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C(sp3) −H Activation-Enabled Cross-Coupling of Two Aryl Halides: 
An Approach to 9,10-Dihydrophenanthrenes
Yichao Gu, Xueliang Sun, Bin Wan, Zhuoer Lu, and Yanghui Zhang*

A palladium-catalyzed cross-coupling reaction of aryl halides with 
2-chlorobenzoic acids has been developed. The reaction forms 
C(sp3),C(sp2)-palladacycles through C(sp3)−H activation. The 
palladacycles react with 2-chlorobenzoic acids through two 
successive C−C cross-coupling, and two C−C bonds are formed with 
high chemoselectivity. The reaction provides an innovative 
method for the synthesis of 9,10-dihydrophenanthren. 

Transition metal-catalysed C−H functionalization has 
made explosive growth over the past decades and has 
emerged as a powerful method for organic synthesis.[1] C−H 
functionalization reactions not only have advantages of high 
step- and atom-economy, but also afford new strategies for 
retrosynthetic analysis. Compared to extensively exploited 
C(sp2)−H activation, transition metal-catalysed C(sp3)−H 
functionalization is more challenging due to the lack of 
π−orbital interaction, and is still underdeveloped.[2] However, 
C(sp3)−H bonds are ubiquitous chemical bonds in organic 
molecules, and therefore developing C(sp3)−H 
functionalization reaction is of paramount significance in 
organic synthesis and other related fields. 

It has been reported that aryl iodides could undergo 
cross-coupling with 2-halobenzoic acids through Pd-catalyzed 
C(sp2)−H activation.[3] In this type of reactions, intramolecular 
C−H activation forms palladacycles as the intermediates. The 
palladacycles first react with carbon−halogen bonds of 2-
halobenzoic acids and are arylated, and the second C−Pd 
bonds are then arylated via decarboxylation (Scheme 1). The 
reaction is very intriguing because it represents an innovative 
reductive cross-coupling reaction. Furthermore, the reaction 
forms two C−C bonds and provides a facile method for the 
synthesis of cyclic compounds. All the current reactions of this 

type were enabled  by C(sp2)−H activation. We were curious if 
such a cross-coupling could be enabled by C(sp3)−H activation. 
Although Pd-catalyzed C(sp3)−H functionalization reactions of 
aryl iodides have been reported, most of them are 
intramolecular cyclization reactions,[4] and intermolecular 
reactions are still underdeveloped.[5] In almost all the current 
intermolecular reactions, both of C−Pd bonds reacted with the 
same atom and formed five-membered compounds. One of 
the major challenges for developing such intermolecular 
reactions is that aryl halides tend to undergo 
homocoupling.[4h,4i] Thus, for the reactions with 2-halobenozic 
acids, the aryl halide substrates could compete with 2-
halobenzoic acids to react with C(sp2),C(sp3)-palladacycles 
formed by C(sp3)−H activation.

Pd0

C(sp2)–H
activation

HO2C

X
X = Br, ClH PdII

C C

I
R1

R2

H

I

HO2C

Cl
R1R

2

Previous work
Reactions with 2-halobenzoic acids via C(sp2)–H activation

This work
Reactions with 2-halobenzoic acids via C(sp3)–H activation

Pd0

C(sp3)–H
activation PdII

R1
R2

Scheme 1. Reactions of aryl iodides with 2-halobenzoic acids. 

9,10-Dihydrophenanthrenes are essential structural 
motifs widely present in bioactive natural products.[6]  Of note, 
many bioactive 9,10-dihydrophenanthrene compounds bear 
substituents on the methylene groups and the benzene 
rings.[7] Therefore, 9,10-dihydrophenanthrenes, in particular 
multisubstituted derivatives, have been the intriguing 
synthetic targets, and developing new reactions for the 
construction of the 9,10-dihydrophenanthrene skeleton has 
been the subject of intensive research.[8] Notably, transition 
metal-catalyzed C−H functionalization has been successfully 
exploited to develop innovative synthetic methods for 9,10-
dihydrophenanthrene and its derivatives.[9] The current 
reactions are limited to intramolecular cyclization through 
C(sp2)−H activation and require the preparation of complex 
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substrates. It is still highly desirable to develop concise C−H 
functionalization reactions to allow easy access to 9,10-
dihydrophenanthrene derivatives. Herein, we report the cross-
coupling reaction of aryl iodides with 2-halobenzoic acids via 
C(sp3)−H activation. The reaction involves dual C-C bond 
formation and represents an innovative method for the 
construction of 9,10-dihydrophenanthrene structures.  

We commenced our studies by choosing 1-(tert-butyl)-2-
iodobenzene (1a) and 2-chlorobenzoic acid as the model 
substrates. As shown in Table 1, 1a coupled with 2a to yield 
9,9-dimethyl-9,10-dihydrophenanthrene 3aa in 26% yield in 
the presence of catalyst Pd(OAc)2 and base K2CO3 (entry 1). 
The yield was improved dramatically by adding a 
tetrabutylammonium salt (entries 2 and 3).[10] To further 
enhance the yield, a range of phosphine ligands were 
surveyed. P(p-tol)3 proved to be optimal, and the yield 
increased to 88% (entries 4-8). Other inorganic bases were also 
examined. While Na2CO3 and K3PO4 gave similar yields, Cs2CO3 
and KOAc are much less efficient than K2CO3 (entries 9-12). 2-
Bromo-tert-butylbenzene was also able to undergo the 
coupling reaction, and 3aa was formed in 86% yield (entry 13). 
Although 2-bromobenzoic acid was also suitable, the reaction 
was much less efficient (entry 14). Notably, a yield of 69% was 
still obtained when the catalyst loading was lowered to 5 mol% 
(entry 15).

Table 1. Survey of the Reaction Conditions

I
Cl

HO2C
+

base (4 equiv)
DMF (1 mL)

N2, 140 oC, 12 h1a (0.1 mmol) 2a (1.5 equiv)

Pd(OAc)2 (10 mol %)
ligand (15 mol %)
additive (2 equiv)

base ligandadditive

K2CO3 //

yield (%)a

K2CO3 n-Bu4NBr /

K2CO3 n-Bu4NCl /

K2CO3 n-Bu4NCl PPh3

K2CO3 n-Bu4NCl P(p-tol)3

K2CO3 n-Bu4NCl P(o-tol)3

K2CO3 n-Bu4NCl P(p-F-Ph)3

K2CO3 n-Bu4NCl

Na2CO3

Cs2CO3

KOAc
K3PO4

n-Bu4NCl
n-Bu4NCl
n-Bu4NCl
n-Bu4NCl

P(p-tol)3
P(p-tol)3
P(p-tol)3
P(p-tol)3

K2CO3 n-Bu4NCl P(p-tol)3
K2CO3 n-Bu4NCl P(p-tol)3
K2CO3 n-Bu4NCl P(p-tol)3

71

69e

79

59

33d
86c

86
40
62
82

26
62
68
70

88 (85)b

3aa

entry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

PCy3

a The yields were determined by 1H NMR analysis of the crude 
reaction mixture using CHCl2CHCl2 as the internal standard. b 
Isolated yield. c 2-bromo-tert-butylbenzene. d 2-bromobenzoic 
acid. e 5 mol % of Pd(OAc)2, 7.5 mol % of ligand.

Having identified the optimal conditions for the cross-
coupling of two different aryl halides, we investigated the 
substrate scope of the reaction. The performance of various 2-
chlorobenzoic acid derivatives was first probed. Substrates 
bearing a methyl, methoxy, or fluoro group at the 4 position 
could couple with 1a efficiently, and the corresponding 
products were formed in high yields (3ab-3ae). The structure 

of 3ad was identified by single-crystal X-ray crystallography.[11] 
Notably, the iodo-carbon coupled with the chloro-carbon of 2-
chlorobenzoic acid selectively, and the methyl carbon reacted 
with the carbon attached by the carboxyl group. It should be 
mentioned that a chloro group was tolerated (3ae). The 
suitability of 5-substituted 2-chlorobenzoic acids was then 
investigated. Whereas methyl or fluoro-substituted substrates 
exhibited high reactivity, a trifluoromethyl or cyano group gave 
a low yield (3af-3ai). Notably, a free hydroxyl and amino group 
were compatible, which allows for the further transformation 
of the products (3aj and 3ak). The impact of ortho-substituents 
on the reaction was also examined. The yield decreased to 
40% for 3-methyl-substituted substrate, which should result 
from the steric hindrance imposed by the methyl group (3al). A 
yield of 64% was still obtained for the substrate bearing a 
methyl group ortho to the carboxyl group (3am). Whereas 3-
fluoro-substituted benzoic acid gave a yield of 65%, the 
presence of a 6-fluoro group led to a sharp decrease in the 
yield (3an and 3ao). Difluoro-substituted substrates was also 
suitable, and 3-chloroisonicotinic acid failed to form the 
desired product (3ap and 3aq).

Table 2. Substrate Scope with the Respect to 2-Chlorobenzoic 
Acids

I +

Cl

HO2C

Pd(OAc)2 (10 mol %)
P(p-tol)3 (15 mol %)
n-Bu4NCl (2 equiv)

K2CO3 (4 equiv)
DMF (1 mL)

N2, 140 oC, 12 h1a (0.1 mmol) 2 (1.5 equiv) 3

R
R

Cl3ae, 41% 3af, 70%

OMe
3ac, 95%

CF3
3ah, 43%

F
3ad, 86%

OH
3aj, 50% 3al, 40% 3am, 64%

F

F

3an, 65%

3ao, 30%

NH2
3ak, 67%

F
3ag, 78%

3ab, 70%

F
F

N

3aq, 0%3ap, 58%

CN
3ai, 36%

The 2-iodo-tert-butylbenzene scope was then 
investigated. The substrate bearing an electron-donating 
methoxy group gave 9,10-dihydrophenanthrene 3aa in 58% 
yield, and the presence of an electron-withdrawing nitro group 
led to a low yield (3ba and 3ca). The chloro group was well-
tolerated (3da). For substrate 1e, the C−H bond ortho to the 
tert-butyl group was phenylated and migrated product 3ea 
was obtained (3ea). The reaction of 1f also involved a 
migration process, affording product 3fa in 68% yield. The 
reactions of iodobenzenes bearing a derivatized tert-butyl 
group were also studied. The isopropyl groups substituted by 
an ester or phenyl group could participate in the dual cross-
coupling reaction (3ga and 3ha). However, 1i, which contains a 
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single methyl group, failed to give product 3ia. 

Table 3. Substrate Scope with the Respect to Iodobenzenes

I

I

NO2

O2N

I

OMe

MeO

I

Cl

Cl

I

O
O

CO2Me

I

CO2Me

Ph

I

Ph

68

38

58

70

33

74

32

OO

I

OO

entry 1 3 entry 1 3 yield (%)yield (%)

1

2

3

4

5

6

7

8 0

1b

1c

1d

1e

1f

1g

1h

1i

3ba

3ca

3da

3ea

3fa

3ga

3ia

3ha

O
O

R1 R2

I +

Cl

HO2C

R1
R2Pd(OAc)2 (10 mol %)

P(p-tol)3 (15 mol %)
n-Bu4NCl (2 equiv)

K2CO3 (4 equiv)
DMF (1 mL)

N2, 140 oC, 12 h1 (0.1 mmol) 2a (1.5 equiv) 3

R
R

We also examined the reactions of various 2-bromo-tert-
butylbenzenes. As outlined in Table 4, a range of 2-bromo-tert-
butylbenzenes, substituted by a methoxy, methyl, tert-butyl, or 
fluoro group reacted with 2a efficiently, and the corresponding 
products were obtained in moderate or high yields (3ja-3na). Just as 
1f, ortho-methyl-substituted substrate 1o also formed migrated 
product 3fa.

Table 4 Substrate Scope with the Respect to Bromobenzenes

Br

Br

Br

Br

F

F

60

56

81

88

Br 62

Br

OMe

MeO
67

entry yield (%) yield (%)1 3 1 3entry

1

2

3

4

5

6

1j

1k

1l

1m

1n

1o

3ba

3ka

3la

3fa

3na

3fa

Br +
Cl

HO2C
Pd(OAc)2 (10 mol%)
P(p-tol)3 (15 mol%)
n-Bu4NCl (2 equiv)

K2CO3 (4 equiv)
DMF (1 mL)

N2, 140 oC, 12 h1 (0.1 mmol) 2a (1.5 equiv) 3

R
R

Mechanistic studies were then conducted. First, 
palladacycle 1a-C was prepared and was allowed to react with 
2a. Product 3a was obtained in 80% yield (Scheme 2), which 
implies that a palladacycle could act as the intermediate in the 
cross-coupling reaction. Time-course of the yields was studied. 
As shown in Fig. 1, the reaction was initiated quickly, and 
product 3aa was formed in 37% yield in five minutes. The 
reaction also proceeded at a high rate, and the optimal yield 
was almost obtained in 110 minutes in the reaction of 1a.

Pd
cod

+
Cl

CO2H

P(p-tolyl)3 (15 mol %)
n-Bu4NCl (2 equiv)

K2CO3 (4 equiv)
DMF (1 mL)

N2, 140 oC, 12 h1a-C 2a 3aa 80%

Scheme 2. Mechanistic Studies.

Pd(OAc)2 (10 mol %)
P(p-tol)3 (15 mol %)
n-Bu4NCl (2 equiv)

K2CO3 (4 equiv)
DMF (1 mL)
N2, 140 oC

I
+

Cl

HO2C

1a (0.1 mmol) 2a (1.5 equiv) 3aa

Fig. 1 Time-course of yields for the formation of 3aa.

On the basis of the mechanistic studies and previous 
reports[3b], [5], we proposed a mechanism for the 9,10-
dihydrophenanthrene-forming reaction (Scheme 3). The 
catalytic cycle is initiated by the oxidative addition to yield PdII 

species A. The subsequent C(sp3)–H activation forms 
palladacycle B. A second oxidative addition of 2-chlorobenzoic 
acid to the palladacycle affords PdIV species C. The first C-C 
bond is formed via reductive elimination, which is followed by 
decarboxylation to give seven-membered palladacycle E. A 
second reductive elimination yields final product 3aa.

Scheme 3. Proposed Mechanism.

For the formation of 3ea, the palladacycle decomposes to 
give an alkylpalladium(II) species.  The alkylpalladium(II) 
species then activates ortho-C−H bond to generate a second 
palladacycle, which may be stabilized by the binding of the 
oxygen atom. The second palladacycle then undergoes 
coupling reaction with 2-chlorobenzoic acid to form product 

PdII
H

PdIV

Pd0

oxidative
addition

C–H
activation

reductive
elimination

oxidative
addition

A

B
C

reductive
elimination

1a

2a

CO2

PdII

3aa

PdII

O
O

O
O O

O

PdII
PdII

Protonation
C–H

Activation

Proposed mechanism for the formation of compound 3ea and 3fa

O-

decarboxylation

D

E

Cl
K+

X

1f X = I; 1o X = Br

3fa

3ea

PdII
PdII

PdII

Protonation
C–H

Activation

1) Oxidative
addition

2) C–H
Activation

I

1e

1) Oxidative
addition

2) C–H
ActivationO

O
2a

2a

Cross-
Coupling

Cross-
Coupling

O
PdII

O
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O
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3ea. 3fa is formed in a similar migration process. The driving 
force for the migration should be the steric hindrance imposed 
by the methyl group, which impedes the reaction of the 
palladacycle with 2-chlorobenzoic acid. 

In conclusion, we have developed a Pd-catalyzed cross-
coupling reaction of aryl iodides with 2-chlorobenzoic acids. 
Mechanistic studies support that C(sp3), C(sp2)-palladacycles 
were generated through C(sp3)−H activation and acted as the 
intermediates. The reaction formed two C−C bonds and 
afforded six-membered products. A range of 2-chlorobenozic 
acids and iodobenzenes bearing an ortho-alkyl group 
underwent the cross-coupling reaction, and the reaction 
provides an innovative method for the synthesis of 9,10-
dihydrophenanthrenes. The reaction also represents the first 
example of Pd-catalyzed C(sp3)−H arylation of iodobenzenes 
with 2-chlorobenzoic acids.

The work was supported by the National Natural Science 
Foundation of China (No. 21971196 and 21672162).
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C(sp3)−H Activation-Enabled Cross-Coupling of Two Aryl Halides: An Approach to 
9,10-Dihydrophenanthrenes
Yichao Gu, Xueliang Sun, Bin Wan, Zhuoer Lu, and Yanghui Zhang*

R3 R4

I +
Cl

HO2C
R3

R4

Pd catalyst

R1

R1R2

R2

H

C(sp3)-H activation Cross-coupling of
two aryl halides

An innovative approach to
9,10-dihydrophenanthrenes

A palladium-catalyzed cross-coupling reaction of aryl halides with 2-chlorobenzoic acids has been 
developed through C(sp3)−H activation, which provides an innovative method for the synthesis of 
9,10-dihydrophenanthren.
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