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Abstract: A palladium(II)-catalyzed protocol for
the highly regioselective remote g-C–H arylation of
aliphatic carboxylic acid has been disclosed. The 8-
aminoquinoline moiety as an intramolecular biden-
tate chelator was found to be suitable for this g-C–
H arylation. Various aryl iodides successfully pro-
duced the regioselectively mono-arylated products
with negligible diarylation. Functional group toler-
ance and easy-to-handle reaction conditions make
this method attractive.
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The inception of C–H activation in materializing re-
markable organic transformations in recent years has
revolutionized the modern trend of retrosynthetic dis-
connections. A series of success stories over the de-
cades serve as representative paradigms in this regard
which reflect the immense applicative potential of en-
visioning a C–H bond as an ideal functional core. This
has allowed a superior scope of selective functionali-
zation at sp2/sp3 carbon centres in the presence of an
organometallic catalyst in complex molecular environ-
ments.[1] With reference to the widely known genre of
C–H bonds, activation of an sp3 carbon centre is quite
problematic. Asserting the compliance of such
a bond, with the absence of a polarizable p-electron
cloud and a low-lying s* orbital, to undergo a metal-
catalyzed cleavage is seemingly tedious. A series of
strategies implemented over the years has thus helped
in the formidable task of making this inert class of C–
H bonds participate actively in chemical transforma-
tions.

One among these many strategies allowing the for-
mation of a carbon-carbon bond at an unactivated
alkyl C–H centre is by the use of a metal-catalyzed
chelation approach. Formation of a five-membered
metallacycle has led to a highly selective b-C–H func-
tionalization. The efficacy of Daugulis� 8-aminoquino-
line directing group in this regard has been beneficial
which can be corroborated by recent literature re-
ports.[1g,2] Successful b-C–H arylation/alkylation via
the chelation approach in the presence of a variety of
metal salts has been demonstrated by Chatani, Ge
and others.[1d,3] A wish to further the scope of this pro-
tocol into taming more distal C–H bonds, viz. g-C–H
bonds, to undergo functionalization was foreseeable.
Progress on g-C–H functionalization was thus endea-
vored by various research groups.[4] g-C–H arylation
of amines by a 2-picolinic acid auxiliary was per-
formed by Daugulis. (Scheme 1).[2a,b] Pioneering re-
ports by Corey on the g-C–H functionalization of N-
phthaloyl-a-amino amides as well as by Chen hold

Scheme 1. Auxiliary-assisted palladium-catalyzed g-C–H ary-
lation protocols.
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immense significance concerning their utility in drug
research and development.[5] Seminal work by Carra-
tero in performing remote C(sp3)–H arylation on di-
peptides by using an N-(2-pyridyl)sulfonamide-based
chelating model is noteworthy.[6] In the last few years,
Yu made significant advancements in this regard by
promoting the effective use of ligand controlled strat-
egy towards highly site selective arylation at both sp2

and sp3 carbon centres.[7]

This was demonstrated in a one-pot sequential di-ACHTUNGTRENNUNGarylation of alanine derivatives using a CONHArF

[ArF =C6F4-(4-CF3)] auxiliary at the g-C–H bond.[8] A
stepwise combination of a pyridine and quinolone-
based ligand derivatives was used for this reaction. g-
C–H arylation using an amino acid as the directing
group had been also reported which was brought
about by changes in the design of the ligands used.[9]

Very recently, while this work was under progress, Yu
made a successful attempt towards the distal g-C–H
arylation of carboxylic acid derivatives using CON-
HArF as the directing group.[10] Arylation was per-
formed selectively at the g-position of valine, leucine
and isoleucine derivatives. An intricate tuning of the
ligand helped to overcome the necessity of the steri-
cally bulky phthalimido group, which was primarily
required to attain the required metallated intermedi-
ate. During this time, activation of the remote aliphat-
ic g-C–H bond of carboxylic acid derivatives was
being investigated in our laboratory. Herein, we inde-
pendently report a facile protocol to perform a selec-
tive arylation at the remote g-position of aliphatic car-
boxylic acids using a palladium-catalyzed reaction
with 8-aminoquinoline as bidentate chelating auxiliary
in which both amine and quinoline nitrogens chelate
with the metal.

While the g-C–H activation of amines requires
a five-membered metallacycle, the same in case of
carboxylic acids would proceed by a six-membered
cyclometallation pathway (Scheme 2). The metal pre-

catalyst would undergo an increase in its oxidation
state by two while forming the metallacycle. This will
require a donor group in the intermediate metallacy-
cle which could stabilize the higher oxidation state of
the metal. Use of exogeneous ligands was shown to
be useful for this in earlier reports.[10] In this case, the
bidentate 8-aminoquinoline was at first tethered to
a linear n-butyl carboxylic acid through an amide
linkage that would provide an active chelation assis-
tance with palladium. Unfortunately, this yielded b-
arylated products exclusively. Later, we tethered tert-
butylacetic acid with 8-aminoquinoline via an amide
linkage for arylation with 4-nitroiodobenzene as ary-
lating source in presence of Pd(OAc)2 as catalyst and
AgOAc as oxidant. Interestingly, regioselective g-ary-
lation was observed (NMR yield: 50%) with a near
exclusive formation of mono-arylated product
(mono :di>30:1). With these initial results at hand,
detailed optimization of the reaction conditions was
carried out. A sequential screening of the palladium
salts and the oxidants resulted in Pd(PhCN)2Cl2 and
AgOAc as the perfect catalyst-oxidant combination
for the reaction. Use of a bulky polar hydroxylic sol-
vent like t-BuOH was found to be beneficial for the
reaction. The presence of a bulky anion like trifluoro-ACHTUNGTRENNUNGacetate was useful for the reaction (Table 1). Inclusion

Scheme 2. Formation of metallacycle for b- and g-C–H acti-
vation.

Table 1. Optimization of catalyst, oxidant and solvent for
the reaction condition starting with 0.3 mmol of amide and
0.1 mmol of aryl iodide.

En-
try

Pd Catalyst Oxidant Solvent
(2 mL)

Yield
[%][a]

1 Pd(OAc)2 AgOAc IPA 35[b]

2 Pd(OAc)2 AgOAc HFIP 40[b]

3 Pd(OAc)2 AgOAc CF3CH2OH 32[b]

4 Pd(OAc)2 AgOAc t-BuOH 50[b]

5 Pd(OAc)2 AgI t-BuOH 20[b]

6 Pd(OAc)2 Ag2CO3 t-BuOH 45[b]

7 Pd(OAc)2 CuOAc t-BuOH 32[b]

8 Pd(OAc)2 AgOAc t-BuOH 70[c,d]

9 PdCl2 AgOAc t-BuOH 50[c,d]

10 Pd(CH3CN)2Cl2 AgOAc t-BuOH 60[c,d]

11 trans-Pd(PhCN)2Cl2 AgOAc t-BuOH 75[c,d]

[a] For mono-arylated product.
[b] 2 equiv. oxidant were used.
[c] In the presence of CF3CO2Na.
[d] 3 equiv. of oxidant were used. See the Supporting Infor-

mation for more details.
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of an exogeneous ligand failed to provide any addi-
tional improvements on the reaction conditions. The
importance of ligand design was emphasized by Yu in
his recent report on g-arylation. Moreover, g-arylation
of carboxylic acids was confirmed to be unknown in
absence of any ligands to date and therefore had re-
mained as a challenge.[10] However, a prudent choice
of the directing group has allowed this target to be
achievable. The reaction conditions employed in our
case completely nullified the requirement of any exo-
geneous ligands. This ensured an enhanced atom-eco-
nomical catalytic conversion and easier reaction con-
ditions without any compromise of the yield and
mono-selectivity. Bidentate chelation by the tethered
8-aminoquinoline ensured an apt placement of the
palladium catalyst in order to maintain the required
six-membered metallacycle (Scheme 2). The presence
of this directing group provided a strong coordination

mode that helped in stabilizing the intermediary high
oxidation states of palladium. Addition of an exoge-
neous bulky ligand therefore did not help in improv-
ing the yield as much since it might hinder the intra-
molecular chelation by the 8-aminoquinoline group.[11]

This led to a facile activation of the remote g-C–H
bond of the aliphatic carboxylic acid and the immi-
nent g-arylation with impressive mono-selectivity.

With the optimized conditions in hand, we went on
to contemplate the scope of the substrates
(Scheme 3). Both electron-donating and electron-
withdrawing aryl iodides were found to be effective
for the regioselective g-arylation in moderate to good
yields. Electron-rich arenes containing substituents
like 3-methoxy (5b), 4-methoxy (5c), 4-methyl (5d) as
well as 4-tert-butyl groups (5e) underwent successful
g-arylation with an excellent ratio in favour of mono-
arylated products relative to di-arylation. Aryl iodides

Scheme 3. Arene scope for g-C–H arylation of carboxylic acid derivatives. Isolated yields are reported.
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containing electron-withdrawing groups such as tri-
fluoromethyl, carboxyl, formyl, esters and keto
groups were also found to be effective (5f–5n). Fluo-
rine-containing aryl groups have been found to be im-
portant in agrochemicals and pharmaceuticals. Nota-
bly, 4-fluorophenyl iodide gave mono-arylated prod-
uct (5o) with excellent selectivity and moderate yields
when subjected to the above reaction conditions. Par-
allel to this, other halogen like chloro and bromo sub-
stituted phenyl iodides also provided g-mono-arylated
products with enhanced selectivity (5p and 5q). How-
ever, iodo derivatives of heteroarenes, phenol and
benzyl alcohols failed to undergo the arylation reac-
tion as suitable coupling partners. Initial attempts for
arylation with n-butylamides had led to the exclusive
formation of b-arylated products with a variety of aryl
iodides (Scheme 4, 7a–7d). However, substrates with
a b-alkyl/aryl substituent (Scheme 5, 9a–9l) showed
high g-regioselectivity for arylation. Although the role
of the b-substituents is not clear at this stage, their
role could be accredited towards rendering support in
formation of the six-membered metallacycle required
for g-C–H arylation of carboxylic acids (2 in
Scheme 2). Mono-selective arylated products 9a–9e
were obtained without any percentage of di-arylation
(Scheme 4). Substrates like isovaleric acid were also
tested which yielded mono-g-arylated products (9f–
9i). Furthermore, using the initially obtained b-arylat-
ed products, g-arylation was performed. Gratifyingly,
exclusive formation of mono-g-arylated products was

obtained (9j–9l). Interestingly, g-cyclization was ob-
tained for mesitoic acid amide which proceeded via
intramolecular cyclization (9m).

Examination of the carboxylic acid scope was then
carried out with N-protected amino acids such as l-
valine and l-isoleucine. Despite the presence of a b-
hydrogen, both amino acids underwent successful g-
arylation in good to excellent yields (Scheme 6, 11a–
11h). Careful 1H NMR analysis revealed that products
were formed in a good diastereomeric ratio (see the

Scheme 4. b-Arylation with linear carboxylic acids.

Scheme 5. Scope of various b-unprotected carboxylic acids for g-C–H arylation.
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Supporting Information). Aryl iodides with electron-
donating or electron-withdrawing substituents under-
went the transformation with exceptional mono-selec-
tivity.

Control experiments were performed to understand
the role of AgOAc. In an independent set of reac-
tions, replacement of AgOAc either by air, oxygen or
N2 did not give corresponding product. Replacing
AgOAc with p-benzoquinone as an oxidant with 4-ni-
troiodobenzene (4a) as coupling partner did not yield
any product. Also replacing 4-nitroiodobenzene (4a)
with 4-nitrophenyl triflate (12) and using p-benzoqui-
none as the oxidant failed to produce 5a. Thus, the
aryl halide is a potent arylating source for this proto-
col. (Scheme 7). Moreover, AgOAc exhibits a dual
role by probably acting as halide scavenger as well as
reoxidant. These facts point towards a tentative
Pd(II)/Pd(IV) catalytic pathway.[12] Further applica-
tion of the protocol was demonstrated by the facile
removal of the 8-aminoquinoline directing group that
furnished the free ester (Scheme 7, 13) in 80% yield
along with recovery of the 8-aminoquinoline moiety
(14) in 75% yield. The latter could be reinstalled
again to achieve the g-arylation of other substrates.

In summary, a palladium-catalyzed protocol for se-
lective g-C–H arylation of carboxylic acids has been
developed. This strategy utilizes the chelating poten-
tial of the 8-aminoquinoline-based directing group for
the site selective C–H activation. Prudent application
of a suitable directing group has eliminated the neces-
sity of expensive exogeneous ligands for g-C–H aryla-
tion rendering the protocol cost effective and eco-
nomical. A detailed mechanistic investigation about

the protocol and the involved catalytic process is on-
going in our laboratory.

Scheme 6. Scope of N-protected amino acids for g-C–H arylation.

Scheme 7. Control experiments to study the role of AgOAc;
removal and concomitant recovery of the directing group.
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Experimental Section

General Procedure for g-Arylation of 8-Amino-
quinoline Amide

In a clean, oven-dried screw-cap reaction tube containing
magnetic stir-bar, 3,3-dimethyl-N-(quinolin-8-yl)butanamide
(3) (0.3 mmol), iodoarene (4) (0.1 mmol), Pd(PhCN)2Cl2

(10 mol%, 0.01 mmol), AgOAc (3 equiv., 0.3 mmol),
CF3CO2Na (2 equiv., 0.2 mmol) were added. Solid reagents
were weighed before the liquid reagents. Then t-BuOH
(2.0 mL) was added and the tube was tightly closed by
a screw cap fitted with a rubber septum. Finally, the reaction
tube was placed in a preheated oil bath at 150 8C and the
mixture stirred vigorously (900 rpm) for 24 h. After comple-
tion, the reaction mixture was cooled to room temperature
and filtered through pad of Celite and ethyl acetate
(15 mL). This filtrate was concentrated under reduced pres-
sure and purified by column chromatography through silica
gel using petroleum ether/ethyl acetate as eluent.
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