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Abstract. Optically active 2-alkenyl carbamates are deproto-
nated by n-butyllithium with retention of configuration.
Lithium tItanium exchange by Ti(OiPr), proceeds with reten-
tion and by ClTi(NEt,); with inversion of configuration. The
stereochemical course of addition to aldehydes is mainly
determined by the chiral center of the metal allyl reagents
to offer a flexible route to both enantiomers of highly
substituted ketones.

Recently, we found the first example of a chiral non-racemic allyllithium com-
poundl to exhibit considerable configurative stability at the metallated
carbon atom; t1/2 of racemization for 2b at -75 ©C » 3 h. The optically active
carbamate 1lb is lithiated with n-butyllithium/TMEDA with retention of confi-
guration (Scheme 1) and undergoes metal exchange by ClTi(NEt,)3 with inver-
sion. This was concluded from the opposite stereochemical course of the addi-

tion to a prochiral aldehydel

which proceeds via a pericyclic process with
2 >

to form Z-anti homoaldol adduct 3b or ent-3b, respec-
tively. The sequence constitutes a novel strategy for reagent-controlled
asymmetric homoaldol addition,3'4 although, due to the low chiral transmission
and the low anti-diastereoselectivity for the lithium case, its synthetic
value was rather limited at this level.

1,3-chirality transfer
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We now report on useful chiral non-racemic 2-pentanone homoenolate reagents4
which are obtained conveniently from one enantiomer of (_E_:)—3-penten—2-ol5 in
both enantiomeric forms via the lithium compound 2a after metal exchange with
various achiral titanium reagents.6

Carbamate la’r8 (84% ee) was prepared from (§)—(§_)—penten—2-ol.9 For lithia-
tion,7 a new inverse procedure was used: To la and n-butyllithium (1.1 eq),
mixed below -70 ©C in hexane, N,N,N',N'~tetramethyl ethylenediamine (TMEDA,
1.1 eq) is introduced slowly through a syringe and lithiation continued for 2
- 4 h at -78 to -75 °C. Addition of Ti(OiPr),4, CLTi(NEt,)}3 or CITi(OiPr)j3 (1.1
eq, 0.5 h), 2-methylpropanal (1.1 eq, 0.5 h at -75 °c, —»20 ©C), followed by
acidic aqueous work-up, affords a single diastereomerl? (Z~anti) 3a and ent-3a
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of different enantiomeric composition (Scheme 1):

With Ti(0iPr),, 3.5 h: 59% 3a, [alp?0 = +4.7, 73% ee,! (corr. 87% ee);

with CITi(NEt,)3, 4 h: 47% ent-3a, [=]p%0 = -3.5, 53% ee (corr. 63% ece);

with C1Ti(0iPr)3, 4 h: 28% rac-3a, [alp?% = 0.0, 0% ee.

It is evident that the metal exchange takes the opposite stereochemical course

with Ti(OiPr)4 (retention) and ClTi(NEt,)3 (inversion)1 but is not stereospe-
cific with ClTi(0iPr);. The configurative stability of the titanium interme-
diates is surprisingly high. Even, when the solution of 2a/Ti(0iPr),; was kept
for 0.5 h at 20 °C before aldehyde addition, optically active 3a (87%, 48% ee,
corr. 58% ee) was isolated.

A set of similar experiments was performed applying best metallation condi-
tions (1.l eq n-BulLi, 4 h) and using (8)- or (5)—(E—butyldimethylsilyloxy)-
propanal11 4. As it is seen from Scheme 2 and Table 1, run 1 - 4, the
adductslz'13 7 or 8, ent-8 or ent-7 are formed via the tentative interme-
diatesl? 5 or 6, respectively, with 82 - 90% ds. The accompanying minor dia-
stereomer (10 - 18%) is easily separated by flash chromatography. In part, its
formation is caused by the enantiomeric impurity (8%) of the starting material
la (84% ee). The remaining amount is the result of a slow racemization of the
metallated reagents 2, 5, or 6 and of a small positive or negative kinetic

resolution.15
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Table 1: Lithiation of la and addition to aldehydes (S)- and (R}-4 after metal

exchange
Run Reagents Products Yield[b](%) Ratio[cl (Ratio)[d]
1 (s)-1al2), (s)-4,Ti(0iPr), 7+ 8 61 85 : 15 (93 : 7)
2 (8)-la, (5)-4,CLTi(NEt,), 7+ 8 60 10 : 90 ( 2 : 98)
3 (s)-la, (R)-4,Ti(0iPr),  ent-7 + ent-8 60 10 : 90 (2 : 98)
4 (s)-la, (R)-4,CITi(NEt,)s; ent-7 + ent-8 41 82 : 18 (90 : 10)
5 (8)-la, (8)-4,ClTi(OiPr);, 7+ 8 [g] 53 : 47 -
6 rac-lalel, (s)-4,cirTi(NEt,), 7+ 8  [q] 50 : 50 -
7 rac-lalel,(s)-4,ri(0iPr), 7+ 8 75 47 : 53 -
8 rac-1alfl, (s)-4,7i(0iPr), 7+ 8 67 36 : 64 -
9 rac-lal®),rac-4,Ti(0iPr),  rac-7 + rac-8  8olPl 30 : 70 -

[a] (S)-1la with 84% ee (S : R = 92 : 8) Was used. [b] Combined yield after LC
separation; scale 1 mmol. [c] Ratio was determined by GC and/or isolation. [d]
Corrected for (S)-1 of 100% ece. [e] Ratio rac-1 : (S)-4 =1 : 1. [f] Ratio

rac~-1l : (S)-4 = 2.4 : 1. [g]—ﬁot determined. [h] Scale 25 mmol.

From these results one must conclude:
1. The sense and degree of 1,3-chirality transfer and of asymmetric 1,4-
induction depends on the achiral titanium compound used for metal exchange.
2. The asymmetric induction caused by the reagent 5 or 6 overrules the inhe-
rent 1,2-diastereofacial differentiation of the chiral aldehyde 4.
The combinations - (§)—614 and (§)-4 or (5)—514 and (R)-4 - constitute the
"matched pairs“15 and the RS- and SR-~pairs the "mismatched" ones. The experi-
ments run 7 versus run 8 or 9 give a simple protocol for the rapid recogni-
tionl® of configuratively stable organometallics even by using the racemates.
Compounds 7 or 8 represent masked v,6 -dihydroxy ketones which rapidly are
further functionalized. Epoxidation17 of 8 (E-BuOOH/V5+) gave the epoxide18 9
which affords after treatment with acetone/BF3-OEt2 and desilylation (BuyNF) a
single furanosidel8:19 10,
Altogether, homoenolate reagents based on chiral allyl carbamates of type 1,
in the reaction with chiral aldehydes exhibit a high degree of reagent-con-
trol. Thus, they permit the convenient stereo-rational preparation of highly
functionalized enantiomerically pure ketone derivatives with few steps; up to
four new continuous stereo centers are constructed with two steps optionally

in each of both enantiomeric configurations starting from reagent 1.
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