ACS Medicinal Chemistry Letters

Library

& Archives

Letter

Design, Conformation, and Crystallography of 2-Naphthyl Phenyl Ethers as Potent Anti-HIV Agents

Won-Gil Lee, Albert H. Chan, Krasimir A. Spasov, Karen S. Anderson, and William L Jorgensen ACS Med. Chem. Lett., Just Accepted Manuscript • DOI: 10.1021/acsmedchemlett.6b00390 • Publication Date (Web): 31 Oct 2016 Downloaded from http://pubs.acs.org on November 1, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

ACS Medicinal Chemistry Letters is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Design, Conformation, and Crystallography of 2-Naphthyl Phenyl Ethers as Potent Anti-HIV Agents

Won-Gil Lee,[†] Albert H. Chan,[‡] Krasimir A. Spasov, [‡] Karen S. Anderson,^{‡,*} and William L. Jorgensen^{†,*}

[†]Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, [‡]Department of Pharmacology, Yale

University School of Medicine, New Haven, CT 06520-8066

KEYWORDS: Anti-HIV agents, NNRTIs, protein crystallography.

ABSTRACT: Catechol diethers that incorporate a 7-cyano-2-naphthyl substituent are reported as non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs). Many of the compounds have 1 – 10 nM potencies towards wild-type HIV-1. An interesting conformational effect allows two unique conformers for the naphthyl group in complexes with HIV-RT. X-ray crystal structures for **4a** and **4f** illustrate the alternatives.

Though significant advances have been made in the treatment of HIV/AIDS, the rate of new infections has remained constant near 2.5 million people per year, the number of people living with the disease continues to increase and now totals about 40 million, and the number of associated deaths in 2015 was 1.2 million.1 Thus, there remains a pressing need for new therapeutic agents, especially in view of the uncertainties with mutation of the virus and long-term use of the current approved drugs.² To this end, we have directed efforts towards the discovery of improved non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs),³ which have been a central component of anti-HIV chemotherapy.^{4,5} There are five FDA-approved compounds in the class including efavirenz and rilpivirine, which have particular importance since they are components of the one-a-day oral therapies Atripla and Complera, respectively.⁴

Though we have discovered new NNRTIs featuring several different chemotypes, the most promising NNRTIs are in the catechol diether class, which evolved from a docking hit.⁶⁻⁹ The design **1** led to some extraordinarily potent NNRTIs including the dichloro (R₅, Y = Cl) and difluoro analogues, which have EC₅₀ values of 0.055 and 0.320 nM in an assay using human MT-2 cells infected with wild-type (WT) HIV-1.⁶ However, the cyanovinyl group in **1** may be viewed as a potential liability in view of its possible participation in Michael additions leading to off-target covalent

modifications. Though rilpivirine also has a cyanovinyl group, another NNRTI, fosdevirine, was abandoned after phase IIb clinical trials.¹⁰ Metabolites that arose from cysteine addition of glutathione to its cyanovinyl group were implicated as the source of seizures in 5 of 20 patients.

In order to avoid the cyanovinyl group, results of freeenergy perturbation calculations led us to explore several bicyclic replacements including the indolizine variant 2, which provided very potent compounds.⁵ In particular, the parent 2a (R_5 , Y = H) is impressive. In the standard MT-2 assay it has an EC₅₀ of 0.38 nM towards WT HIV-1, while in single-round infectivity assays with CD4+ T cells from blood donors it gives EC₅₀ values of 1, 2, and 3 nM towards WT HIV-1, and the most common clinical variants bearing the Y181C and K103N mutations in RT.9 For comparison, the results for efavirenz are 15, 41, and 806 nM, and for rilpivirine, 13, 51, and 13 nM, respectively.9 2a also remains highly potent towards the K101P variant (1 nM), while efavirenz and rilpivirine are not effective (870 and 1142 nM). In addition, 2a shows no cytotoxicity towards T cells ($CC_{50} > 100 \mu M$), and it has good aqueous solubility, 38 µg/mL. Rilpivirine is significantly more cytotoxic (CC50 = 8 μ M), and far less soluble (ca. 0.1 μ g/mL). However, oddly, in our MT-2 assays with virus containing the single Y181C mutation, 2a has an EC₅₀ of 310 nM, though it remains potent towards the normally more challenging double K103N/Y181C mutant at 11 nM.⁵ In the absence of an explanation for the difference in results for Y181C, we have explored additional bicyclic possibilities including 1naphthyl analogues 3.8 Though it was initially unclear if their larger size would be accommodated in the NNRTI binding site, compounds were obtained that performed very well in the MT-2 assays such as **3b** ($R_5 = H, Y = F$) with EC50s of 1, 8, and 6 nM towards the WT, Y181C, and K103N/Y181C forms.

We have also reported numerous x-ray crystal structures for catechol diethers bound to WT HIV-RT and variants.7-9,11-13 Consistent with the high potencies, the complexes are tightly packed with multiple protein-ligand arylaryl interactions and hydrogen bonds. The point is illustrated in Figure 1, which has been rendered from the crystal structure of **3a** ($R_5 = Y = H$) with WT RT. In particular, the 1-naphthyl group is in well-packed aryl-aryl interactions with Tyr181, Tyr188, and Trp229. In viewing this structure, it is difficult to imagine that the alternative attachment for the naphthyl substituent at the 2-position would not lead to a serious steric clash with Trp229. Nevertheless, structure building with the BOMB program followed by energy minimizations with MCPRO using OPLS force fields was carried out for 2-naphthyl alternatives.14 Surprisingly, the resultant structures appeared to be viable as long as the cyano group was moved to the 7-position as in 4. In addition, three possible conformers were suggested by BOMB for the parent 4a with the cyano group pointed towards Pro95, above Tyr181, and below Trp229 (Figure 2). Thus, motivation arose to pursue the 2-naphthyl series 4.

As summarized in Scheme 1 and detailed in the Supporting Information, synthesis of the 26 analogues of **4** listed in Table 1 proceeded in a manner similar to that for **3**,⁸ though much effort was needed for the preparation of the various 2-hydroxy-7-cyanonaphthalenes. The substituted 2-hydroxynaphthalenes underwent Cu(I)-catalyzed

Figure 1. Mixed rendering from the crystal structure of **3a** with wild type HIV-1 reverse transcriptase. Carbon atoms of **3a** are colored yellow. Some residues in front of the ligand have been removed for clarity. The PDB code is 4WE1.

Figure 2. Rendering of a computed structure for the third conformer of 4a with wild type HIV-1 RT. Carbon atoms of 4a are colored yellow.

Scheme 1. Synthesis of 2-Naphthyl Phenyl Ethers 4

Reagents: (a) CuI, Cs₂CO₃, 2,2,6,6-tetramethyl-3,5-heptanedione, dioxane, 100 °C, 48 h; (b) BBr₃, DCM, -78 °C \rightarrow 0 °C, 3 h; (c) K₂CO₃, DMF, 60 °C, 3h; (d) NH₄OH, DCM, 16 h.

addition to 2-bromoanisoles to yield 2-naphthyl phenyl ethers. The methoxy group was unmasked with BBr₃ to yield phenols, which were alkylated with *N*-Bz-protected 1-bromoethyluracil. The identity of assayed compounds was confirmed by ¹H and ¹³C NMR and high-resolution mass spectrometry; HPLC analyses established purity as >95%. Aqueous solubilities were measured using a standard shake-flask procedure, as previously described.^{8,15} The procedures for the human MT-2 T-cell assays have also been described in detail.^{6-8,16,17} Triplicate assays using the IIIB and variant strains of HIV-1 were performed yielding EC₅₀ values as the dose required to achieve 50% protection of the infected MT-2 cells as well as CC₅₀ values for inhibition of MT-2 cell growth by 50%.

The activity results for the 2-naphthyl ethers are summarized in Table 1 along with corresponding data for key compounds in the **1** - **3** series and for four FDA-approved NNRTIs. The parent **4a** did turn out to be a good inhibitor of the WT virus with an EC₅₀ of 22 nM, though it shows only 2 - 4 μ M potency towards the two variant strains. The performance of the isomeric **3a** is substantially better. However, optimization of the substituents in **4** could be expected to provide gains. For R₅, the viable options were

1

38

39

40 41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56 57

58 59 60 Table 1. Inhibitory Activity (EC₅₀, nM)^a for HIV-1 and Cytotoxicity (CC₅₀, μM) in MT-2 Cell Assays

Rs Z Y WT V181C V181C CC ₃₀ 4 Ia F - F 0.32 16 85 45 5 Ib H - CI 0.31 46 24 18 6 2a H - H 0.38 310 11 >100 7 3a H - F 0.40 250 10 50 8 3b H - F 1.1 8.0 6.0 >100 9 3c F - F 1.9 5.6 21 >100 10 4a H H CI 14 890 890 12 12 4c H H CI 6.2 58 280 >100 14 4b H Me CI 6.0 150 300 12 15 4g H CI<	2				<i>.</i>		U U	K103N/	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3		\mathbf{R}_5	Z	Y	WT	Y181C	Y181C	CC50
1b H - Cl 0.31 46 24 18 6 2b F - H 0.38 310 11 >100 7 3a H - F 0.40 250 10 50 8 3b H - F 1.1 8.0 6.0 >100 9 3c F - F 1.9 5.6 21 >100 10 4a H H Cl 14 800 890 12 11 4b H H Cl 14 890 890 12 12 4c H H Cl 14 890 890 120 13 4e H Me 7.8 60 890 100 14 4f H Me Cl 6.2 58 280 100 15 4g H Me	4	1a	F	-	F	0.32	16	85	45
2 2 H - H 0.38 310 11 >100 6 2b F - F 0.40 250 10 50 7 3a H - F 0.13 19 15 >100 8 3b H - F 1.1 8.0 6.0 >100 9 3c F - F 1.1 8.0 6.0 >100 10 4a H H Cl 14 890 890 12 11 4b H H Cl 14 890 890 12 12 4c H Me Cl 6.2 58 280 >100 14 4e H Me Cl 6.2 58 280 >100 15 4g H Cl Me 5.0 42 120 >100 16 4h Me Pr 16 400 100 910 17 4i	5	1b	Н	-	Cl	0.31	46	24	18
0 2b F - F 0.40 250 10 50 7 3a H - F 1.1 8.0 6.0 >100 8 3b H - F 1.1 8.0 6.0 >100 9 3c F - F 1.9 5.6 21 >100 10 4a H H 22 2600 4000 15 11 4b H H Cl 14 890 890 12 4c H Me Cl F 5.0 90 310 >100 14 4e H Me F 7.8 60 890 >100 15 4g H Cl Me 5.0 42 120 >100 16 4h Me Me Re 150 300 12 18 4j H Me Pr 16 400 100 90 20 4h Me	6	2a	Н	-	Н	0.38	310	11	>100
7 3a H - H 0.53 19 15 >100 8 3b H - F 1.1 8.0 6.0 >100 9 3c F - F 1.9 5.6 21 >100 10 4a H H 22 2600 4000 15 11 4b H H Cl 14 890 890 12 12 4c H H Cl 14 890 890 100 13 4d H Cl F 5.0 90 310 >100 14 4e H Me F 7.8 60 890 >100 15 4g H Cl Me 5.0 42 120 >100 16 4h Me Me 7.8 60 890 12 100 17 4i H Me 15 690 15 100 12 18 4i	0	2b	F	-	F	0.40	250	10	50
8 3b H - F 1.1 8.0 6.0 >100 9 3c F - F 1.9 5.6 21 >100 10 4a H H H 22 2600 4000 15 11 4b H H Cl 14 890 2900 6 12 4c H H Me 4.9 800 2900 6 13 4e H Me F 7.8 60 890 >100 14 4f H Me Cl 6.2 58 280 >100 15 4g H Cl Me 3.5 62 150 >100 16 4h H Me Pr 21 630 990 15 19 4k H Me iPr 16 400 100 90 21 4j H Me cPrCH2 18 900 120 13 4m </td <td>/</td> <td>3a</td> <td>Н</td> <td>-</td> <td>Н</td> <td>0.53</td> <td>19</td> <td>15</td> <td>>100</td>	/	3a	Н	-	Н	0.53	19	15	>100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	3b	Н	-	F	1.1	8.0	6.0	>100
10 4a H H H 22 2600 4000 15 11 4b H H Cl 14 890 890 12 12 4c H H Me 4.9 800 2900 6 13 4d H Cl F 5.0 90 310 >100 14 4e H Me F 7.8 60 890 >100 14 4f H Me F 7.8 62 150 >100 16 4h H Me S.5 62 150 >100 17 4i H Me iPr 16 400 100 9 20 4l H Me iPr 16 400 100 9 21 4m Me iPr 16 400 100 9 100 20 4l H Me iPr 16 400 100 9 100 21 <td>9</td> <td>3c</td> <td>F</td> <td>-</td> <td>F</td> <td>1.9</td> <td>5.6</td> <td>21</td> <td>>100</td>	9	3c	F	-	F	1.9	5.6	21	>100
11 4b H H Cl 14 890 890 12 12 4c H H Me 4.9 800 2900 6 13 4c H Cl F 5.0 90 310 >100 14 4e H Me F 7.8 60 890 >100 15 4g H Cl 6.2 58 280 >100 16 4h H Me S.5 62 150 >100 16 4h Me Me 8.5 62 150 >100 17 4i H Me Pr 21 630 990 15 19 4k H Me iPr 16 400 100 9 20 4l H Me cPrCH2 18 900 1200 13 21 4m He Me 3.4e 160 NA 1700 5 22 4o H <	10	4a	Н	Н	Н	22	2600	4000	15
12 4c H H Me 4.9 800 2900 6 13 4e H Cl F 5.0 90 310 >100 14 4f H Me F 7.8 60 890 >100 15 4g H Cl 6.2 58 280 >100 16 4h H Me Cl 6.2 58 280 >100 16 4g H Me Me 3.5 62 150 >100 17 4i H Me Pr 21 630 990 15 18 4j H Me iPr 16 400 100 9 20 4l H Me iPr 16 400 100 9 21 4m Me ePr 21 630 900 1200 13 20 4l H Me RetO 17 670 1600 100 21	11	4b	Н	Н	Cl	14	890	890	12
13 4d H Cl F 5.0 90 310 >100 14 4e H Me F 7.8 60 890 >100 15 4g H Cl 6.2 58 280 >100 15 4g H Cl Me 5.0 42 120 >100 16 4h H Me Me 3.5 62 150 >100 17 4i H Me Pr 21 630 990 15 19 4k H Me Pr 16 400 100 9 20 4l H Me cPrCH2 18 900 1200 13 21 4m H Me cPrCH2 18 900 1200 13 22 4o H Me CPrCH2 18 900 1200 13 21 4m Me Sold NA 790 100 200 200 2100	12	4c	Н	Н	Me	4.9	800	2900	6
4e H Me F 7.8 60 890 >100 14 4f H Me Cl 6.2 58 280 >100 15 4g H Cl Me 5.0 42 120 >100 16 4h H Me Me 3.5 62 150 >100 17 4i H Me Pr 21 630 990 15 19 4k H Me Pr 21 630 990 15 19 4k H Me Pr 16 400 100 9 20 4l H Me <i>i</i> Pr 16 400 100 9 21 4m H Me <i>i</i> Pr 16 400 100 9 22 4l H Me MeO 17 670 1600 >100 22 4o H Me 3.4-Me 580 NA 790 >100 25	13	4 d	Н	Cl	F	5.0	90	310	>100
14 4f H Me Cl 6.2 58 280 >100 15 4g H Cl Me 5.0 42 120 >100 16 4h H Me Me 3.5 62 150 >100 17 4i H Me Pr 21 630 990 15 19 4k H Me iPr 16 400 100 9 20 4l H Me iPr 16 400 100 9 20 4l H Me iPr 16 400 100 9 20 4l H Me $cPrCH_2$ 18 900 1200 13 21 4m H Me $CPrCH_2$ 18 900 1200 130 22 4o H Me $S-Me$ 160 NA 1700 5 23 4p H Me $3,4-Me$	14	4 e	Н	Me	F	7.8	60	890	>100
15 4g H Cl Me 5.0 42 120 >100 16 4h H Me Me 3.5 62 150 >100 17 4i H Me Et 6.0 150 300 12 18 4j H Me Pr 21 630 990 15 19 4k H Me iPr 16 400 100 9 20 4l H Me iPr 16 400 100 9 20 4l H Me iPr 16 400 100 9 20 4l H Me cPrCH2 18 900 1200 13 21 4m H Me MeO 17 670 1600 >100 22 4o H Me MoM 15 690 790 16 23 4p H Me 3.4-Me 580 NA 790 >100	14	4f	Η	Me	Cl	6.2	58	280	>100
16 4h H Me Me 3.5 62 150 >100 17 4i H Me Et 6.0 150 300 12 18 4j H Me Pr 21 630 990 15 19 4k H Me iPr 16 400 100 9 20 4l H Me iPr 16 400 100 9 20 4l H Me $cPrCH_2$ 18 900 1200 13 21 4m H Me $cPrCH_2$ 18 900 1200 13 21 4m H Me $CPrCH_2$ 18 900 1200 13 21 4m H Me $PrCH_2$ 18 900 1200 13 22 4o H Me 3.4 160 NA 790 >100 25 4r F H CI<	15	4g	Н	Cl	Me	5.0	42	120	>100
17 4i H Me Et 6.0 150 300 12 18 4j H Me Pr 21 630 990 15 19 4k H Me iPr 16 400 100 9 20 4l H Me iPr 16 400 100 9 20 4l H Me cPrCH2 18 900 1200 13 21 4m H Me cPrCH2 18 900 1200 13 21 4m H Me cPrCH2 18 900 1200 13 21 4m H Me CPrCH2 18 900 1200 13 22 4o H Me MeO 17 670 1600 >100 23 4p H Me 3.4-Me 580 NA 790 >100 25 4r F H H 26 1200 9400 >100 <td>16</td> <td>4h</td> <td>Η</td> <td>Me</td> <td>Me</td> <td>3.5</td> <td>62</td> <td>150</td> <td>>100</td>	16	4h	Η	Me	Me	3.5	62	150	>100
18 4j H Me Pr 21 630 990 15 19 4k H Me iPr 16 400 100 9 20 4l H Me iPr 16 400 100 9 20 4l H Me cPrCH2 18 900 1200 13 21 4m H Me MeO 17 670 1600 >100 22 4o H Me MeO 15 690 790 16 23 4p H Me 3-Me 160 NA 1700 5 24 4q H Me 3,4-Me 580 NA 790 >100 25 4r F H H 26 1200 9400 >100 26 4s F H CI 24 1100 4100 >100 27 4t F CI F 7.0 72 1600 28	17	4 i	Η	Me	Et	6.0	150	300	12
19 4k H Me iPr 16 400 100 9 20 4l H Me $cPrCH_2$ 18 900 1200 13 21 4m H Me MeO 17 670 1600 >100 22 4o H Me EtO 10 200 800 >100 23 4p H Me MOM 15 690 790 16 23 4p H Me 3-Me 160 NA 1700 5 24 4q H Me 3,4-Me 580 NA 790 >100 25 4r F H H 26 1200 9400 >100 26 4s F H Cl 24 1100 4100 >100 27 4t F Cl F 7.0 72 1600 28 28 4u F Me F 3.0 31 980 >100	18	4j	Н	Me	Pr	21	630	990	15
20 41 H Me $cPrCH_2$ 18 900 1200 13 21 4m H Me MeO 17 670 1600 >100 22 4o H Me EtO 10 200 800 >100 23 4p H Me MOM 15 690 790 16 23 4p H Me 3-Me 160 NA 1700 5 24 4q H Me 3,4-Me 580 NA 790 >100 25 4r F H H 26 1200 9400 >100 26 4s F H Cl 24 1100 4100 >100 27 4t F Cl F 7.0 72 1600 28 28 4u F Me F 3.0 31 980 >100 29 4w F Me Cl 3.6 27 500 82	19	4 k	Н	Me	iPr	16	400	100	9
21 4m H Me MeO 17 670 1600 >100 22 4n H Me EtO 10 200 800 >100 23 4o H Me MOM 15 690 790 16 23 4p H Me 3-Me 160 NA 1700 5 24 4q H Me 3,4-Me 580 NA 790 >100 25 4r F H H 26 1200 9400 >100 26 4s F H Cl 24 1100 4100 >100 27 4t F Cl F 7.0 72 1600 28 28 4u F Me F 3.0 31 980 >100 29 4w F Me Cl 3.6 27 500 82 30 4x F Me Me 1.9 28 410 >100 <tr< td=""><td>20</td><td>41</td><td>Н</td><td>Me</td><td>$cPrCH_2$</td><td>18</td><td>900</td><td>1200</td><td>13</td></tr<>	20	41	Н	Me	$cPrCH_2$	18	900	1200	13
21 4n H Me EtO 10 200 800 >100 22 4o H Me MOM 15 690 790 16 23 4p H Me 3-Me 160 NA 1700 5 24 4q H Me 3,4-Me 580 NA 790 >100 25 4r F H H 26 1200 9400 >100 26 4s F H Cl 24 1100 4100 >100 26 4s F H Cl 24 100 4100 >100 26 4s F H Cl 24 1100 4100 >100 27 4t F Cl F 7.0 72 1600 28 28 4u F Me F 3.0 31 980 >100 29 4w F Me Cl 3.6 27 500 82	21	4m	Н	Me	MeO	17	670	1600	>100
22 40 H Me MOM 15 690 790 16 23 4p H Me 3-Me 160 NA 1700 5 24 4q H Me 3,4-Me 580 NA 790 >100 25 4r F H H 26 1200 9400 >100 26 4s F H Cl 24 1100 4100 >100 27 4t F Cl F 7.0 72 1600 28 28 4u F Me F 3.0 31 980 >100 29 4v F F Me 58 1200 3800 45 30 4v F Me Cl 3.6 27 500 82 31 4y Cl Me F 18 330 NA 6 32 4z H H 6-CN ^c 1300 NA 5600 9	27	4n	Н	Me	EtO	10	200	800	>100
23 4p H Me 3-Me 160 NA 1700 5 24 4q H Me 3,4-Me 580 NA 790 >100 25 4r F H H 26 1200 9400 >100 26 4s F H Cl 24 1100 4100 >100 27 4t F Cl F 7.0 72 1600 28 28 4u F Me F 3.0 31 980 >100 29 4v F F Me 58 1200 3800 45 30 4v F Me Cl 3.6 27 500 82 30 4w F Me Me 1.9 28 410 >100 31 4y Cl Me F 18 330 NA 6 32 4z H H 6-CN ^c 1300 NA 5600 9	22	4 0	Η	Me	MOM	15	690	790	16
24 4q H Me 3,4-Me 580 NA 790 >100 25 4r F H H 26 1200 9400 >100 26 4s F H Cl 24 1100 4100 >100 27 4t F Cl F 7.0 72 1600 28 28 4u F Me F 3.0 31 980 >100 29 4v F F Me 58 1200 3800 45 30 4v F Me Cl 3.6 27 500 82 30 4x F Me Me 1.9 28 410 >100 31 4y Cl Me F 18 330 NA 6 32 4z H H 6-CN ^c 1300 NA 5600 9 33 nev ^d 110 NA NA 100 34 efv ^d 1 8 <td>23</td> <td>4p</td> <td>Н</td> <td>Me</td> <td>3-Me</td> <td>160</td> <td>NA</td> <td>1700</td> <td>5</td>	23	4p	Н	Me	3-Me	160	NA	1700	5
25 4r F H H 26 1200 9400 >100 26 4s F H Cl 24 1100 4100 >100 27 4t F Cl F 7.0 72 1600 28 28 4u F Me F 3.0 31 980 >100 29 4v F F Me 58 1200 3800 45 29 4w F Me Cl 3.6 27 500 82 30 4x F Me Me 1.9 28 410 >100 31 4y Cl Me F 18 330 NA 6 32 4z H H 6-CN ^c 1300 NA 5600 9 33 nev ^d 110 NA NA 100 34 efv ^d 2 10 30 15 35 etv ^d 1 8 5 11 36	24	4 q	Η	Me	3,4-Me	580	NA	790	>100
26 4s F H Cl 24 1100 4100 >100 27 4t F Cl F 7.0 72 1600 28 28 4u F Me F 3.0 31 980 >100 29 4v F F Me 58 1200 3800 45 30 4w F Me Cl 3.6 27 500 82 30 4w F Me Me 1.9 28 410 >100 31 4y Cl Me F 18 330 NA 6 32 4z H H 6-CN ^c 1300 NA 5600 9 33 nev ^d 110 NA NA >100 34 efv ^d 2 10 30 15 35 etv ^d 1 8 5 11 36 rpv ^d 0.67 0.65 2 8 a For 50	25	4r	F	Н	Н	26	1200	9400	>100
27 4t F Cl F 7.0 72 1600 28 28 4u F Me F 3.0 31 980 >100 29 4v F F Me 58 1200 3800 45 30 4w F Me Cl 3.6 27 500 82 30 4x F Me Me 1.9 28 410 >100 31 4y Cl Me F 18 330 NA 6 32 4z H H 6-CN ^c 1300 NA 5600 9 33 nev ^d 110 NA NA >100 34 efv ^d 2 10 30 15 35 etv ^d 1 8 5 11 36 rpv ^d 0.67 0.65 2 8	26	4 s	F	Н	Cl	24	1100	4100	>100
28 4u F Me F 3.0 31 980 >100 29 4v F F Me 58 1200 3800 45 30 4w F Me Cl 3.6 27 500 82 30 4x F Me Me 1.9 28 410 >100 31 4y Cl Me F 18 330 NA 6 32 4z H H 6-CN ^c 1300 NA 5600 9 33 nev ^d 110 NA NA >100 34 efv ^d 2 10 30 15 35 etv ^d 1 8 5 11 36 rpv ^d 0.67 0.65 2 8 ^a For 50% protection in MT-2 cells: NA for ECso > CCso or > 100 100	27	4t	F	Cl	F	7.0	72	1600	28
4v F F Me 58 1200 3800 45 29 4w F Me Cl 3.6 27 500 82 30 4x F Me Me 1.9 28 410 >100 31 4y Cl Me F 18 330 NA 6 32 4z H H 6-CN ^c 1300 NA 5600 9 33 nev ^d 110 NA NA >100 34 efv ^d 2 10 30 15 35 etv ^d 1 8 5 11 36 rpv ^d 0.67 0.65 2 8	28	4u	F	Me	F	3.0	31	980	>100
4w F Me Cl 3.6 27 500 82 30 $4x$ F Me Me 1.9 28 410 >100 31 $4y$ Cl Me F 18 330 NA 6 32 $4z$ H H 6-CN ^c 1300 NA 5600 9 33 nev ^d 110 NA NA >100 34 efv ^d 2 10 30 15 35 etv ^d 1 8 5 11 36 rpv ^d 0.67 0.65 2 8 a For 50% protection in MT-2 cells: NA for ECso > CCso or > 100	29	4v	F	F	Me	58	1200	3800	45
30 $4x$ F Me Me 1.9 28 410 >100 31 $4y$ Cl Me F 18 330 NA 6 32 $4z$ H H 6-CN ^c 1300 NA 5600 9 33 nev ^d 110 NA NA >100 34 efv ^d 2 10 30 15 35 etv ^d 1 8 5 11 36 rpv ^d 0.67 0.65 2 8 a For 50% protection in MT-2 cells: NA for ECso > CCso or > 100	20	4 w	F	Me	Cl	3.6	27	500	82
31 4y Cl Me F 18 330 NA 6 32 4z H H 6-CN ^c 1300 NA 5600 9 33 nev ^d 110 NA NA >100 34 efv ^d 2 10 30 15 35 etv ^d 1 8 5 11 36 rpv ^d 0.67 0.65 2 8 a For 50% protection in MT-2 cells: NA for ECso > CCso or > 100	30	4x	F	Me	Me	1.9	28	410	>100
32 4z H H 6-CN ^c 1300 NA 5600 9 33 nev ^d 110 NA NA >100 34 efv ^d 2 10 30 15 35 etv ^d 1 8 5 11 36 rpv ^d 0.67 0.65 2 8 a For 50% protection in MT-2 cells: NA for ECso > CCso or > 100 100	31	4y	Cl	Me	F	18	330	NA	6
33 nev ^d 110 NA NA >100 34 efv ^d 2 10 30 15 35 etv ^d 1 8 5 11 36 rpv ^d 0.67 0.65 2 8 a For 50% protection in MT-2 cells: NA for ECso > CCso or > 100 100	32	4z	Н	Н	6-CN ^c	1300	NA	5600	9
34 efv ^d 2 10 30 15 35 etv ^d 1 8 5 11 36 rpv ^d 0.67 0.65 2 8 a For 50% protection in MT-2 cells: NA for ECso > CCso or > 100	33	nev ^d				110	NA	NA	>100
35 etv^d 1 8 5 11 36 rpv^d 0.67 0.65 2 8 a For 50% protection in MT-2 cells: NA for ECso > CCso or > 100	34	efv ^d				2	10	30	15
36 rpv^d 0.67 0.65 2 8 ^a For 50% protection in MT-2 cells: NA for EC ₅₀ > CC ₅₀ or > 100	35	etv ^d				1	8	5	11
^a For 50% protection in MT-2 cells: NA for $EC_{50} > CC_{50}$ or > 100	36	rpv ^d				0.67	0.65	2	8
	37	^a For	^a For 50% protection in MT-2 cells; NA for $EC_{50} > CC_{50}$ or > 100						

^a For 50% protection in M1-2 cells; NA for $EC_{50} > CC_{50}$ or > 100 μ M. ^b For 50% inhibition of MT-2 cell growth. ^c 6-CN rather than 7-CN analogue. ^d nevirapine (nev); efavirenz (efv); etravirine (etv); rilpivirine (rpv)

known to be limited⁸ such that $R_5 = F$ yields similar potencies as $R_5 = H$, e.g., **4a** and **4r**, and $R_5 = Cl$ is already too large (**4y** vs. **4u**). Overall, the SAR data are consistent with the structure in Figure 2. For example, a substituent, even CH₃, at C3 of the naphthyl group as in **4p** and **4q** is disfavored since the substituent would be placed over the central phenyl ring. For 2-methyldiphenyl ether such a conformation is not an energy minimum with the OPLS-AA force field; the only two minima are **I** and **II** in which a phenyl hydrogen atom is over a ring center. Furthermore, shift of the cyano group to C6 leads to a 60-fold reduction in WT potency (**4a** vs. **4z**) owing to the expected steric conflict with Trp229.

The structure in Figure 2 and modeling of derivatives did indicate that there should be a wider range of options for Z and especially Y. Z points into the center of the NNRTI

binding site where there is limited space, though Z = Cl and CH_3 could be accommodated with the latter generally preferred as in **4f** and **4g**, and **4t** and **4u**. For Y, a range of options was explored in **4h** – **4o** with $Z = CH_3$. There was optimism that larger groups for Y would benefit the activity towards the variant viral strains as the group might occupy some of the space vacated by the Y181C mutation. Though this strategy had worked for another NNRTI series,¹⁸ CH₃ emerged as the best choice for Y, and the larger options in **4j** – **4o** showed a narrow range of WT activities, 6 – 21 nM, and poorer performance for the variant HIV strains. It appears that the substituent Y is directed more towards Pro95 and is not optimally oriented to fill the Y181C void.

The analyses above are also consistent with x-ray crystal structures that were obtained for **4a** and **4f** with WT RT (Figure 3). The procedures were similar to those in previous reports^{7-9,11-14} and are detailed in the Supporting Information.¹⁹ Strikingly, **4a** is in the conformation with the cyano group projecting over Tyr181. This conformation is only possible when Z = H to avoid a steric clash between

Figure 3. Renderings from the crystal structures of 4a (top) and 4f (bottom) with wild type HIV-1 reverse transcriptase.

Table 2. Experimental Aqueous Solubility at pH 6.5 (S in ug/mL) and Computed ClogP

μ _G / mL) una compatea ciogr										
Cmpd	S	ClogP	Cmpd	S	ClogP					
1a	10.8	3.09	4e	28.2	3.95					
1b	510	3.38	4f	20.6	4.52					
2a	37.9	2.70	nev	167 ^a	2.65					
2b	43.8	3.14	efv	68.0	4.67					
3a	4.3	3.30	etv	<<1 ^a	5.22					
3b	9.1	3.59	rpv	$0.02^{a,b}$	5.75					
3c	82.9	3.73	rpv	0.24 ^{a,c}	5.75					
2 C D - 6 (h h II 7									

^a See Ref. 8. ^b pH 7. ^c pH 7.4.

Z and the central phenyl ring, e.g., 4a, 4b, 4c, 4r, and 4s. In these cases, the EC₅₀ values for the two variant HIV strains are relatively high, which likely arises from loss of the greater contact between the inhibitors and Tyr181 in this conformation. When the 1-position is substituted, the conformation with the cyano group projecting below Trp229 (Figure 2) is expected to be preferred as found for 4f in Figure 3. Overall, the parent and fluoro-substituted 1naphthyl analogues **3a** – **3c** have significantly greater potency than the 2-naphthyl compounds 4a and 4r. In viewing the crystal structures and computed ones, a simple explanation is not obvious. However, when one optimizes the complexes with the OPLS/CM1A force field¹⁴ for **3a** as in Figure 1 and 4a as in Figure 2, the protein-ligand interaction energy is lower for 3a than 4a by 2.6 kcal/mol. This arises mostly from improved interactions for 3a with Tyr181, Tyr188, and Trp229 by 0.3, 0.3, and 1.2 kcal/mol, respectively. The preference carries over to the mutant strains, and substitutions at R5, Y, and Z in 4 were not able to compensate in full.

Overall, **4d** - **4i** are the most promising NNRTIs in the 2naphthyl series. **4g** and **4h** have activities of 5.0 and 3.5 nM towards WT HIV-1, ca. 50 nM towards the Y181C strain, and 120-150 nM toward the double mutant. They also exhibit no T-cell cytotoxicity, $CC_{50} > 100 \mu$ M. In addition, aqueous solubilities were measured for **4e** and **4f** and fall in the acceptable range for oral drugs (Table 2).²⁰ The cytotoxicities and solubilities of the approved NNRTIs etravirine and rilpivirine are much less favorable. Previously unreported solubility results for **3b** and **3c** are also provided in Table 2 and with **3a** show the seemingly unconventional pattern of increasing solubility with increasing fluorination. However, similar boosts have been found previously for other cases with fluorine separated from an oxygen atom by 3 carbons.^{21,22}

ASSOCIATED CONTENT

Supporting Information. Synthetic procedures, NMR and HRMS spectral data for compounds **4a-z**, and crystallographic details. The crystal structure data for the complexes of **4a** and **4f** with HIV-RT have been deposited in the RCSB Protein Data Bank with the PDB codes 5TEP and 5TER. This information is available free of charge via the Internet at http://pubs.acs.org

AUTHOR INFORMATION

Corresponding Authors

* karen.anderson@yale.edu

* william.jorgensen@yale.edu

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

Gratitude is expressed to the National Institutes of Health (AI44616, GM32136, GM49551) for research support and for a fellowship for AHC (AI122864). Crystal screening was conducted with support in the Yale Macromolecular X-ray Core Facility (1S100D018007-01). This work is based upon research conducted at the Northeastern Collaborative Access Team beamlines, which are funded by the National Institute of General Medical Sciences from the National Institutes of Health (P41 GM103403). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

ABBREVIATIONS

HIV, human immunodeficiency virus; HIV-RT, HIV reverse transcriptase; NNRTI, non-nucleoside inhibitor of HIV-RT; Bz, benzoyl; DCM, dichloromethane; DMF, dimethylformamide; HPLC, high-performance liquid chromatography.

REFERENCES

(1) Wang, H. *et al.* Estimates of global, regional, and national incidence, prevalence, and mortality of HIV, 1985-2015: the Global Burden of Disease Study 2015. *Lancet HIV* **2016**, *3*, e361-e387.

(2) Reynolds, C.; de Koning, C. B.; Pelly, S. C.; van Otterlo, W. A. L.; Bode, M. L. In search of a treatment for HIV – current therapies and the role of non-nucleoside reverse transcriptase inhibitors (NNRTIS). *Chem. Soc. Rev.* **2012**, *41*, 4657-4670.

(3) Jorgensen, W. L. Computer-aided discovery of anti-HIV agents. *Bioorg. Med. Chem.* **2016**, *24*, 4768-4778.

(4) De Clercq, E. The Nucleoside Reverse Transcriptase Inhibitors, Nonnucleoside Reverse Transcriptase Inhibitors, and Protease Inhibitors in the Treatment of HIV Infections (AIDS). *Adv. Pharmacol.* **2013**, *67*, 317-358.

(5) Zhan, P.; Chen, X.; Li, D.; Fang, Z.; De Clercq, E.; Liu, X. HIV-1 NNRTIs: Structural Diversity, Pharmacophore Similarity, and Implications for Drug Design. *Med. Res. Rev.* **2013**, *33*, E1-E72.

(6) Bollini, M.; Domaoal, R. A.; Thakur, V. V.; Gallardo-Macias, R.; Spasov, K. A.; Anderson, K. S.; Jorgensen, W. L. Computationally-Guided Optimization of a Docking Hit to Yield Catechol Diethers as Potent Ani-HIV Agents. *J. Med. Chem.* **2011**, *54*, 8582-8591.

(7) Lee, W.-G.; Gallardo-Macias, R.; Frey, K. M.; Spasov, K. A.; Bollini, M.; Anderson, K. S.; Jorgensen, W. L. Picomolar Inhibitors of HIV Reverse Transcriptase Featuring Bicyclic Replacement of a Cyanovinylphenyl Group. *J. Am. Chem. Soc.* **2013**, *135*, 16705-16713.

(8) Lee, W.-G.; Gallardo-Macias, R.; Frey, K. M.; Spasov, K. A.; Bollini, M.; Anderson, K. S.; Jorgensen, W. L. Picomolar Inhibitors of HIV Reverse Transcriptase: Design and Crystallography of Naphthyl Phenyl Ethers. *ACS Med. Chem. Lett.* **2014**, *5*, 1259-1262.

(9) Gray, W. T.; Frey, K. M.; Laskey, S. B.; Mislak, A. C.; Spasov, K. A.; Lee, W.-G.; Bollini, M.; Siliciano, R. F.; Jorgensen, W. L.; Anderson, K. S. Potent Inhibitors Active against HIV Reverse Transcriptase with K101P, a Mutation Conferring Rilpivirine Resistance. *ACS Med. Chem. Lett.* **2015**, *6*, 1075-1079.

(10) Castellino, S.; Groseclose, M. R.; Sigafoos, J.; Wagner, D.; de Serres, M.; Polli, J. W.; Romach, E.; Myer, J.; Hamilton, B. Central Nervous System Disposition and Metabolism of Fosdevirine (GSK2248761), a Non-Nucleoside Reverse Transcriptase Inhibi-

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

58 59 60 tor: An LC-MS and Matrix-Assisted Desorption/Ionization Imaging MS Investigation into Central Nervous System Toxicity. *Chem. Res. Toxicol.* **2013**, *26*, 241-251.

(11) Frey, K. M.; Bollini, M.; Mislak, A. C.; Cisneros, J. A.; Gallardo-Macias, R.; Jorgensen, W. L.; Anderson, K. S. Crystal Structures of HIV-1 Reverse Transcriptase with Picomolar Inhibitors Reveal Key Interactions for Drug Design. *J. Am. Chem. Soc.* **2012**, *134*, 19501-19503.

(12) Frey, K. M.; Gray, W. T.; Spasov, K. A.; Bollini, M.; Gallardo-Macias, R.; Jorgensen, W. L.; Anderson, K. S. Structure-Based Evaluation of C5 Derivatives in the Catechol Diether Series Targeting HIV-I Reverse Transcriptase. *Chem. Biol. Drug Des.* **2014**, *83*, 541-549.

(13) Frey, K. M.; Puleo, D. E.; Spasov, K. A.; Bollinin, M.; Jorgensen, W. L.; Anderson, K. S. Structure-Baed Evaluation of Nonnucleoside Inhibitors with Improved Potency and Solubility That Target HIV Reverse Transcriptase Variants. *J. Med. Chem.* **2015**, *58*, 2737-2745.

(14) Jorgensen, W. L. Efficient Drug Lead Discovery and Optimization. *Acc. Chem. Res.* **2009**, *42*, 724-733.

(15) Baka, E.; Comer, J. E. A; Takács-Novák, K. Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiaide as model compound. *J. Pharm. Biomed. Anal.* **2008**, *46*, 335-341.

(16) Lin, T. S.; Luo, M. Z.; Liu, M. C.; Pai, S. B.; Dutschman, G. E.; Cheng, Y. C. Antiviral activity of 2',3'-dideoxy- β -L-5-fluorocytidine (β -L-EddC) and 2',3'-dideoxy- β -L-cytidine (β -L-ddC) against hepatitis B virus and human immunodeficiency virus type 1 in vitro. *Biochem. Pharmacol.* **1994**, *47*, 171-174.

(17) Ray, A. S.; Yang, Z.; Chu, C. K.; Anderson, K. S. Novel use of a guanosine prodrug approach to convert 2',3'-didehydro-2',3'-dideoxyguanosine into a viable antiviral agent. *Antimicrob. Agents Chemother.* **2002**, *46*, 887-891.

(18) Bollini, M.; Gallardo-Macias, R.; Spasov, K. A.; Tirado-Rives, J.; Anderson, K. S.; Jorgensen, W. L. Optimization of benzyloxazoles as non-nucleoside inhibitors of HIV-1 reverse transcriptase to enhace Y181C potency. *Bioorg. Med. Chem. Lett.* **2013**, *23*, 1110-1133.

(19) The resolution limits for the structures are 3.10 and 2.70 Å, and they have been deposited with PDB IDs of 5TEP and 5TER, respectively.

(20) Jorgensen, W. L.; Duffy, E. M. Prediction of drug solubility from structure. *Adv. Drug Deliv. Rev.* **2002**, *54*, 355-366.

(21) Böhm, H.-J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Müller, K.; Obst-Sander, U.; Stahl, M. Fluorine in Medicinal Chemsitry. *ChemBioChem* **2004**, *5*, 637-643.

(22) Walker, M. A. Improving Solubility by Structural Modification. *Top. Med. Chem.* **2015**, *9*, 69-106.

