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ABSTRACT: An ortho-amination, ipso-C—H arylation mediated by palladium/norbornene cooperative catalysis is reported. This
reaction proceeds through a sequential intermolecular C—N bond formation process followed by intramolecular C—H activation of a
tethered arene. The products, aminated phenanthridinones, were generated in moderate to good yields. This method is also

applicable to the formation of dibenzazepinones.

T ransition-metal-catalyzed domino reactions have emerged
as useful approaches to construct complex molecules in a
single step without having to isolate intermediates." The
merging of C—H activation with diverse reactions has allowed
chemists to access different mechanistic pathways and to serve
as a complementary means to cross-coupling reactions.” In
contrast to chelated-assisted reactions,” the absence of a
directing group offers a powerful and useful strategy since the
resulting molecule does not require a subsequent deprotection
or functional group interconversion step. A transient directing
group is known to be an applicable approach, yet selectivity
issues may arise and as such constitute a significant
disadvantage.”

One extremely powerful reaction in its use of a transient C—
H bond activating agent is the Catellani reaction,” also
described by some as palladium/norbornene (Pd/NBE)
cooperative catalysis, a well-known methodology that allows
dual functionalization at the ortho- and ipso-positions of aryl
halides through C—H bond activation.”” The functionalization
typically employs electrophilic reagents which react at the ortho
position with the aid of a norbornyl fragment as a transient
directing group and traditional palladium(0) cross-couplings to
functionalize the ipso position.” This type of domino reaction
enables otherwise challenging disconnections, and notably, it
represents a novel route toward functionalized heterocycles.
We have been exploring the synthetic potential of the
annulative Catellani reaction since our first report in 2000
and C—H terminating reactions since 2005, and now report a
new route to the phenanthridinone skeleton.”™""

The phenanthridinone motif is found in natural products as
well as anticancer drugs.”'® Examples include the PJ34 PARP
inhibitor,'”"? a therapeutic agent for hepatitis C,'* and
pancratistatin, which displays antitumor activity (Figure 1)."°
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Figure 1. Selected examples of bioactive phenanthridinones.

In 2004, Catellani reported the Pd/NBE-catalyzed synthesis
of phenanthridinones through ortho intermolecular arylation
followed by intramolecular C—N coupling (Scheme 1a).'®
More recently in 2016, Jiao constructed the same type of
compounds via a Pd/NBE-catalyzed intermolecular ortho
acylzit}on followed by intramolecular C—H arylation (Scheme
1b).

Until 2013, functionalization at the ortho-position via this
approach was broadly limited to carbon substituents.” That
year, Dong reported ortho-amination was feasible using O-
benzoylhydroxylamines as coupling partners.'® Since then
numerous ipso functionalizations have been Eaired with the
ortho amination method including vinylation,"”~*" arylation,*”
alkynylation,”>** cyanation,”>*° alkylation,””** and boryla-
tion.”” Cyclizations making use of ortho-amination have also
been reported such as a phenol dearomatization and a C(sp*)—
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Scheme 1. Previously Reported Pd/NBE-Catalyzed Domino
Reactions
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H arylation.””*" Our group has long been interested in the
application of the Catellani reaction toward the synthesis of
heterocycles. In 2017 we reported a Pd/NBE-mediated ortho-
amination ipso-amidation wherein sequential inter- and
intr:irznolecular C—N bond formations took place (Scheme
Ic).”

We wondered whether it would be possible to synthesize
phenanthridinone-type molecules, e.g. 3a, by means of a
different sequence of bond-forming events via Pd/NBE
cooperative catalysis, such as ortho-amination followed by
intramolecular C—H arylation (Table 1). To the best of our
knowledge, there are no reports of l-amino-substituted
phenanthridinones. As such, these molecules constitute
unexplored chemical space.

We began investigating the assembly of ortho-aminated
phenanthridinones by reacting benzamide 1a with O-benzoyl-
hydroxylamine 2 using conditions resembling Dong’s initial

Table 1. Effect of Varying Reaction Conditions

! 0.
QLA - () S
Me

Pd(PPhg), (10 mol% [ j

NBE (4 equiv)

Lo CLL My

Me

1a 2 3a 3a’'
2 equiv
entry variation(s) 3a (%) 3a’ (%)

1 none 77 0

2 PivOH as additive (30 mol %) 62
3 Cs,CO; instead of K,CO; 77 4
4 K,CO; (2 equiv) 58 0
S 120 °C 75 0
6 [0.1 M] 68 0
7 NBE (3 equiv) 62 0
8 Pd(PPhs), (5 mol %) 75 0
9 Pd(PPh,), (5 mol %), 2 (1.2 equiv) 79 (74)° 0

“Yields were determined by "H NMR spectroscopy analysis of crude
reaction mlxture using 1,3,5-trimethoxybenzene as an internal
standard. “Isolated yield.

report (see Supporting Information for more details). We
started with 2 equiv of 2, 10 mol % of Pd(PPh;),, 3 equiv of
K,COs, and 4 equiv of norbornene in toluene [0.05 M] at 100
°C for 16 h, which gave 3a in 77% yield (Table 1, entry 1).
Single-crystal X-ray diffraction was performed on 3a (see the
Supporting Information for details). Testing PivOH as an
additive decreased the yield of 3a to 62% while generating the
direct-cyclization side-product 3a’ in trace amount (entry 2).*
Replacing K,CO; with Cs,CO; or reducing the equivalence of
base led to no improvement in yield (entries 3—4). Increasing
the temperature, concentrating the reaction, or reducing the
equivalence of norbornene (entries 5—7) all resulted in lower
yields. However, further studies demonstrated that S mol % of
Pd(PPh,), was sufficient for just a slightly lower yield of 3a
(entry 8). Combining this reduced catalyst loading with only
1.2 equiv of 2 resulted in an isolated yield of 74% (entry 9).

Following optimization, we turned our attention to
investigating the scope of the reaction (Scheme 2). Exploring
different N-substitutions gave products 3b, 3¢, and 3d in 85%,
67%, and 82% yields, respectively. Methyl substituents at the
para, meta, and ortho positions gave rise to 3e, 3f, and 3g in
74%, 74%, and 69% yields, respectively. A 10:1 regioisomeric
ratio was observed for the meta product 3f, likely stemming
from steric challenges of C—H activation to the di-ortho
substituted position. Examples 3h, 3i, and 3j revealed a clear
trend with respect to electronic effects of the carbonyl-tethered
arene moiety’s para substituent. Indeed, as the para
substitutent’s electron-withdrawing nature increased, so did
the corresponding yield (p-OMe, p-Me, p-H, p-F, p-CF;, 63%
to 83%). A 1.0-mmol-scale synthesis of 3j was performed,
which resulted in a 63% yield. 2-Naphthyl-derived 3k was only
generated in a low NMR yield of 22%. Heteroaryl motifs were
examined, and though thienyl-containing product 31 was
obtained in good yield, product 3m bearing a pyridine was
only generated in 30% yield. In contrast, 3n and 3o derived
from the corresponding S-substituted anilines were generated
in good yields of 79% and 86%, respectively. It must be noted
that the 4-chloroaniline derivative did not manage to furnish
the desired product. It is known that bulky and/or non-
coordinating meta substituents relative to the iodide on the
substrate can lead to byproducts retaining the norbornene
fragment as steric hindrance prevents ortho C—H functional-
ization.””’> We also tried synthesizing 3a from the
corresponding aryl bromide. However, the product was only
generated in 13% NMR yield.

Compound 1la was reacted with various electrophilic
amination reagents (Scheme 3). Ketal-protected 3p was
obtained in 50% yield, which can be further deprotected to
generate the primary aniline,” while the aryl piperazinyl
product 3q was isolated in 72% yield. However, 1,2,3,4-
tetrahydroisoquinoline and hexamethylenimine products 3r
and 3s were only generated in 10% and 12% NMR yields,
respectively. As for piperidine and pyrrolidine products 3t and
3u, these were obtained in 29% and 17% yields, respectively.

A borane reduction of the phenanthridinone’s amide
functionality provided access to the amine 4 in 69% yield
(Scheme 4).

Inspired by Cramer’s work on the formation of dibenzaze-
pinones,”® we explored the possibility of generating seven-
membered heterocycles. As such, triphenylacetic acid derived
substrates 5a (R = H) and Sb (R = Me) were successfully
coupled with 2, both furnishing the atropisomers 6a and 6b in
55% yields (Scheme S). The presence of three phenyl rings on
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Scheme 2. Substrate Scope”
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&) 1
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(63%)°
® ®
N N
A
I Z
N r:l (e] Me l:l (0]
Me Me
3m, 30% 3n, 79% 30, 86%

“Reactions were performed on a 0.2 mmol scale according to the
standard conditions shown above; isolated yields are shown. “The
corresponding aryl bromide was used instead. “1.0 equiv of 2 was
used. “10 mol % of Pd(PPh;), was used. “1 mmol scale.

the starting material was essential for good yields (see the
Supporting Information for details).

The synthesis of 8 from 7 was attempted to generate other
isomers of the phenanthridinone (Scheme 6a). However, 8 was
only formed in 28% yield (by 'H NMR). During the
elaboration of this project, a carboxylate-assisted Pd/NBE-
catalyzed ortho-amination followed by C(sp*)—H arylation
methodology in order to synthesize 1l-amino substituted
dihydrophenanthridines, phenanthridines, and 6H-benzo[c]-
chromenes was reported by Liang.”” Attempted synthesis of
one of the products included in the authors’ table, under our
conditions at 110 °C (Scheme 6b), gave 10 in 42% yield from
9, compared to the reported yield of 59%.

Based on previous work reported by Catellani, our group,
and others,”'*****% a plausible mechanism for this trans-
formation is shown in Scheme 7. Substrate la undergoes
oxidative addition to furnish aryl-Pd(II) intermediate I.

Scheme 3. O-Benzoylhydroxylamines Scope®

[N
#2%5 Pd(PPhg), (5 mol%) EY*'U
N )n

.
s Vel s KeCOs(3equiv)
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\ PhMe [0.05 M]
OB: 100 °C, 16 h
74 ’}‘ o)
Me
1a 2 3p-u
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3s, 12% NMR yield 3t, 29% 3u, 17%

“Reactions were performed on a 0.2 mmol scale according to the
standard conditions shown above; isolated yields are shown.

Scheme 4. Derivatization of Compound 3a“

) )

O BH5+DMS (5 equiv) N ‘
_—_—
THF [0.1 M], rt, 16 h O H
"o N
Me Me
3a, 78% conv 4, 69%

“Reaction was performed on a 0.2 mmol scale according to the
conditions shown above; isolated yield is shown.

Scheme $. Dibenzazepinones Synthesis”

Pd(PPhg),4 (10 mol%)
Cs,CO3 (3 equiv)

NBE (4 equiv)
Ph ] PhMe [0.05 M]
Me Ph 0Bz 100 °C, 16 h
5a,R=H 2 6a, 55%
5b, R = Me 1.2 equiv 6b, 55%

“Reactions were performed on a 0.2 mmol scale according to the
conditions shown above; isolated yields are shown.

Carbopalladation with norbornene forms the syn intermediate
II. A subsequent K,COj-assisted concerted metalation—
deprotonation (CMD) process gives rise to the key
intermediate in Catellani reactions: an aryl-norbornyl-pallada-
cycle (ANP). C—N bond formation occurs via either a Pd(IV)
intermediate IV stemming from a second oxidative addition
with O-benzoylhydroxylamine 2 followed by reductive
elimination or direct electrophilic substitution with 2
illustrated as transition state VI, both delivering V. Norbornene
extrusion occurs and leads to VII due to the “ortho effect”. A
second K,CO;-assisted CMD step as shown in transition state
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Scheme 6. Synthesis of Analogous Six-Membered
Heterocycles”

a)
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“Reactions were performed on a 0.2 mmol scale according to the
conditions shown above; isolated yields are shown.

Scheme 7. Proposed Mechanism

t!@u

3a
[ ] PO — |
Il
@f“" Lo
3
N Ph
Me o
Me Yo |
B
0 KO
[ j )‘o Vi _Pd!
o I
N g
Pd"
p NMe
" 6P en
A
H A pa c 00
(N KI + KHCO3
O\)
o
@ :
N OK Vi Ppn Pd!
C[Pd" AL T T e
NMe
NMe H
] J\
o Ph
i [Oj
G N 0Bz
E %\ L N=par
KOBz + [ j
p dl
K,CO3 )Nivw OBz M OBz
le
o
Vo e

VIII forms the seven-membered palladacycle IX. Final
reductive elimination releases product 3a and regenerates
Pd(0).

In conclusion, we have developed a new variant of the
Catellani reaction for the synthesis of aminated phenanthridi-
nones. The use of K,CO; as base was essential to first allow
ortho-amination, followed by intramolecular C(sp*)—H
arylation, generating the six-membered products. Various
functional groups and O-benzoylhydroxylamines were compat-
ible with the reaction conditions. Two examples of aminated
dibenzazepinones were also synthesized in moderate yields,
demonstrating the applicability of this method to the
construction of different ring sizes.
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