

Note

Access to Perfluoroalkyl-Substituted Enones and Indolin-2ones via Multicomponent Pd-Catalyzed Carbonylative Reactions

Hongfei Yin, and Troels Skrydstrup

J. Org. Chem., Just Accepted Manuscript • Publication Date (Web): 31 May 2017 Downloaded from http://pubs.acs.org on June 1, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Access to Perfluoroalkyl-Substituted Enones and Indolin-2-ones via Multicomponent Pd-Catalyzed Carbonylative Reactions

Hongfei Yin and Troels Skrydstrup*

Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience

Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.

ts@chem.au.dk

ABSTRACT: A simple method for accessing perfluoroalkyl-substituted enones is described applying a four-component palladium-catalyzed carbonylative coupling of aryl boronic acids together with terminal alkynes and perfluoroalkyl iodides in the presence of carbon monoxide. A wide range of highly functionalized enones can thus be prepared in a single operation in good yields. With 2-aminophenylalkynes, an intramolecular aminocarbonylation event overrules providing the indolin-2-one framework. Finally, adaptation of the two-chamber technology expands the method to the synthesis of the aforementioned structures with ¹³C-isotope-labeling.

The replacement of hydrogen with fluorine in bioactive molecules can produce significant beneficial effects in their biological properties including increased metabolic stability and lipophilicity.¹ Furthermore, the C–F group can operate as an isostere for other functional groups.^{1c,2} As such considerable efforts are being made to develop new methodologies for constructing fluorine-containing molecules.³ Amongst the plethora of such compounds, structures possessing perfluoroalkyl chains also exhibit unique properties such as hormonal effects,⁴ and due to their low surface tension, they have also found utility in water-proof materials.^{3d,5}

Scheme 1. Recent Examples of Pd-Catalyzed Perfluoroalkylation of Alkynes

The synthetic methods for obtaining perfluoroalkyl displaying compounds have been achieved through metal-mediated reactions with different metal sources by using commercially available perfluoroalkyl iodides or bromides.⁶ Alternatively, ultrasound or peroxide can also promote such transformations involving intermediate perfluoroalkyl radicals.^{3,7} In 2015, Nevado and coworkers reported the synthesis of perfluoroalkyl substituted alkenes applying a three component Pd-catalyzed transformation with perfluoroalkyl iodides, terminal alkynes and aryl boronic acids.⁸ Recently, the scope of this transformation has been expanded to both terminal and internal alkynes by Chaładaj,

The Journal of Organic Chemistry

applying a palladium(0) pre-catalyst.⁹ Moreover, both the aminocarbonylation and alkoxycarbonylation versions of this concept have been studied by Liang (Scheme 1).¹⁰ However, at the time we started this project, a four-component carbonylative Suzuki-type coupling for this chemistry had not yet been investigated. Hence, with our interest in developing new Pd-catalyzed carbonylation reactions,¹¹ we explored the adaptation of the Nevado approach for the formation of perfluoroalkyl substituted enones *via* a Pd-catalyzed carbonylative Suzuki reaction in the presence of perfluoroalkyl iodides, aryl boronic acids and terminal alkynes.

Scheme 2. Optimized Conditions for the Pd-Catalyzed Four-Component Carbonylative Coupling

In order to test this four-component strategy, we initiated a study using phenylacetylene (1), 1-(4methoxyphenyl) boronic acid (2) and iodoperfluorobutane (3) applying our two-chamber technology as previously described.^{11a} After an extensive optimization with respect to the catalyst composition (Pd source and ligand) and base, we finally settled on the reaction conditions illustrated in Scheme 2, with 6 equivalents of carbon monoxide from COgen, 2.0 equivalents of potassium carbonate, 2.5 mol% Pd(PPh₃)₂Cl₂ as the Pd source and 2.5 mol% of P*t*Bu₂Me as its HBF₄ salt in dichloromethane at 50 °C (see Supporting Information). This provided a 73% NMR yield of the desired ketone **5** as a colorless syrup (65% isolated yield after column chromatography), in addition to **5**, the direct coupling product **4** was also obtained in an 18% NMR yield along with a small percentage of the alkenyl iodide **6** and dienone **7** involving the radical addition to two alkynes. The use of other boronic acid derivatives (such as ArBPin, ArBF₃K, etc) proved non-rewarding for this coupling transformation.

^{*a*}Chamber A: Aryl boronic acid (0.33 mmol), alkyne (0.25 mmol), C_4F_9I (0.50 mmol), $Pd(PPh_3)_2Cl_2$ (2.5 mol%), HBF₄*t*Bu₂MeP (2.5 mol%), K₂CO₃ (0.5 equiv.) in CH₂Cl₂ (1 mL). Chamber B: COgen (1.5 mmol), Pd(COD)Cl₂ (0.015 mmol), HBF₄*t*Bu₃P (0.015 mmol), Cy₂NMe (3.0 mmol) in CH₂Cl₂ (3 mL). ^{*b*}5 µL of water was added.

With these reaction conditions in hand favoring the four-component coupling product, we next investigated the scope and limitations of the reaction with different aryl boronic acids (Scheme 3). Generally, the products were obtained in moderate to good yields with the main byproduct represented

The Journal of Organic Chemistry

by the direct coupling product as illustrated in Scheme 2 with compound 4 in the range of 10–20%. Notably, both compounds could be easily separated from the by column chromatography. Utilizing phenyl boronic acid with phenyl acetylene and perfluorobutyl iodide enabled the formation of the corresponding enone 8 in a 70% yield. Phenyl boronic acids containing a *tert*-butyl or phenyl group on the *p*-position led to 9 and 10 in yields of 56% and 74%, respectively. Enones bearing a fluoride or chloride on the aromatic ring could also be formed in good yields (11, 61% and 12, 55%). However, 4bromophenyl boronic acid only afforded a 48% yield of 13. Use of 3-methoxyphenyl boronic acid resulted in a similar yield of enone 14 to that of its 4-methoxy counterpart. Moreover, o-methyl substituted phenyl boronic acid proved compatible under these conditions, delivering its corresponding enone 15 in a 67% yield. *m*-Substituted phenyl boronic acids were tolerant as well to these reaction conditions as illustrated with compounds 16 and 17. Other aryl boronic acids containing electron withdrawing-group such as 4-cyano, 4-CHO and 4-COOMe were tested under the optimal conditions, but all of them gave low conversion. On the other hand, some heteroaromatic boronic acids were converted smoothly to the enones, as shown with the thienyl and benzo[b]thien-2-yl boronic acids, giving yields ranging from 53% to 61% (compounds 18–20).

Next our attention was turned to exploring various alkynes under the reaction conditions. As depicted in Scheme 4, phenylacetylenes bearing different functional groups on the aromatic ring could be incorporated with yields ranging from 53% to 62% (enones 21–24). Employing 4-ethynylpyridine could give rise to enone 25 in a 40% isolated yield. Aliphatic substituted alkynes were also feasible being converted to their corresponding enones 26 and 27, such as the one bearing TMSCH₂- and C₄H₉substituents, in the yields of 62% and 65%, respectively. The enones carrying cycloaliphatic rings could also be obtained, though in decreased yields (compounds 28 30% yield, and 29, 46% yield). The reaction is nevertheless sluggish for internal alkynes. When 1-phenylpropyne was tested under our optimized conditions, only approximately 10% of the desired product could be obtained. The starting material remained. Instead of employing C₄F₉I, other perfluoroalkyl iodides proved to be compatible with these Pdcatalyzed reaction conditions (Scheme 5). Enones **30–32** containing C₆F₁₃-, C₈F₁₇-, and C₁₀F₂₁- were synthesized in yields of 68%, 60% and 65%, respectively. Furthermore, ethyl α , α -difluoroiodoacetate revealed itself to also be a suitable coupling partner, providing enone **33** in a 55% yield.

^[a] Chamber A: Aryl boronic (0.33 mmol), alkyne (0.25 mmol), iodide (0.50 mmol), Pd(PPh₃)₂Cl₂ (2.5 mol%), HBF₄tBu₂MeP (2.5 mol%), K₂CO₃ (0.5 equiv.) in CH₂Cl₂ (1 mL). Chamber B: COgen (1.5 mmol), Pd(COD)Cl₂ (0.015 mmol), HBF₄tBu₃P (0.015 mmol), Cy₂NMe (3.0 mmol) in CH₂Cl₂ (3 mL). ^[b] 36 h.

Interestingly, when 2-ethynylaniline was treated under the coupling conditions, the desired enone product was not formed. Instead an indolin-2-one derivative **34** was obtained in a 48% isolated yield from an intramolecular aminocarbonylation event (Scheme 6). It was surprising to see that the presence of boronic acid was vital for this transformation. When no boronic acid was added to the reaction

The Journal of Organic Chemistry

system, only trace amounts of the indolin-2-one could be detected from the ¹⁹F-NMR spectrum of the crude reaction mixture. Switching the amount of boronic acid from 1.3 equivalents to 0.1 equivalents resulted in similar yields. Therefore, we assume that the role of the boronic acid might only be essential to facilitate the formation of the Pd(0) species. Next, several indolin-2-ones containing a perfluoroalkyl

Scheme 5. Reaction Scope with Different Perfluoroalkyl Iodides^a

^{*a*}Standard conditions were used as indicated in the footnote of Scheme 4.

Scheme 6. Synthesis of Indolin-2-one Derivatives^a

^{*a*}Chamber A: Aryl boronic acid (0.025 mmol), alkyne (0.25 mmol), R_fI (0.75 mmol), $Pd(PPh_3)_2Cl_2$ (2.5 mol%), HBF_4tBu_2MeP (2.5 mol%), K_2CO_3 (0.5 equiv.) in CH_2Cl_2 (1 mL). Chamber B: COgen (2.5 mmol), $Pd(COD)Cl_2$ (0.025 mmol), HBF_4tBu_3P (0.025 mmol), Cy_2NMe (5.0 mmol) in CH_2Cl_2 (3 mL).

chain were synthesized. The corresponding heterocycles were obtained in good yields starting from 2ethynylaniline derivatives with two examples, **35** and **36**, bearing a substituent on the phenyl ring, as shown in Scheme 6. $C_6F_{13}I$ was also a suitable substrate for this transformation, leading to the formation of compound **37** in a 67% yield. Confirmation of the *E*-geometry of the double bond was obtained from the single crystal X-ray structure of **34** (see Supporting Information).

As a stable isotope, carbon-13 can be used as metabolic tracers.¹² By using ¹³CO liberated from ¹³Clabeled COgen, ¹³C-isotopically labeled enones **38** and **39** and indolin-2-one **40** were formed under the coupling conditions (Figure 1). It is noteworthy that the double bond in enone **38** isomerized partially

^{*a*}Standard conditions were used as indicated in the footnote of Scheme 4. ^{*b*}3.0 equiv. of ¹³CO was used. ^{*c*}Reaction performed on a 0.5 mmol scale with 3.0 equiv. of ¹³CO.

to the *Z*-configuration in CDCl₃ after 3 days. By comparing the ¹H-NMR spectra for the ¹³C-labeled enone **38**, we could clearly observe the protons on the double bond for both stereoisomers, as well as the ¹³C-enriched carbons from the ¹³C-NMR spectra. The coupling constant between the ¹³C-labeled carbon and the alkenyl proton for the *E*-isomer is 6.48 Hz, while that the coupling constant for the newly formed isomer was observed to be 8.96 Hz. According to the literature, a larger coupling constant is generally observed when the proton is situated *trans* to the corresponding carbon atom.¹³ This configuration was also confirmed by X-ray crystal structure analysis (see Supporting Information). Therefore, we can tentatively conclude that the main products obtained from the four-component coupling reaction possess the *E*-configuration.

A possible catalytic cycle for this transformation is proposed in Figure 2. Firstly, perfluoroalkyl iodide reacts with Pd(0)-species, generated from the Pd(II) precursor, via single electron transfer generating the perfluoroalkyl radical A, together with a Pd(I) complex. Subsequent addition of A to the alkyne creates alkenyl radical B. Combination of B with the Pd(I) complex provides an alkenyl Pd(II) species C, which then follows the common carbonylative mechanism, involving the CO insertion step to acyl Pd complex D, and then transmetallation with the aryl boronic acid and reductive elimination. Alkenyl

radical *B* could also combine directly to a CO bound Pd(I) species providing directly the acyl Pd complex D.¹⁴

In conclusion, a Pd-catalyzed four-component carbonylative route for accessing perfluoroalkyl enones has been demonstrated. Various aryl boronic acids, alkynes and perfluoroalkyl iodides revealed to be tolerant under the reaction conditions. Moreover, by using similar conditions, indolin-2-ones derivatives could be obtained from different 2-ethynylanilines through an intramolecular aminocarbonylation reaction. Finally, ¹³C-labeled enones and indolin-2-ones were prepared by employing ¹³C-labeled COgen.¹⁵

Experimental Section

General Methods. All the carbonylative reactions were carried out in a two-chamber system (COware) in a glovebox under argon. All other chemicals were used as received without further purification. Solvents were dried according to standard procedures and flash chromatography was carried out on silica gel 60 (230-400 mesh). The chemical shifts are reported in ppm relative to solvent residual peak. The ¹H NMR spectra were recorded at 400 MHz, ¹³C NMR spectra were recorded at 100 MHz, ¹⁹F NMR spectra were recorded at 376 MHz. NMR spectra are reported as follows (s = singlet, d = doublet, t = triplet, q = quartet, quin = quintuplet, sext = sextet, sep = septet, m = multiplet, br = broad, dd = double doublet, dt = double triplet, ddd = double doublet; coupling constant(s) in Hz; integration). HRMS spectra were recorded on a LC TOF (ES) apparatus.

General Procedure for the Synthesis of Enones. *Chamber A:* To chamber A of the two-chamber system was added Pd(PPh₃)₂Cl₂ (4.4 mg, 0.0063 mmol, 0.025 equiv.), HBF₄PtBu₂Me (1.6 mg, 0.0063 mmol, 0.025 equiv.), K₂CO₃ (69 mg, 0.5 mmol, 2.0 equiv.), boronic acid (0.33 mmol, 1.3 equiv.) followed by alkyne (0.25 mmol, 1.0 equiv.), perfluoroalkyl iodide (0.5 mmol, 2.0 equiv.), and CH₂Cl₂ (1.0 mL). *Chamber B:* To chamber B of the two-chamber system was added Pd₂(dba)₃ (13.7 mg, 0.015 mmol, 0.01 equiv.), HBF₄P(tBu)₃ (4.4 mg, 0.015 mmol, 0.01 equiv.), COgen (362 mg, 1.5 mmol, 1.0 equiv.), CH₂Cl₂ (3.0 mL) and Cy₂NMe (642 μ L, 3.0 mmol, 2.0 equiv.) in that order. Both chambers were sealed using a screw cap and a Teflon® coated silicone seal. The two-chamber system was then opened to air carefully and the crude mixture in chamber A was diluted with CH₂Cl₂. The combined organic layers were washed with brine, dried over Na₂SO₄ and filtered. The solvent was removed *in vacuo* and the title compound was obtained through flash column chromatography.

The Journal of Organic Chemistry

General Procedure for the Synthesis of Indolin-2-ones. *Chamber A:* To chamber A of the twochamber system was added Pd(PPh₃)₂Cl₂ (4.4 mg, 0.0063 mmol, 0.025 equiv.), HBF₄PtBu₂Me (1.6 mg, 0.0063 mmol, 0.025 equiv.), K₂CO₃ (69 mg, 0.5 mmol, 2.0 equiv.), phenylboronic acid (0.025 mmol, 0.1 equiv.) followed by alkyne (0.25 mmol, 1.0 equiv.), perfluoroalkyl iodide (0.75 mmol, 3.0 equiv.), and CH₂Cl₂ (1.0 mL). *Chamber B:* To chamber B of the two-chamber system was added Pd₂(dba)₃ (22.9 mg, 0.025 mmol, 0.01 equiv.), HBF₄P(tBu)₃ (6.8 mg, 0.025 mmol, 0.01 equiv.), COgen (602 mg, 2.5 mmol, 1.0 equiv.), CH₂Cl₂ (3.0 mL) and Cy₂NMe (1.07 mL, 5.0 mmol, 2.0 equiv.) in that order. Both chambers were sealed using a screw cap and a Teflon® coated silicone seal. The two-chamber system was removed from the glovebox and stirred at 50 °C for 20 h. The two-chamber system was then opened to air carefully and the crude mixture in chamber A was diluted with CH₂Cl₂. The combined organic layers were washed with brine, dried over Na₂SO₄ and filtered. The solvent was removed *in vacuo* and the title compound was obtained through flash column chromatography.

General Procedure for the Synthesis of Enones and Indolin-2-ones Labeled with ¹³C-Carbon. *Chamber A:* To chamber A of the two-chamber system was added Pd(PPh₃)₂Cl₂ (8.8 mg, 0.013 mmol, 0.025 equiv.), HBF₄PtBu₂Me (3.2 mg, 0.013 mmol, 0.025 equiv.), K₂CO₃ (138 mg, 1.0 mmol, 2.0 equiv.), phenylboronic acid (0.05 mmol, 0.1 equiv.) followed by alkyne (0.5 mmol, 1.0 equiv.), perfluoroalkyl iodide (1.5 mmol, 3.0 equiv.), and CH₂Cl₂ (2.0 mL). *Chamber B:* To chamber B of the two-chamber system was added Pd₂(dba)₃ (13.7 mg, 0.015 mmol, 0.01 equiv.), HBF₄P(tBu)₃ (4.4 mg, 0.015 mmol, 0.01 equiv.), ¹³COgen (363 mg, 1.5 mmol, 1.0 equiv.), CH₂Cl₂ (3.0 mL) and Cy₂NMe (642 μ L, 3.0 mmol, 2.0 equiv.) in that order. Both chambers were sealed using a screw cap and a Teflon® coated silicone seal. The two-chamber system was removed from the glovebox and stirred at 50 °C for 20 h. The two-chamber system was then opened to air carefully and the crude mixture in chamber A was diluted with CH₂Cl₂. The combined organic layers were washed with brine, dried over Na₂SO₄ and filtered. The solvent was removed *in vacuo* and the title compound was obtained through flash column chromatography.

(*E*)-4,4,5,5,6,6,7,7,7-Nonafluoro-1-(4-methoxyphenyl)-2-phenylhept-2-en-1-one (5). Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 2:1 as eluent resulted in 70 mg (61% yield) of the title product obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.8 Hz, 2H), 7.43-7.33 (m, 5H), 6.96 (d, *J* = 8.8 Hz, 2H), 5.99 (t, *J* = 14.0 Hz, 1H), 3.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.8, 164.6, 152.9 (t, *J* = 4.5 Hz), 133.3, 132.8, 129.2, 128.3, 128.2 (t, *J* = 3.0 Hz), 127.7, 117.7 (t, *J* = 22.0 Hz), 114.3, 55.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (t, *J* = 11.0 Hz), -105.7 (t, *J* = 11.0 Hz), -123.7 (m), -125.7 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₀H₁₄F₉O₂ 457.0850, found 457.0840.

(*E*)-4,4,5,5,6,6,7,7,7-Nonafluoro-1,2-diphenylhept-2-en-1-one (8).¹⁵ Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 2:1 as eluent resulted in 75 mg (70% yield) of the title product obtained as a colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.2 Hz, 2H), 7.61 (t, *J* = 8.0 Hz, 1H), 7.49 (t, *J* = 8.0 Hz, 2H), 7.42-7.35 (m, 5H), 6.05 (t, *J* = 14.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 194.2, 152.5 (t, *J* = 4.0 Hz), 135.1, 134.2, 133.0, 130.3, 129.2, 129.0, 128.4, 119.0 (t, *J* = 22.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (m), -105.8 (t, *J* = 11.7 Hz), -123.6 (m), -125.7 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₉H₁₂F₉O [M+H⁺]427.0744, found 427.0738.

(*E*)-1-(4-(*tert*-Butyl)phenyl)-4,4,5,5,6,6,7,7,7-nonafluoro-2-phenylhept-2-en-1-one (9). Reaction using the general method followed by flash chromatography using pentane/ CH_2Cl_2 3:1 as eluent resulted in 67 mg (56% yield) of the title product obtained as a yellow liquid. ¹H NMR (400 MHz,

CDCl₃) δ 7.90 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 7.41-7.36 (m, 5H), 6.00 (t, J = 14.2 Hz, 1H), 1.34 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 158.4, 133.1, 132.3, 130.3, 129.3, 128.3, 128.2 (t, J = 3.0 Hz), 126.0, 118.2 (t, J = 2.2 Hz), 35.5, 31.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (m), -105.8 (t, J = 11.0 Hz), -123.6 (m), -125.7 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₃H₂₀F₉O 483.1370, found 483.1367.

(*E*)-1-([1,1'-Biphenyl]-4-yl)-4,4,5,5,6,6,7,7,7-nonafluoro-2-phenylhept-2-en-1-one (10). Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 2:1 as eluent resulted in 93 mg (74% yield) of the title product obtained as a colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.0 Hz, 2H), 7.71 (d, *J* = 8.4 Hz, 2H), 7.62 (d, *J* = 7.6 Hz, 2H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.44-7.38 (m, 6H), 6.08 (t, *J* = 14.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 152.6 (t, *J* = 4.5 Hz), 147.0, 139.6, 133.7, 133.0, 130.9, 129.3, 129.2, 128.7, 128.4, 128.3 (t, *J* = 3.0 Hz), 127.6, 127.5, 118.7 (t, *J* = 2.2 Hz). ¹⁹F NMR (367 MHz, CDCl₃) δ -81.0 (m), -105.8 (t, *J* = 11.0 Hz), -123.6 (m), -125.7 (m). HRMS (ESI-TOF) m/z; [M+H]⁺ Calcd. for C₂₅H₁₆F₉O 503.1057, found 503.1061.

(*E*)-4,4,5,5,6,6,7,7,7-Nonafluoro-1-(4-fluorophenyl)-2-phenylhept-2-en-1-one (11). Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 5:1 as eluent resulted in 68 mg (61% yield) of the title product obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (dd, *J* = 8.6, 5.4 Hz, 2H), 7.38 (s, 5H), 7.16 (t, *J* = 8.6 Hz, 2H), 6.04 (t, *J* = 14.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 166.5 (d, *J* = 256.0 Hz), 152.4, 133.0, 132.9, 132.8, 131.4 (d, *J* = 2.9 Hz), 129.4, 128.5, 128.3 (t, *J* = 2.9 Hz), 118.8 (t, *J* = 22.1 Hz), 116.4, 116.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (t, *J* = 9.6 Hz), -102.8 (s), -105.8 (t, *J* = 12.2 Hz), -123.6 (m), -125.7 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₉H₁₁F₁₀O 445.0650, found 445.0640.

(*E*)-1-(4-Chlorophenyl)-4,4,5,5,6,6,7,7,7-Nonafluoro-2-phenylhept-2-en-1-one (12). Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 3:1 as eluent resulted in 63 mg (55% yield) of the title product obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.6 Hz, 2H), 7.45 (d, *J* = 8.6 Hz, 2H), 7.38 (s, 5H), 6.05 (t, *J* = 14.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 193.0, 152.3 (t, *J* = 4.5 Hz), 140.9, 133.4, 132.7, 131.5, 129.4, 129.3, 128.5, 128.4 (t, *J* = 3.0 Hz), 119.2 (t, *J* = 2.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (t, *J* = 9.7 Hz), -105.8 (t, *J* = 12.1 Hz), -123.6 (m), -125.7 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₉H₁₁ClF₉O 461.0355, found 461.0355.

(*E*)-1-(4-Bromophenyl)-4,4,5,5,6,6,7,7,7-nonafluoro-2-phenylhept-2-en-1-one (13). Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 5:1 as eluent resulted in 61 mg (48% yield) of the title product obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.5 Hz, 2H), 7.62 (d, *J* = 8.5 Hz, 2H), 7.38 (s, 5H), 6.06 (t, *J* = 14.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 152.2 (t, *J* = 4.4 Hz), 133.8, 132.7, 132.4, 131.6, 129.7, 129.4, 128.5, 128.4 (t, *J* = 2.4 Hz), 119.3 (t, *J* = 22.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (t, *J* = 9.9 Hz), -105.8 (t, *J* = 12.1 Hz), -123.6 (m), -125.7 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₉H₁₁BrF₉O 506.9829, found 506.9826.

(*E*)-4,4,5,5,6,6,7,7,7-Nonafluoro-1-(3-methoxyphenyl)-2-phenylhept-2-en-1-one (14). Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 5:1 as eluent resulted in 68 mg (60% yield) of the title product obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 7.6 Hz, 1H), 7.46 (s, 1H), 7.41-7.36 (m, 6H), 7.15 (dd, *J* = 8.2, 2.0, 1H), 6.05 (t, *J* = 14.2 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.0, 160.1, 152.6 (t, *J* = 4.4 Hz), 136.3, 133.0, 129.9, 129.2, 128.4, 123.1, 121.0, 118.9 (t, *J* = 22.0 Hz), 114.0, 55.6. ¹⁹F NMR (376 MHz,

CDCl₃) δ -81.0 (t, J = 9.8 Hz), -105.9 (t, J = 12.1 Hz), -123.6 (m), -125.7 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₀H₁₄F₉O₂ 457.0850, found 457.0849.

(*E*)-4,4,5,5,6,6,7,7,7-Nonafluoro-2-phenyl-1-(*o*-tolyl)hept-2-en-1-one (15). Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 5:1 as eluent resulted in 74 mg (67% yield) of the title product obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 7.5 Hz, 1H), 7.44-7.36 (m, 4H), 7.34-7.28 (m, 4H), 6.18 (t, J = 14.1 Hz, 1H), 2.50 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 196.9, 153.1(t, J = 4.0 Hz), 138.9, 135.8, 132.9, 132.0, 131.9, 130.0, 129.0, 128.6 (t, J = 2.4 Hz), 128.2, 125.7, 122.8 (t, J = 22.0 Hz), 20.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (m), -106.4 (t, J = 12.2 Hz), -123.7 (m), -125.8 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₀H₁₄F₉O 441.0901, found 441.0898.

(*E*)-4,4,5,5,6,6,7,7,7-Nonafluoro-2-phenyl-1-(3-(trifluoromethyl)phenyl)hept-2-en-1-one (16). Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 7:1 as eluent resulted in 57 mg (46% yield) of the title product obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 8.07 (d, *J* = 7.8 Hz, 1H), 7.84 (d, *J* = 7.8 Hz, 1H), 7.62 (t, *J* = 7.8 Hz, 1H), 7.42-7.34 (m, 5H), 6.12 (t, *J* = 14.0 Hz, 1H).¹³C NMR (100 MHz, CDCl₃) δ 192.8, 151.9 (t, *J* = 4.0 Hz), 135.8, 133.2, 132.5, 131.7 (q, *J* = 33.4 Hz), 130.4 (q, *J* = 3.5 Hz), 129.7, 129.6, 128.6, 128.4 (t, *J* = 2.6 Hz), 126.9 (q, *J* = 3.8 Hz), 122.5 (q, *J* = 273.6 Hz), 120.1 (t, *J* = 22.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1 (s), -81.0 (t, *J* = 11.2 Hz), -106.0 (t, *J* = 12.1 Hz), -123.7 (m), -125.7 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₀H₁₁F₁₂O 495.0618, found 495.0612.

(*E*)-4,4,5,5,6,6,7,7,7-Nonafluoro-1-(4-fluoro-3-methylphenyl)-2-phenylhept-2-en-1-one (17). Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 5:1 as eluent resulted in 77 mg (67% yield) of the title product obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 7.2 Hz, 1H), 7.79-7.73 (m, 1H), 7.42-7.35 (m, 5H), 7.09 (t, J = 8.8 Hz, 1H), 6.03 (t, J = 14.1 Hz, 1H), 2.32 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 193.0, 165.1(d, J = 254.5 Hz), 152.5 (t, J = 4.2 Hz), 134.0 (d, J = 6.8 Hz), 132.9, 131.1 (d, J = 3.3 Hz), 130.4 (d, J = 9.6 Hz), 129.3, 128.4, 128.3 (t, J = 2.5 Hz), 126.2 (d, J = 18.1 Hz), 118.7 (t, J = 22.2 Hz), 115.7 (d, J = 24.1 Hz), 14.7 (d, J = 3.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (t, J = 9.8 Hz), -105.8 (t, J = 12.2 Hz), -106.9 (s), -123.7 (m), -125.7 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₀H₁₃F₁₀O 459.0807, found 459.0807.

(*E*)-4,4,5,5,6,6,7,7,7-Nonafluoro-2-phenyl-1-(thiophen-2-yl)hept-2-en-1-one (18). Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 5:1 as eluent resulted in 65 mg (60% yield) of the title product obtained as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 4.8 Hz, 1H), 7.58 (d, *J* = 3.7 Hz, 1H), 7.40 (s, 5H), 7.13 (t, *J* = 4.8 Hz, 1H), 6.26 (t, *J* = 14.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 185.8, 152.0 (t, *J* = 4.4 Hz), 142.2, 136.5, 135.7, 132.9, 129.4, 128.7, 128.6 (t, *J* = 2.5 Hz), 128.4, 119.2 (t, *J* = 21.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (m), -106.0 (t, *J* = 12.2 Hz), -123.5 (m), -125.7 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₇H₁₀F₉OS 433.0309, found 433.0305.

(*E*)-4,4,5,5,6,6,7,7,7-Nonafluoro-2-phenyl-1-(thiophen-3-yl)hept-2-en-1-one (19). Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 5:1 as eluent resulted in 66 mg (60% yield) of the title product obtained as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.02-7.90 (m, 1H), 7.54 (dd, *J* = 5.1, 0.8 Hz, 1H), 7.39 (s, 5H), 7.34 (dd, *J* = 5.1, 2.9 Hz, 1H), 6.21 (t, *J* = 14.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 187.4, 152.8 (t, *J* = 4.6 Hz), 140.0, 135.7, 133.1, 129.3, 128.5 (t, *J* = 2.8 Hz), 128.4, 128.1, 127.2, 119.0 (t, *J* = 21.8) Hz. ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0

(t, J = 9.9 Hz), -105.9 (t, J = 12.2 Hz), -123.6 (m), -125.7 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₇H₁₀F₉OS 433.0309, found 433.0305. Mp 60–61 °C.

(*E*)-1-(Benzo[b]thiophen-2-yl)-4,4,5,5,6,6,7,7,7-nonafluoro-2-phenylhept-2-en-1-one (20). Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 2:1 as eluent resulted in 64 mg (53% yield) of the title product obtained as a colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (q, *J* = 4.0 Hz, 2H), 7.80 (s, 1H), 7.50 (t, *J* = 8.0 Hz, 1H), 7.46-7.42 (m, 6H), 6.33 (t, *J* = 14.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 187.4, 151.7 (t, *J* = 4.0 Hz), 143.6, 141.7, 138.9, 133.3, 132.8, 129.5, 128.6 (t, *J* = 3.0 Hz), 128.5, 128.4, 126.7, 125.5, 123.1, 119.5 (t, *J* = 22.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (m), -105.9 (t, *J* = 11.7 Hz), -123.5 (m), -125.7 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₁H₁₂F₉OS 483.0465, found 483.0459.

(*E*)-1-(4-(*tert*-Butyl)phenyl)-4,4,5,5,6,6,7,7,7-nonafluoro-2-(*p*-tolyl)hept-2-en-1-one (21). Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 3:1 as eluent resulted in 74 mg (60% yield) of the title product obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.4 Hz, 2H), 7.50 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 5.97 (t, *J* = 14.3 Hz, 1H), 2.35 (s, 3H), 1.34 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 194.0, 158.3, 153.0 (t, *J* = 4.4 Hz), 139.3, 132.4, 130.3, 130.2, 129.1, 128.3 (t, *J* = 3.0 Hz), 126.0, 117.6 (t, *J* = 2.2 Hz), 35.4, 31.1, 21.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (m), -105.6 (t, *J* = 12.2 Hz), -123.6 (m), -125.9 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₄H₂₂F₉O 497.1527, found 497.1522.

(*E*)-2-(4-(*tert*-Butyl)phenyl)-4,4,5,5,6,6,7,7,7-nonafluoro-1-(thiophen-2-yl)hept-2-en-1-one (22). Reaction using the general method followed by flash chromatography using pentane/ CH_2Cl_2 3:1 as eluent resulted in 76 mg (62% yield) of the title product obtained as a yellow liquid. ¹H NMR (400

MHz, CDCl₃) δ 7.74 (d, J = 4.0 Hz, 1H), 7.60 (d, J = 4.0 Hz, 1H), 7.40 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H), 7.13 (t, J = 4.4 Hz, 1H), 6.19 (t, J = 14.4 Hz, 1H), 1.32(s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 186.3, 152.7, 152.2 (t, J = 4.5 Hz), 142.4, 136.4, 135.7, 129.8, 128.7, 128.3 (t, J = 2.4 Hz), 125.3, 118.3 (t, J = 21.7 Hz), 34.9, 31.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (m), -105.8 (t, J = 12.2 Hz), -123.6 (m), -125.7 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₁H₁₈F₉OS 489.0935, found 489.0930.

(*E*)-4,4,5,5,6,6,7,7,7-Nonafluoro-2-(4-fluorophenyl)-1-(thiophen-2-yl)hept-2-en-1-one (23). Reaction using the general method for 36h followed by flash chromatography using pentane/CH₂Cl₂ 5:1 as eluent resulted in 70 mg (62% yield) of the title product obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 4.8 Hz, 1H), 7.61 (d, *J* = 4.0 Hz, 1H), 7.39 (m, 2H), 7.15 (t, *J* = 4.4 Hz, 1H), 7.09 (t, *J* = 8.8 Hz, 2H), 6.27 (t, *J* = 14.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 185.7, 163.5 (d, *J* = 248.0 Hz), 151.0 (t, *J* = 4.6 Hz), 142.0, 136.7, 135.7, 130.6 (dt, *J* = 8.4, 2.5 Hz), 128.8, 128.7, 119.8 (t, *J* = 21.9 Hz), 115.7, 115.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (m), -106.0 (t, *J* = 12.2 Hz), -111.5 (s), -123.6 (m), -125.7 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₇H₉F₁₀OS 451.0214, found 451.0209.

(*E*)-2-(3,5-Dimethoxyphenyl)-4,4,5,5,6,6,7,7,7-nonafluoro-1-phenylhept-2-en-1-one (24). Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 2:1 as eluent resulted in 64 mg (52% yield) of the title product obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.6 Hz, 2H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 2H), 6.54 (d, *J* = 1.8 Hz, 2H), 6.46 (d, *J* = 2.0 Hz, 1H), 6.01 (t, *J* = 14.0 Hz, 1H), 3.78 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 160.5, 152.4 (t, *J* = 4.0 Hz), 134.8, 134.4, 134.1, 130.1, 128.8, 118.6 (t, *J* = 22.1 Hz), 106.5,

101.1, 55.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (m), -106.0 (t, *J* = 12.2 Hz), -123.6 (m), -125.7 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₁H₁₆F₉O₃ 487.0956, found 487.0956.

(*E*)-4,4,5,5,6,6,7,7,7-Nonafluoro-1-phenyl-2-(pyridin-4-yl)hept-2-en-1-one (25). Reaction using the general method followed by flash chromatography using CH₂Cl₂/EtOAc 30:1 as eluent resulted in 43 mg (40% yield) of the title product obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.68-8.58 (m, 2H), 7.92 (d, *J* = 7.6 Hz, 2H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.65 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.34 (dd, *J* = 7.6, 4.8 Hz, 1H), 6.20 (t, *J* = 14.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 193.5, 150.2, 148.6 (m), 135.9, 134.7, 134.5, 130.2, 129.2, 123.1, 121.9 (t, *J* = 22.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (m), -106.0 (t, *J* = 12.2 Hz), -123.5 (m), -125.7 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₈H₁₁F₉NO 428.0697, found 428.0696.

(*Z*)-4,4,5,5,6,6,7,7,7-Nonafluoro-1-phenyl-2-((trimethylsilyl)methyl)hept-2-en-1-one (26). Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 5:1 as eluent resulted in 68 mg (62% yield) of the title product obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 7.6 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 2H), 5.75 (t, *J* = 15.2 Hz, 1H), 2.32 (t, *J* = 3.2 Hz, 2H), 0.07 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 196.8, 152.9 (t, *J* = 4.0 Hz), 135.6, 133.6, 130.0, 128.8, 117.8 (t, *J* = 22.9 Hz), 21.7, 0.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (m), -106.5 (t, *J* = 12.4 Hz), -124.1 (s), -125.8 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₇H₁₈F₉OSi 437.0983, found 437.0981.

(*E*)-2-Butyl-4,4,5,5,6,6,7,7,7-nonafluoro-1-phenylhept-2-en-1-one (27). Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 3:1 as eluent resulted in 66 mg (65% yield) of the title product obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 7.6

Hz, 2H), 7.62 (t, J = 7.6 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 5.80 (t, J = 14.8 Hz, 1H), 2.72 (t, J = 7.2 Hz, 2H), 1.48-1.32 (m, 4H), 0.89 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.7, 154.5 (t, J = 4.6 Hz), 135.9, 133.9, 129.9, 128.9, 120.4 (t, J = 24.0 Hz), 30.6, 29.2, 22.9, 13.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -81.1 (m), -107.2 (t, J = 12.3 Hz), -124.1 (m), -125.8 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₇H₁₆F₉O 407.1057, found 407.1055.

(*E*)-2-Cyclopropyl-4,4,5,5,6,6,7,7,7-nonafluoro-1-phenylhept-2-en-1-one (28). Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 5:1 as eluent resulted in 29 mg (30% yield) of the title product obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 7.6 Hz, 2H), 7.63 (t, J = 7.6 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 5.52 (t, J = 15.2 Hz, 1H), 2.28-2.14 (m, 1H), 0.96 (q, J = 6.8 Hz, 2H), 0.75 (q, J = 5.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 194.2, 156.0 (t, J = 5.0 Hz), 135.5, 134.5, 130.1, 129.0, 115.6 (t, J = 24.3 Hz), 11.3 (t, J = 4.0 Hz), 8.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (m), -106.3 (m), -124.0 (m), -125.7 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₆H₁₂F₉O 391.0744, found 391.0741.

(*E*)-2-cyclohexyl-4,4,5,5,6,6,7,7,7-Nonafluoro-1-phenylhept-2-en-1-one (29). Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 5:1 as eluent resulted in 50 mg (46% yield, E/Z = 10:1) of the title product obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 7.6 Hz, 2H), 7.62 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 5.47 (t, J = 15.2 Hz, 1H), 2.95 (t, J = 11.8 Hz, 1H), 1.82-1.63 (m, 5H), 1.46-1.06 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 196.2, 158.9 (t, J = 4.2 Hz), 136.2, 134.2, 130.2, 128.9, 116.0 (t, J = 23.9 Hz), 40.8, 31.6, 26.3, 25.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (m), -106.2 (m), -124.0 (m), -125.7 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₉H₁₈F₉O 433.1214, found 433.1209.

(*Z*)-4,4,5,5,6,6,7,7,8,8,9,9,9-Tridecafluoro-1-(thiophen-2-yl)-2((trimethylsilyl)methyl)non-2-en-1one (30). Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 5:1 as eluent resulted in 92 mg (68% yield) of the title product obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 4.8 Hz, 1H), 7.66 (d, *J* = 3.6 Hz, 1H), 7.18 (t, *J* = 4.8 Hz, 1H), 5.94 (t, *J* = 15.0 Hz, 1H), 2.30 (t, *J* = 3.2 Hz, 2H), 0.04 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 188.6, 153.0 (t, *J* = 4.5 Hz), 142.1, 135.9, 134.8, 128.5, 116.3 (t, *J* = 23.2 Hz), 22.0, -1.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -80.9 (m), -106.2 (t, *J* = 12.8 Hz), -121.6 (s), -122.9 (s), -123.1 (m), -126.1 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₇H₁₆F₁₃OSSi 543.0484, found 543.0479.

(*E*)-2-(4-(*tert*-Butyl)phenyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoro-1-(thiophen-2-yl)undec-2-en-1-one (31). Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 3:1 as eluent resulted in 103 mg (60% yield) of the title product obtained as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 4.8 Hz, 1H), 7.59 (d, *J* = 3.6 Hz, 1H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 7.13 (t, *J* = 4.4 Hz, 1H), 6.19 (t, *J* = 14.2 Hz, 1H), 1.32 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 186.3, 152.7, 152.2 (t, *J* = 4.4 Hz), 142.4, 136.4, 135.7, 129.8, 128.7, 128.3 (t, *J* = 2.3 Hz), 125.3, 118.5 (t, *J* = 21.9 Hz), 34.9, 31.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -80.8 (t, *J* = 10.1 Hz), -105.6 (t, *J* = 13.1 Hz), -121.3 (s), -121.9 (s), -122.6 (m), -122.7 (m), -126.1 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₅H₁₈F₁₇OS 689.0807, found 689.0807.

(*E*)-1-([1,1'-Biphenyl]-4-yl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,13-henicosafluoro-2-(*p*-tolyl)tridec-2-en-1-one (32). Reaction using the general method followed by flash chromatography using pentane/CH₂Cl₂ 3:1 as eluent resulted in 133 mg (65% yield) of the title product obtained as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.4 Hz, 2H), 7.71 (d, *J* = 8.4 Hz, 2H), 7.63 (d, *J* = 7.2 Hz, 2H), 7.48 (t, *J* = 7.2 Hz, 2H), 7.42 (t, *J* = 7.2 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* =

8.0 Hz, 2H), 6.07 (t, J = 14.2 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 194.0, 152.9 (t, J = 4.6 Hz), 146.9, 139.7, 139.4, 133.8, 130.9, 130.1, 129.2, 128.7, 128.4, 127.6, 127.5, 118.2 (t, J = 22.0 Hz), 118.0, 21.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -80.9 (t, J = 9.9 Hz), -105.4 (t, J = 13.0 Hz), -121.4 (s), -121.8 (m), -121.9 (m), -122.6 (s), -122.8 (s), -126.2 (s). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₃₂H₁₈F₂₁O 817.1022, found 817.1023. Mp 86–87 °C.

Ethyl (*E*)-2,2-Difluoro-5-(4-fluoro-3-methylphenyl)-5-oxo-4-(*p*-tolyl)pent-3-enoate (33). Reaction using the general method followed by flash chromatography using pentane/EtOAc 20:1 as eluent resulted in 52 mg (55% yield, E/Z = 26 :1) of the title product obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 7.4 Hz, 1H), 7.75 (s, 1H), 7.23 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.06 (t, J = 8.8 Hz, 1H), 6.17 (t, J = 11.3 Hz, 1H), 3.99 (q, J = 7.1 Hz, 2H), 2.34 (s, 3H), 2.31 (s, 3H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.8, 164.8 (d, J = 255.3 Hz), 162.9 (t, J = 33.3 Hz), 149.0 (t, J = 8.4 Hz), 140.0, 134.0 (d, J = 6.8 Hz), 131.9 (d, J = 3.4 Hz), 130.5 (d, J = 9.5Hz), 130.2, 129.2, 128.9 (t, J = 2.0 Hz), 125.8 (d, J = 29.1 Hz), 125.7 (d, J = 52.4 Hz), 115.5 (d, J = 23.1 Hz), 112.1 (t, J = 241.7 Hz), 63.3, 21.4, 14.7 (d, J = 3.3 Hz), 13.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -92.9 (s), -107.7 (s). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₁H₂₀F₃O₃ 377.1365, found 377.1369.

(*E*)-3-(2,2,3,3,4,4,5,5,5-Nonafluoropentylidene)indolin-2-one (34). Reaction using the general method for the synthesis of indolin-2-ones followed by flash chromatography using pentane/EtOAc 5:1 as eluent resulted in 44 mg (48% yield) of the title product obtained as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 9.29 (s, 1H), 7.72 (d, *J* = 7.8 Hz, 1H), 7.35 (t, *J* = 7.8 Hz, 1H), 7.05 (t, *J* = 7.8 Hz, 1H), 6.92 (d, *J* = 7.8 Hz, 1H), 6.74 (t, *J* = 16.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.5, 143.9, 137.6 (t, *J* = 4.6 Hz), 133.1, 127.4 (t, *J* = 9.1 Hz), 123.4, 119.0 (t, *J* = 26.0 Hz), 118.6 (t, *J* = 2.1 Hz), 111.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (m), -108.4 (s), -123.9 (s), -125.7 (s). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₃H₇F₉NO 364.0384, found 364.0379. Mp 84–85 °C.

(*E*)-6-Chloro-3-(2,2,3,3,4,4,5,5,5-nonafluoropentylidene)indolin-2-one (35). Reaction using the general method for the synthesis of indolin-2-ones followed by flash chromatography using pentane/EtOAc 6:1 as eluent resulted in 48 mg (48% yield) of the title product obtained as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 7.63 (d, *J* = 8.4 Hz, 1H), 7.04 (dd, *J* = 8.4, 1.6 Hz, 1H), 6.94 (d, *J* = 1.6 Hz, 1H), 6.75 (t, *J* = 16.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 167.9, 144.6, 139.2, 136.2 (t, *J* = 5.5 Hz), 128.3 (t, *J* = 9.4 Hz), 123.6, 119.4 (t, *J* = 27.7 Hz), 117.0, 111.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -80.9 (m), -108.4 (m), -123.9 (m), -125.6 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₃H₆CIF₉NO 397.9994, found 397.9990. Mp 158–159 °C.

(*E*)-5-Methyl-3-(2,2,3,3,4,4,5,5,5-nonafluoropentylidene)indolin-2-one (36). Reaction using the general method for the synthesis of indolin-2-ones followed by flash chromatography using pentane/EtOAc 6:1 as eluent resulted in 52 mg (55% yield) of the title product obtained as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.52 (s, 1H), 7.16 (d, *J* = 8.0 Hz, 1H), 6.78 (d, *J* = 8.0 Hz, 1H), 6.71 (t, *J* = 17.0 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.1, 141.4, 133.6, 132.8, 127.9 (t, *J* = 9.0 Hz), 118.8 (m), 118.5 (m), 110.6, 21.3. ¹⁹F NMR (376 MHz, CDCl₃) δ - 80.9 (m), -108.2 (t, *J* = 11.2 Hz), -123.9 (dt, *J* = 14.7, 7.3 Hz), -125.6 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₄H₉F₉NO 378.0540, found 378.0543. Mp 108–109 °C.

(*E*)-3-(2,2,3,3,4,4,5,5,6,6,7,7,7-Tridecafluoroheptylidene)indolin-2-one (37).

Reaction using the general method for the synthesis of indolin-2-ones followed by flash chromatography using pentane/EtOAc 6:1 as eluent resulted in 78 mg (67% yield) of the title product

obtained as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 7.73 (d, J = 7.8 Hz, 1H), 7.35 (t, J = 7.8 Hz, 1H), 7.06 (t, J = 7.8 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 6.75 (t, J = 16.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.0, 164.7, 143.7, 133.1, 127.4 (t, J = 9.4 Hz), 123.4, 119.1 (t, J = 26.3 Hz), 118.6 (t, J = 2.3 Hz), 110.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -80.8 (t, J = 9.7 Hz), -108.1 (m), -121.4 (s), -122.9 (s), -123.0 (m), -126.1 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₅H₇F₁₃NO 464.0320, found 464.0315. Mp 112–113 °C.

¹³C-(*E*)-4,4,5,5,6,6,7,7,7-Nonafluoro-1,2-diphenylhept-2-en-1-one (38). Reaction using the general method, while with ¹³COgen 3.0 equiv. followed by flash chromatography using pentane/CH₂Cl₂ 3:1 as eluent resulted in 44 mg (41% yield) of the title product obtained as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (dd, J = 7.4, 4.0 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 7.41-7.36 (m, 5H), 6.05 (dt, J = 14.1, 6.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 194.1, 152.4 (dt, J = 48.7, 5.1 Hz), 134.9 (d, J = 55.9 Hz), 134.1, 132.8, 129.1, 128.9 (d, J = 4.3 Hz), 128.2, 118.9 (dt, J = 21.8, 2.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (t, J = 9.8 Hz), -105.8 (t, J = 12.1 Hz), -123.6 (m), -125.7 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₈¹³CH₁₂F₉O 428.0778, found 428.0779.

Ethyl 5-¹³C-(*E*)-2,2-Difluoro-5-oxo-5-phenyl-4-(*p*-tolyl)pent-3-enoate (39). Reaction using the general method, while with ¹³COgen 6.0 equiv. followed by flash chromatography using pentane/CH₂Cl₂ 3:1 as eluent resulted in 45 mg (52% yield, E/Z = 10:1) of the title product obtained as a brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (dd, J = 7.4, 4.0 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 80 Hz, 2H), 6.23 (dt, J = 11.3, 6.5 Hz, 1H), 4.01 (q, J = 7.1 Hz, 2H), 2.36 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 195.1, 171.0, 166.7, 165.9, 162.9 (t, J = 33.4 Hz), 149.0 (d, J = 50.4 Hz), 139.4, 136.1, 135.6, 133.8, 130.3 (d, J = 3.0 Hz), 129.2, 129.0 (d, J = 1.8 Hz), 128.8 (d, J = 4.1 Hz), 126.1 (dt, J = 28.6, 3.0 Hz), 112.1 (d, J = 3.0 Hz), 129.2, 129.0 (d, J = 1.8 Hz), 128.8 (d, J = 4.1 Hz), 126.1 (dt, J = 28.6, 3.0 Hz), 112.1 (d, J = 3.0 Hz), 129.2, 129.0 (d, J = 1.8 Hz), 128.8 (d, J = 4.1 Hz), 126.1 (dt, J = 28.6, 3.0 Hz), 112.1 (d, J = 3.0 Hz), 129.2, 129.0 (d, J = 1.8 Hz), 128.8 (d, J = 4.1 Hz), 126.1 (dt, J = 28.6, 3.0 Hz), 112.1 (d, J = 3.0 Hz), 129.2, 129.0 (d, J = 1.8 Hz), 128.8 (d, J = 4.1 Hz), 126.1 (dt, J = 28.6, 3.0 Hz), 112.1 (d, J = 3.0 Hz), 129.2, 129.0 (d, J = 1.8 Hz), 128.8 (d, J = 4.1 Hz), 126.1 (dt, J = 28.6, 3.0 Hz), 112.1 (d, J = 3.0 Hz), 129.2, 129.0 (d, J = 1.8 Hz), 128.8 (d, J = 4.1 Hz), 126.1 (dt, J = 28.6, 3.0 Hz), 112.1 (d, J = 3.0 Hz), 129.2, 129.0 (d, J = 1.8 Hz), 128.8 (d, J = 4.1 Hz), 126.1 (dt, J = 28.6, 3.0 Hz), 112.1 (d, J = 3.0 Hz), 129.2, 129.0 (d, J = 1.8 Hz), 128.8 (d, J = 4.1 Hz), 126.1 (dt, J = 28.6, 3.0 Hz), 112.1 (d, J = 3.0 Hz), 129.2 Hz), 129.2 Hz), 129.2 Hz = 10.2

= 6.8 Hz), 63.3, 21.4, 13.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -93.3 (s). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₉¹³CH₁₉F₂O₃ 346.1336, found 346.1341.

2-¹³**C-(***E***)-3-**(**2,2,3,3,4,4,5,5,5-Nonafluoropentylidene)indolin-2-one (40).** Reaction using the general method for 0.5 mmol scale with ¹³COgen, followed by flash chromatography using pentane/EtOAc 6:1 as eluent resulted in 136 mg (72% yield) of the title product obtained as a yellow powder. ¹H NMR (400 MHz, CDCl₃) δ 9.40 (s, 1H), 7.71 (d, *J* = 7.8 Hz, 1H), 7.34 (t, *J* = 7.7 Hz, 1H), 7.05 (t, *J* = 7.7 Hz, 1H), 6.93 (d, *J* = 7.8 Hz, 1H), 6.74 (dt, *J* = 16.8, 7.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.6, 165.3, 143.9 (d, *J* = 6.6 Hz), 137.6 (dt, *J* = 57.2, 5.6 Hz), 133.1, 127.4 (dt, *J* = 13.0, 6.4 Hz), 123.4, 119.0 (dt, *J* = 25.9, 3.0 Hz), 118.6 (dt, *J* = 7.1, 2.1 Hz), 111.1 (d, *J* = 4.2 Hz).¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (m), -108.4 (t, *J* = 11.6 Hz), -123.9 (m), -125.7 (m). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₂¹³CH₇F₉NO 365.0417, found 365.0411. Mp 83–84 °C.

ASSOCIATED CONTENT

Supporting Information

Description of COware, optimization tables, copies of ¹H, ¹³C and ¹⁹F NMR spectrums for all compounds and X-ray structures and data for compounds **19** and **34**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

* ts@chem.au.dk

Notes

Troels Skrydstrup is co-owner of SyTracks Aps, which commercializes the two-chamber technology and COgen.

ACKNOWLEDGMENT

We are grateful to Dr. Jacob Overgaard for the X-ray crystallographic analysis. We are deeply appreciative of generous financial support from the Danish National Research Foundation (grant no. DNRF118 and DNRF93) and Aarhus University. Furthermore, we thank the Chinese Scholarship Council for a grant to H. Y.

REFERENCES

(1) (a) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315–8359; (b) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359–4369; (c) Isanbor, C.; O'Hagan, D. J. Fluorine Chem. 2006, 127, 303–319; (d) Shah, P.; Westwell, A. D. J. Enzyme Inhib. Med. Chem. 2007, 22, 527–540; (e) Ojima, I. J. Org. Chem. 2013, 78, 6358–6383.

(2) (a) Gouverneur, V.; Seppelt, K. Chem. Rev. 2015, 115, 563–565; (b) Ni, C.; Hu, J. Chem. Soc. Rev. 2016, 45, 5441–5454; (c) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320–330.

(3) (a) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem. Int. Ed. 2013, 52, 8214–8264; (b) Ma, J. A.;
Cahard, D. Chem. Rev. 2004, 104, 6119–6146; (c) Prakash, G. K. S.; Yudin, A. K. Chem. Rev. 1997, 97, 757–786; (d) Umemoto, T. Chem. Rev. 1996, 96, 1757–1778.

(4) (a) Lau, C.; Anitole, K.; Hodes, C.; Lai, D.; Pfahles-Hutchens, A.; Seed, J. *Toxicol. Sci.* 2007, *99*, 366–394; (b) Wallace, K.; Kissling, G.; Melnick, R.; Blystone, C. *Toxicol. Lett.* 2013, *222*, 257–264.
(5) Ylinen, M.; Hanhijärvi, H.; Peura, P.; Rämö, O. *Arch. Environ. Contam. Toxicol.* 1985, *14*, 713–717.

(6) (a) He, L.; Natte, K.; Rabeah, J.; Taeschler, C.; Neumann, H.; Bruckner, A.; Beller, M. Angew. Chem. Int. Ed. 2015, 54, 4320–4324; (b) Bénéfice-Malouet, S.; Blancou, H.; Itier, J.; Commeyras, A. Synthesis 1991, 647–648; (c) Burton, D. J.; Yang, Z.-Y. Tetrahedron 1992, 48, 189–275; (d) Yusa, S.-i.; Yamamoto, T.; Hashidzume, A.; Morishima, Y. Polystyrene. Polym. J. 2002, 34, 117–124; (e) Katayev, D.; Vaclavik, J.; Bruning, F.; Commare, B.; Togni, A. Chem. Commun. 2016, 52, 4049–4052; (f) Umemoto, T.; Kuriu, Y.; Shuyama, H.; Miyano, O.; Nakayama, S.-I. J. Fluorine Chem. 1982, 20, 695–698.

(7) (a) Xie, J.; Zhang, T.; Chen, F.; Mehrkens, N.; Rominger, F.; Rudolph, M.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 2934–2938; (b) Xu, T.; Cheung, C. W.; Hu, X. Angew. Chem. Int. Ed. 2014, 53, 4910–4914.

(8) (a) Li, Z.; García-Domínguez, A.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 11610–11613. (b) Li,
Z.; Merino, E.; Nevado, C. Top. Catal. 2017, 1-9.

(9) Domański, S.; Chaładaj, W. ACS Catal. 2016, 6, 3452-3456.

(10) Wang, Q.; He, Y. T.; Zhao, J. H.; Qiu, Y. F.; Zheng, L.; Hu, J. Y.; Yang, Y. C.; Liu, X. Y.; Liang, Y. M. Org. Lett. 2016, 18, 2664–2667.

(11) (a) Friis, S. D.; Lindhardt, A. T.; Skrydstrup, T. Acc. Chem. Res. 2016, 49, 594–605; (b) Yin, H.; Nielsen, D. U.; Johansen, M. K.; Lindhardt, A. T.; Skrydstrup, T. ACS Catal. 2016, 6, 2982–2987; (c) Laursen, S. R.; Jensen, M. T.; Lindhardt, A. T.; Jacobsen, M. F.; Skrydstrup, T. Eur. J. Org. Chem. 2016, 1881–1885; (d) Shen, C.; Li, W.; Yin, H.; Spannenberg, A.; Skrydstrup, T.; Wu, X.-F. Adv. Synth. Catal. 2016, 358, 466–479; (e) Andersen, T. L.; Frederiksen, M. W.; Domino, K.; Skrydstrup, T. Angew. Chem. Int. Ed. 2016, 55, 10396–10400; (f) Makarov, I. S.; Kuwahara, T.; Jusseau, X.; Ryu, I.; Lindhardt, A. T.; Skrydstrup, T. J. Am. Chem. Soc. 2015, 137, 14043–14046; (g) Yin, H.; de Almeida, A. M.; de Almeida, M. V.; Lindhardt, A. T.; Skrydstrup, T. Org. Lett. 2015, 17, 1248–1251.

(12) (a) Akira, K.; Hashimoto, T. *Biol. Pharm. Bull.* 2005, *28*, 344–348; (b) Magkos, F.; Mittendorfer,
B. *Clin. Lipidol.* 2009, *4*, 215–230.

(13) (a) Tiainen, M.; Maaheimo, H.; Soininen, P.; Laatikainen, R. *Magn. Reson. Chem.* 2010, *48*, 117–122; (b) Schreurs, J.; Van Noorden-Mudde, C. A. H.; van de Ven, L. J. M.; de Haan, J. W. *Org. Magn. Reson.* 1980, *13*, 354–358.

(14) Sargent, B. T.; Alexanian, E. J. J. Am. Chem. Soc. 2016, 138, 7520-7523.

(15) While this manuscript was under preparation, the following paper was published on a similar carbonylative approach to the perfluoroalkyl substituted enones: Wang, Q.; Zheng, L.; He, Y. T.; Liang, Y. M., *Chem. Commun.* 2017, *53*, 2814–2817.