific
subcellular compartment.17 Multiple phosphorylation states of
ERKs have been demonstrated and may direct subcellular traffick-
ing and substrate preference for phospho-ERK15,17 (Fig. 1).

MEKs uniquely display a high degree of substrate specificity.
This selectively is derived from multiple interactions of a MEK’s
D domain with a unique complementary CD domain on the sub-
strate ERK, association with scaffolding proteins,13,18 association
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Figure 1. The MEK5 signaling cascade.

http://dx.doi.org/10.1016/j.bmcl.2010.03.033
mailto:flahertyp@duq.edu
http://www.sciencedirect.com/science/journal/0960894X
http://www.elsevier.com/locate/bmcl


Figure 2. Examples of known inhibitors of ERK phosphorylation.
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with other kinases, and subcellular localization.17 MEK5 has been
demonstrated to uniquely phosphorylate ERK5.19

Activators of signaling cascades utilizing MEK5 mediated phos-
phorylation of ERK5 include nerve growth factor (NGF), endothelial
growth factor (EGF), brain-derived neurotrophic growth factor
(BDNF), oxidative stress, ionizing radiation, or the phorbol esters.
Substrates for ERK5 include Sap1a, c-Myc, and possibly RSK.
ERK5 can also induce MEF2, PPARc1, c-Fos, and c-Jun15,17 activa-
tion. ERK5 has a role during the G1/S cell-cycle transition for
EGF-induced cell proliferation through a cAMP response element
(CRE) mediated expression of cyclin D1.20 Additionally, the
MEK5/ERK5 pathway has been shown to be significantly upregu-
lated in squamous cell carcinoma,21 prostrate,22 and breast23 can-
cers. Although MEK5 is clearly involved in maintenance of
cardiovascular tissue, has a role in neural plasticity, and displayed
a lethal cardiovascular phenotype in MEK5 knock-out mice,17 three
recent studies examining the role of ERK5 in breast cancer,23 leuke-
mia cells,24 and unique activation by palytoxin or the phorbol es-
ters25 has prompted a re-examination of the potential role of
MEK5 as an anti-cancer therapeutic target.

The majority of inhibitor studies on the MEKs have focused on
MEK1/2 however there is a single paper detailing the identification
of a MEK5 inhibitor.26 Studies examining the ability of compounds
to block in vivo EGF-induced ERK1/2 phosphorylation analyzed by
western blotting identified flavone 1, PD98059,17,19 as a non-com-
petitive ATP site inhibitor of ERK1/2, and 5. The conjugated nitrile
2, U0126,27 blocked phorbol-ester stimulated ERK1/2 phosphoryla-
tion. Examination of various diphenylanalines resulted in the iden-
tification of 3, PD318088,28,29 an inhibitor of MEK1/2, and 5.
Analysis of an X-ray crystal structure of PD318088, 3, bound to
MEK1 (PDB ID: 1S9J) confirms that 3 binds to an allosteric site
on MEK1.5,9,11 A recent survey of oxindole kinase inhibitors identi-
fied BIX02188, 4 as a selective inhibitor of MEK5.26 We sought to
identify new structural classes of inhibitors that could disrupt
the MEK-signaling cascade, specifically MEK5 phosphorylation of
ERK5 (Fig. 2).
We recently presented a series of novel benzamidazoles de-
signed as CDK5 inhibitors.30 Given that both CDK5 and MEK5 are
serine/threonine kinases, that similarities between the CDK and
MEK active sites are mentioned in the literature,27 and that 2 and
4 explore a chemical scaffold closely associated with CDK2 inhibi-
tion, screening a select group of our substituted benzimidazoles for
MEK5 inhibitory properties followed logically. Compounds were
screened for the ability to block EGF-initiated MEK5 mediated
ERK5 phosphorylation in human embryonic kidney cells
(HEK293) analyzed by Western blot analysis.

Beginning with the tri-functional benzimidazole scaffolds,31 5,
10, and 15, chemical variation at the 1-nitrogen, 4-nitrogen, or 6-
carbon permitted generation of hetero or carbon-linked analogs
as presented in Schemes 1–3. Variation at the 1-nitrogen was
found to be accessible via N-alkylation with benzyl bromide
(Scheme 3), but in the case of bulky aliphatic groups, reductive
alkylation at the most nucleophilic nitrogen then cyclization was
found to be the best strategy.31 We envisioned the 4-nitro group
as a protective group that could be converted to an amine when re-
quired. The 6-methoxy group was conveniently converted to the
corresponding 6-akoxy group via acidic demethylation then Mits-
unobu coupling. The intermediate phenol 7 or 12 could be con-
verted to the triflate33 then coupled with a benzylic
tetrafluoroborate using a Molander–Suzuki coupling.32 For the ini-
tial screening of compounds we elected to examine compounds
which possessed properties that were synthetically tractable, capa-
ble of additional SAR elaboration, and consistent with prior under-
standing of kinase inhibitors.34,35 Additionally we sought to rapidly
identify which complementary variations were capable of increas-
ing potency and perhaps selectivity.

For all compounds examined reduction with Pd/C and hydrogen
followed by reductive alkylation gave the desired 4-N-benzyl prod-
ucts.36 Monobenzylation was selectively achieved by careful stoi-
chiometry of benzaldehyde and the avoidance of acid to limit
dibenzylation. Demethylation to 8 or 12 required vigorous reaction
conditions: 48% HBr heated to 120 �C under microwave irritation.
Standard Mitsunobu coupling with the known 1-OTBS butane-
1,2-diol37 gave the desired ethers but required addition of the DIAD
generated electrophilic complex in two portions. Alternately, tri-
flate formation then Molander–Suzuki coupling gave the carbon-
linked 6-C variants. Regardless of the nature of the 6-substitution,
subsequent reduction then reductive alkylation was straight
forward.

HEK293 cells were treated with 50 ng/mL of EGF to activate the
MEK/ERK pathway for 30 min then each compound was added to a
final concentration of 10 lM. Activation of ERK1/2 or MEK5 was
examined by western blot analysis for phosphorylated (i.e., acti-
vated) ERK5.38 Of the nine compounds tested, compound 6 signif-
icantly inhibited both ERK1/2 and ERK5 phosphorylation induced
by EGF treatment (Fig. 3 and Table 1).

Substitution at the 1-ntirogen included benzyl, isopropyl, and
cyclopentyl variations. These groups were selected based on prior
observation39,40 that significant hydrophobic interaction can occur
at a common kinase aromatic binding region proximal to the H-
bond donor/acceptor pair represented respectively by the 4-nitro-
gen proton and the 3-N benzimidazole nitrogen lone pair. Of these
initial variations examined, isopropyl appeared to contribute to-
ward inhibition of ERK5 phosphorylation evidenced by 6, 9b, and
9c. This contribution was dependent on substitution at both the
4-amine, and the 6-carbon. Interestingly, compounds 6 and 14 pos-
sessing the hydroxybutyl ether at the 6-carbon were inactive in
preventing EGF-induced ERK phosphorylation. This result stands
in stark contrast to our observations regarding the role of this
group in potentiating CDK5 inhibition for this benzimidazole scaf-
fold.30 This suggests very different structural requirements for
activity between these two enzymes.



Scheme 1. Reagents and conditions: (a) 50 psi H2, EtOH, 5% Pd/C, 23 �C, 5 h, 80–95%; (b) benzaldehyde (1.1 equiv), NaHB(OAc)3 (2.0 equiv), DCE, 23 �C, 12 h, 30–60%; (c) 48%
HBr, microwave irradiation, 120 �C, 2.5 h, 97%; (d) PNP-OTf, DMF, 23 �C, 2 h; 87%; (e) potassium benzyltrifluoroborate, CsCO3, PdCl2(dppf), H2O/THF, 110 �C, 2 h, 80–99%; (f) 1-
(TBS)butan-2-ol (2.6 equiv), PPh3 (2.6 equiv), DIAD (2.6 equiv), DMF, 0–23 �C, 12 h 65%.

Scheme 2. Reagents and conditions: (a) 48% HBr, microwave irradiation, 120 �C, 2.5 h, 97%; (b) PNP-OTf, DMF, 23 �C, 2 h; 86%; (c) potassium benzyltrifluoroborate, CsCO3,
PdCl2(dppf), H2O/THF, 110 �C, 2 h, 17%; (d) 50 psi H2, EtOH, 5% Pd/C, 23 �C, 5 h, 80–95%; (e) benzaldehyde (1.1 equiv), NaHB(OAc)3 (2.0 equiv), DCE, 110 �C, 2 h, 30–60%; (f) 1-
(TBS)butan-2-ol (2.6 equiv), PPh3 (2.6 equiv), DIAD (2.6 equiv), DMF, 0–23 �C, 12 h, 50%.

Scheme 3. Reagents and conditions: (a) 50 psi H2, EtOH, 5% Pd/C, 5 h, (b)
benzaldehyde (1.1 equiv), NaHB(OAc)3 (2.0 equiv), DCE, 60% (two steps).

Figure 3. Western Blot analysis of EGF-mediated ERK phosphorylation; antibodies
utilized detect all phospho-ERK forms, ERK isofoms are separated with SDS–PAGE
on the basis of molecular weight.
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Table 1
Inhibition of EGF-induced ERK phosphorylation in HEK 293 cells

Compound p-ERK1/2 Relative
phsophorylation (%)a

p-ERK5 Relative
phsophorylation (%)a

6 35.98 12.35
7 260.57 110.05
9a 461.55 129.49
9b 309.67 70.84
9c 346.25 96.27
10 331.95 135.22
13 521.18 78.00
14 609.86 131.53
16 436.18 135.59
DMSO 100 100

a Values are means of duplicate experiments, standard deviation is ±10%.
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Of the compounds examined, the relatively simple compound 6
was shown to display inhibition of EGF-induced phosphorylation
of ERK. Some modest selectivity was observed for the preferential
inhibition of ERK5 phosphorylation relative to ERK1/2 phosphory-
lation. Interestingly, compound 6 was unique among the com-
pounds examined in that no upregulation of ERK1/2
phosphorylation was observed. This compound was submitted
for the NCI 60-cell line screen and was shown to selectively inhibit
the growth of MCF-7 cells in the single dose survey. However, com-
pound 6 was not selected for the subsequent log dose–response
analysis. It has been noted that the MCF-7 cell line displays unique
properties regarding cytosolic effects of ERK5 activity.17

Further studies are under way to analyze the biological contri-
bution of and structure variations from compound 6 for inhibition
of EGF-mediated ERK5 phosphorylation.
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