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 1 

Highlights: 2 

⚫ Palladium/xylan heterogeneous catalysts containing N and O 3 

ligands were synthesized. 4 

⚫ The prepared catalysts showed excellent catalytic activity with 5 

yield up to 100%. 6 

⚫ The activity of catalysts exhibited no significant loss after 7 

recycle for 5 times. 8 

⚫ The reaction conditions are milder, compared with other 9 

palladium-based catalysts. 10 

 11 

 12 

 13 

 14 
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Abstract 51 

Two kinds of xylan/palladium catalysts (PACMX-Pd and EDAX-Pd) were simply 52 

fabricated by integrating two N bidentate ligands into the skeleton of oxygen-rich 53 

xylan and followed with the in-situ reduction of palladium. The Pd loading in 54 

PACMX-Pd and EDAX-Pd nanocomposites was 0.353 mmol/g and 0.302 mmol/g, 55 

respectively. The catalysts exhibited an excellent catalytic activity for the Suzuki 56 

reaction with a yield of high up to 100% as well as a superior turnover frequency 57 

(TOF: 9626 h-1). Moreover, the catalysts showed outstanding stability and could be 58 

reused for at least 5 times without significant decrease in activity. Compared with 59 

other polymers and non-polymers supported palladium catalysts, the as-prepared 60 

biomass-based catalysts possess potential applications in a wide range of organic 61 

catalysis. 62 

 63 

 64 

 65 

 66 
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1. Introduction 81 

Recently, carbon-carbon cross-coupling reactions catalyzed by palladium have 82 

attracted enormous interest in synthetic organic chemistry (Hekmati, Bonyasi, 83 

Javaheri, & Hemmati, 2017; Chen, Engle, Wang, & Yu, 2009). Coupling reactions 84 

such as Suzuki (Putta, Sharavath, Sarkar, & Ghosh, 2015), Heck (Ma et al., 2008), 85 

and Sonogashira (Gogoi, Dewan, & Bora, 2015) provide a one-step method for 86 

synthesizing complex compounds, including pharmaceuticals, herbicides and natural 87 

products, as well as engineering materials such as conducting polymers, molecular 88 

wires, and liquid crystals (Chen et al., 2009). Palladium catalysts, in the form of Pd 89 

(Ⅱ)/Pd (0) complexes or Pd nanoparticles, have been proven to be efficient and 90 

irreplaceable catalysts for C-C bond formation reactions (Fortea-Pérez et al., 2015; 91 

Narayanan & El-Sayed, 2003). In order to maintain the stability of Pd (Ⅱ) or Pd (0) 92 

and obtain satisfactory yield, homogeneous systems are commonly used. However, 93 

palladium is difficult to be separated from the catalysts, leading to undesired residue 94 

metals in final products, which is a serious problem in pharmaceutical industry due to 95 

the closely regulated level of heavy metals such as Pd in active pharmaceutical 96 

intermediates (Zhang et al., 2013; Zhong et al., 2014). 97 

Substituting homogeneous catalysts with heterogeneous catalysts is an effective 98 

strategy to solve this problem due to the residues can be easily separated by filtration 99 

or centrifugation and the catalysts can be reused for several times (Veerakumar, 100 

Thanasekaran, Lu, Liu, & Rajagopal, 2017; Crudden, Sateesh, & Lewis, 2005). 101 

Supporting homogeneous catalysts on inorganic matters or organic polymers is a 102 

typical method to prepare heterogeneous catalysts. Various materials, including 103 

sporopollenin (Baran, Sargin, Kaya, Mentes, & Ceter, 2017), ionic liquids 104 

(Nikoorazm, Ghorbani-Choghamarani, Noori, & Tahmasbi, 2016), zeolite 105 

(Baghbanian, Yadollahy, Tajbakhsh, Farhang, & Biparva, 2014), carbon (Zhong et al., 106 

2015), silica (Sharma & Gupta, 2015), metal oxides (Amoroso, Colussi, Del Zotto, 107 

Llorca, & Trovarelli, 2013; Dumbre, Yadav, Bhargava, & Choudhary, 2013), and 108 

polymers (Rangel, Maya, Sanchez, de la Campa, & Iglesias, 2015; Xu, Song, Li, & 109 

Tan, 2015) have been employed to support heterogeneous palladium catalysts. 110 
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However, the heterogeneous Pd catalysts show lower activity and selectivity than 111 

their homogeneous counterparts (Choudhary, Nishimura, & Ebitani, 2014), which is 112 

due to the Pd leaching from the support and its poor accessibility of the active sites to 113 

the reactant (Hekmati, Bonyasi, Javaheri, & Hemmati, 2017). Therefore, designing a 114 

highly active and stable palladium heterogeneous catalyst is urgent. 115 

Tuning the specific composition, morphology and size of catalyst is crucial for the 116 

catalytic activity of Pd complex (Julkapli & Bagheri, 2015). In addition, previous 117 

studies demonstrated that supports with functional groups containing, oxygen, 118 

nitrogen, or sulfur ligands can enhance the stability of Pd nanoparticles, because these 119 

heteroatoms have a high affinity towards Pd (Ⅱ) or Pd (0), thus improving the 120 

catalytic activity of their transition metal complexes (Kardanpour et al, 2014; Oliveira, 121 

He, Klein Gebbink, & de Jong, 2015; Kostas, Tenchiu, Arbez-Gindre, Psycharis, & 122 

Raptopoulou, 2014). Biopolymers, which are a class of organic compounds 123 

containing large amounts of O or N or S heteroatom, are considered to be good 124 

catalytic materials for their inherent features in chemical composition and chain 125 

structure. Chitosan-based (containing O and N) palladium (0) catalysts have been 126 

confirmed to have excellent catalysis performance in Suzuki coupling reaction 127 

(Yilmaz, Baran, & Mentes, 2018; Baran & Menteş, 2017). Cellulose (containing O) 128 

was also utilized as a support for palladium (Li et al., 2017). Pd immobilized on lignin 129 

(containing O and S) as a catalyst for cross-coupling reactions in water was reported 130 

by Coccia etal (Coccia, Tonucci, d’Alessandro, D’Ambrosio, & Bressan, 2013). In 131 

addition, alginate (Jouannin et al., 2012), gelatin (Cacchi et al., 2012; Khazaei, 132 

Khazaei, & Rahmati, 2015), starch (Khalafi-Nezha & Panahi, 2011), cyclodextrin 133 

(Senra et al., 2009) and their derivatives were also employed as supports in catalysis. 134 

However, hemicelluloses have been rarely applied in Pd catalytic system and the 135 

prepared xylan-palladium nanocomposites can catalyze the Suzuki reactions with 136 

equivalent yields in a relatively mild reaction condition.  137 

Xylan-type hemicellulose has abundant hydroxyl, carbonyl, and aldehyde 138 

carboxylic acid groups along the backbone and side chains, and thus it has great 139 

potential to stabilize metal particles. Our group successfully prepared Pd/xylan 140 
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catalysts by a simple in-situ reduction method for organic synthesis reaction (Chen, 141 

Zhong, Peng, Lin, & Sun, 2014; Chen et al., 2014). 1, 10-phenanthrolin-5-amine and 142 

ethylenediamine have been widely used in transition-metal-catalyzed reactions 143 

(Mandegani et al., 2015; Yang, Li, & Wang, 2011) because they possess high 144 

electron-donating ability, short metal-ligand bond lengths, strong metal-ligand bond 145 

energies, and greater bond dissociation energies (Xu et al., 2015), which are suitable 146 

ligands for palladium particles stabilization.  147 

Herein, novel xylan supported palladium complexes were prepared by grafting N 148 

ligands in xylan-type hemicelluloses and then incorporated palladium via in-situ 149 

reduction and showed a superior catalytic performance in the Suzuki cross-coupling 150 

reactions under moderate condition with a TOF as high as 9626 h-1. Furthermore, both 151 

catalysts have excellent recovery and recycle ability. The as-prepared catalysts have a 152 

great potential in green chemical catalysis. 153 

 154 

2. Materials and Methods 155 

2.1. Materials 156 

Palladium acetate (Pd(Ac)2), 1, 10-phenanthrolin-5-amine, ethylenediamine, 157 

1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl), 158 

N-hydroxysuccinimide (NHS), epichlorohydrin, 1, 8-diazabicyclo [5.4.0] undec-7-ene 159 

(DBU), aryl halides, arylboronic acids were purchased from Aladdin Reagent Co., Ltd 160 

and were used without further purification. Solvents used for coupling reactions, 161 

ethanol (EtOH), methanol (MeOH), acetonitrile, 1,4-dioxane, hexane, tetrahydrofuran 162 

(THF) and toluene were purchased from National Medicine Group Chemical Reagent 163 

Co., Ltd. Sodium hydroxide (NaOH), potassium hydroxide (KOH), potassium 164 

carbonate (K2CO3), sodium carbonate (Na2CO3), triethylamine (TEA) and other 165 

reagents were also commercially available from National Medicine Group Chemical 166 

Reagent Co., Ltd. Xylan-type hemicelluloses were prepared according to literature 167 

(Peng, Ren, Zhong, & Sun, 2012). The sugar analysis showed sugar composition 168 

(relative weight percent): 89.4% xylose, 5.8% arabinose, 1.9% glucose, 0.7% 169 

galactose, 1.8% glucuronic acid and 0.6% galactose acid. 170 



Page 8 of 33

Acc
ep

te
d 

M
an

us
cr

ip
t

7 
 

2.2. Synthesis of 1, 10-phenanthrolin-5-amine functionalized carboxymethyl xylan 171 

(PACMX) 172 

The typical procedure for the preparation of PACMX was designed as followed. 173 

Carboxymethyl xylan was firstly prepared by a similar method as Peng et al (See 174 

Supplementary data). Subsequently, carboxymethyl xylan (0.8 mmol) and EDC·HCl 175 

(4.0 mmol) were suspended in 12 mL deionized water, the pH was previously 176 

adjusted to 5.5. After stirring under low temperature (＜20 oC) for 15 min, 4.0 mmol 177 

NHS was added to the above solution and the activation stage was maintained for 2 h, 178 

followed by the addition of 0.4 mmol 1, 10-phenanthrolin-5-amine which had been 179 

dissolved in 8 mL EtOH and the reaction mixture was stirred for 24 h below 20 oC. 180 

The obtained solid residual was filtered, thoroughly washed with EtOH and vacuum 181 

dried to give PACMX. The typical schematic outline of the preparation of PACMX 182 

was depicted in Fig. S1a. 183 

2.3. Synthesis of ethylenediamine functionalized xylan (EDAX) 184 

The representative synthetic procedure for EDAX was illustrated in Fig. S1b. 0.66 185 

g xylan-type hemicelluloses powder (approximately 5 mmol of xylose) was 186 

homo-dispersed evenly in 5.5 mL water and heated to 85 oC with stirring (500 rpm) 187 

for 10 min. As the dispersion being cooled down to room temperature, sodium 188 

hydroxide (2 mL, 200 g L-1) was added dropwise (20 drops per minute) into the 189 

mixture and swollen for 30 min at 85 oC, obtaining alkaline xylan solution. In addition, 190 

0.02 mmol ethylenediamine and 0.01 mmol epichlorohydrin were mixed together at 191 

room temperature and the reaction progressed violently. After 10 min the alkaline 192 

xylan solution was added into the above mixture and stirred at room temperature for 6 193 

h. The obtained yellow solution was precipitated with EtOH (100 mL) and filtered, 194 

then the residue was washed with EtOH and vacuum dried at 60 oC to obtain EDAX. 195 

2.4. Synthesis of the palladium grafted PACMX and EDAX (PACMX-Pd and 196 

EDAX-Pd) 197 

0.02 g palladium acetate and 0.2 g PACMX/EDAX were suspended in 10 mL EtOH. 198 

The solution was stirred for 12 h at 60 oC. During the reaction, the Pd (Ⅱ) was 199 

reduced gradually, and the yellowish solution turned to be deep brown, signifying the 200 
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conversion of Pd (Ⅱ) to Pd (0). After the reaction, the brown colored mixture was 201 

filtrated, washed with EtOH and then vacuum dried at 60 oC to give PACMX-Pd and 202 

EDAX-Pd catalysts. The local structures of palladium/xylan nanocomposites 203 

(PACMX-Pd/EDAX-Pd) were proposed as shown in Fig. S2, and the corresponding 204 

ball and stick model structures were also presented. 205 

2.5. Catalytic performance for Suzuki coupling reaction 206 

In a typical procedure, aryl halide (0.5 mmol), arylboronic acid (0.6 mmol), base 207 

(1.0 mmol) and catalyst (23 mg PACMX-Pd, containing 1.5 mol% Pd or 4.3 mg 208 

EDAX-Pd, containing 0.26 mol% Pd) were added into a 35 mL pressure tube. The 209 

solvent (2 mL) was added to disperse the reactants well and the resulting mixture was 210 

stirred under air atmosphere. Upon the completion of the reaction, the dispersion was 211 

filtered and concentrated under vacuum. The products were purified by flash column 212 

chromatography on a silica gel and identified by 1H NMR and 13C NMR 213 

spectroscopy. 214 

2.6. Recycling tests for PACMX-Pd and EDAX-Pd catalysts 215 

Recycling tests were performed to check the stability of PACMX-Pd and EDAX-Pd 216 

catalysts during the reaction. After the Suzuki reaction of 4-iodoanisole with 217 

phenylboronic acid, the catalysts were separated from the reaction mixture by 218 

centrifugation. The supernatants were stored and the Pd leaching of catalysts were 219 

analysed. The residual catalysts were washed with EtOH, water and vacuum dried 220 

overnight. Fresh 4-iodoanisole, phenylboronic acid, K2CO3 and reused catalyst were 221 

added, and then the same reaction was performed under room temperature for 4 h. 222 

Each cycle followed the general procedure for Suzuki cross coupling reactions 223 

mentioned above. 224 

2.7. Heterogeneity test 225 

23 mg PACMX-Pd (containing 1.5 mol% Pd) or 4.3 mg EDAX-Pd (containing 0.26 226 

mol% Pd) was added in a 35 mL pressure tube, which was followed by K2CO3 (1.0 227 

mmol), 4-iodoanisole (0.5 mmol), and phenylboronic acid (0.6 mmol). Then EtOH (2 228 

mL) was added to disperse the reactants and the reaction mixture was performed 229 

under room temperature. After 1 h of reaction, the catalysts were separated by 230 
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filtration. Subsequently, an additional amount of fresh K2CO3 (1.0 mmol) was added 231 

into the filtrate and the system was reacted under the same condition for another 3 h.  232 

2.8. Characterization 233 

FT-IR spectra of the samples were recorded on a Vector 33 infrared spectrum 234 

instrument (Bruker Corporation, Germany). The structures were analyzed by XRD 235 

measurements with a Bruker-D8 Advance diffractometer using Cu Kα radiation 236 

(λ=0.154 nm). The electronic states of Pd and N were determined by XPS and 237 

performed on Thermo Scientific ESCALAB 250 spectrometer system using Al Kα 238 

radiation (hν=1486.6 eV) with contaminated C as an internal standard (C 1s=284.6 239 

eV). The thermal stabilities of PACMX, EDAX, PACMX-Pd and EDAX-Pd catalysts 240 

were confirmed by TGA (TGA Q500, TA). The morphologies of samples were 241 

obtained on a JEM-2100 (HR) transmission electron microscopy working at 200 kV. 242 

The as-prepared samples were also observed using a scanning electron microscope 243 

(Zeiss Merlin, Germany). The Pd content was determined by Z-2000 (Japan) atomic 244 

absorption spectrometer (AAS). All 1H NMR and 13C NMR spectra were conducted 245 

on a 600 MHz Bruker (AVANCE III HD 600) spectrophotometer using CDCl3 as 246 

solvent and tetramethylsilane (TMS) as internal standard. All the spectroscopic data of 247 

the products were similar with those reported in the former literature and 248 

commercially available. 249 

3. Results and discussion 250 

3.1. Characterization of PACMX-Pd and EDAX-Pd catalysts 251 

PACMX-Pd and EDAX-Pd were prepared by a simple two steps. The synthesis routes 252 

of functionalized xylan (PACMX/EDAX) were illustrated in Figure 1. PACMX was 253 

obtained by the reaction of carboxymethyl xylan and 1, 10-phenanthrolin-5-amine in 254 

the presence of EDC·HCl and NHS. EDAX was synthesized by modifying xylan with 255 

ethylenediamine and epichlorohydrin under NaOH condition. Subsequently, 256 

palladium nanoparticles were supported onto PACMX/EDAX via in-situ reduction of 257 

Pd(Ac)2 at room temperature, the solution turned from yellowish to deep brown , 258 

indicating the successful reduction of Pd (Ⅱ) into Pd (0) and simultaneously the 259 

coordination of Pd to PACMX/EDAX. As Fig. S2 shown, the palladium was anchored 260 
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by four nitrogen atoms at the functionalized xylans.  261 

The FT-IR spectra of PACMX, EDAX, PACMX-Pd and EDAX-Pd are shown in 262 

Fig. 1. The peak assigned to the C=N stretching vibration of PACMX (Fig. 1c) can be 263 

clearly observed at 1645 cm-1 (Govindaiah, Lee, Jung, Lee, & Kim, 2009). After 264 

coordination with palladium particles (Fig. 1d), the stretching vibration of C=N group 265 

(1645 cm-1) is shifted to 1642 cm-1 due to the nitrogen atom in the benzene ring of 266 

PACMX actively participated to give its nonbonding electron pair to the metal 267 

particles. As shown in Fig. 1a and 1b, after Pd NPs being immobilized onto the 268 

surface of EDAX, a spectral shift for N-H bond in the amino group from 3420 cm-1 to 269 

3397 cm-1 is obviously observed. The band at 1640 cm-1 is ascribed to N-H in-plane 270 

bending vibration of amide group (Yang, Tan, Wang, & Wang, 2013). After being 271 

hydrided with palladium, the peak of N-H in EDAX shifts to 1614 cm-1. All these 272 

results indicate that strong ligand bond formed between EDAX and palladium 273 

particles. 274 
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Fig. 1. FT-IR spectra of EDAX (a). EDAX-Pd (b). PACMX (c) and PACMX-Pd (d). 276 

To further illustrate the interaction between palladium nanoparticles and the carrier, 277 

the oxidation states of the surface elements of PACMX-Pd and EDAX-Pd catalysts 278 
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were determined by X-ray photoelectron spectroscopy (XPS) (Fig. 2). The XPS 279 

narrow scan of palladium on the surface of PACMX-Pd (Fig. 2c) showed two peaks. 280 

The binding energy of the doublet peaks at 335.0 eV (Pd 3d5/2) and 340.3 eV (Pd 3d3/2) 281 

are attributed to Pd (0) state. The peak spliting at 338.1 eV and 342.6 eV corresponds 282 

to the characteristic state of Pd (Ⅱ) (Yang et al., 2013). The difference of N1s binding 283 

energies between PACMX and PACMX-Pd was 0.1 eV (Fig. 2d). These results 284 

suggest that a coordination bond between palladium and nitrogen was formed in 285 

PACMX-Pd. For EDAX-Pd (Fig. 2g), the binding energies at 335.0 eV and 340.3 eV 286 

indicate the presence of Pd (0), and Pd (Ⅱ) split at 338.1 and 343.4 eV (Chen, Zhong, 287 

Peng, Lin, & Sun, 2014). The difference of N1s binding energies between EDAX and 288 

EDAX-Pd was 1.0 eV (Fig. 2h), which indicates that the strong ligand formed 289 

between EDAX and palladium particles. These results are in good agreement with 290 

FT-IR spectra.  291 
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Fig. 2. XPS wide scan of PACMX (a) and PACMX-Pd (b). XPS narrow scan of palladium on 294 

the surface of PACMX (c) and nitrogen in PACMX and PACMX-Pd (d). XPS wide scan of 295 

EDAX (e) and EDAX-Pd (f). XPS narrow scan of palladium on the surface of EDAX (g) and 296 

nitrogen in EDAX and EDAX-Pd (h). 297 

The formation of palladium nanoparticles was also confirmed from the wide angle 298 

powder XRD patterns of PACMX-Pd and EDAX-Pd hybrids (Fig. 3). The XRD 299 

spectra suggest that PACMX and EDAX are amorphous since no characteristic peak 300 

was observed, while a phase in PACMX-Pd and EDAX-Pd was emerged in XRD 301 

patterns at 2θ = 40.0°, 46.1°, and 67.5° , corresponding to (111), (200), and (220) 302 

planes of Pd crystal (PDF#46-1043), respectively (Cao, Wu, Su, & Cao, 2015). 303 
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Fig. 3. XRD patterns of PACMX (a). PACMX-Pd (b). EDAX (c) and EDAX-Pd (d). 305 

The morphologies of PACMX-Pd and EDAX-Pd at a higher resolution TEM were 306 

recorded. It was shown that the spherical palladium particles with uniform size were 307 

homogeneously dispersed on PACMX (Fig. 4a) and EDAX (Fig. 4e). Average sizes 308 

for the two catalysts were about 5 nm and 4 nm, respectively. HR-TEM images of 309 

individual nanoparticle showed clear lattice fringes with an interplanar distance of 310 

approximately 0.22 nm, corresponding to Pd (111) planes (Fig. 4c and 4g) (Cao et al., 311 

2015; Maity & Maitra, 2014). The selected area electron diffraction pattern (Fig. 4d 312 

and 4h) displayed five diffused rings, which are assigned to the (111), (200), (220), 313 

(222), and (311) reflections of face-centered cubic Pd nanoparticles (Maity et al., 314 

2014), which well agrees with the XRD results. As shown in Fig. 4b and 4f, a slight 315 

aggregation was observed in the recycled PACMX-Pd and EDAX-Pd, which could 316 

result in the reduced catalytic activity of the Pd nanocatalysts. The SEM images in 317 

Supplementary data Fig. S4 showed that both catalysts had coralloid porous as 318 

compared to PACMX and EDAX, which is very beneficial for the catalytic reactions. 319 

The EDX spectra of PACMX-Pd and EDAX-Pd indicate the presence of metallic Pd 320 

signals. 321 
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Fig. 4. TEM images and histogram of the freshly prepared (a) and reused (for five times, b) 323 

PACMX-Pd particles. HR-TEM images and diffraction patterns of the as-prepared PACMX-Pd 324 

particles (c-d). TEM images and histogram of the as-prepared (e) and recycled (for five times, f) 325 

EDAX-Pd particles. HR-TEM images and diffraction patterns of the as-prepared EDAX-Pd 326 

particles (g-h). 327 

Thermal stability of catalysts is also a key factor for its catalytic activity. The 328 

thermal behaviors of catalysts were depicted in Fig. S5 by TGA curves. PACMX, 329 

EDAX, PACMX-Pd, and EDAX-Pd started to decompose at about 185 oC, indicates 330 

the loaded palladium particles didn’t significantly affect the initial decomposition 331 

temperature. Besides, the remaining weights of PACMX-Pd and EDAX-Pd were 332 

higher than those of PACMX and EDAX. These results reveal that the thermal 333 

stabilities of PACMX-Pd and EDAX-Pd were suitable for Suzuki catalytic 334 

application. 335 

3.2. Catalytic activities of PACMX-Pd and EDAX-Pd for the Suzuki coupling 336 

reactions 337 

Suzuki cross coupling reactions were thoroughly performed for testing the catalytic 338 

activities of PACMX-Pd and EDAX-Pd. In the screening experiments, the reaction 339 

conditions, including solvent, base and catalyst loading in PACMX-Pd and EDAX-Pd 340 
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were optimized. Firstly, various solvents were examined in the Suzuki coupling 341 

reaction of 4-iodoanisole with phenylboronic acid using PACMX-Pd and EDAX-Pd 342 

as catalysts and K2CO3 as a base. For PACMX-Pd (Table 1, entries 1-8), EtOH, 343 

MeOH and CH3CN gave higher yields of 4-methoxybiphenyl (100%, 97.8%, and 344 

100%, respectively), while the reactions in less polar solvents, for example, 1, 345 

4-dioxane, hexane, THF and toluene, were less effective (Chen, Zhong, Peng, Lin, & 346 

Sun, 2014). PACMX-Pd was not stable in H2O and therefore the catalytic reaction did 347 

not proceed smoothly in aqueous media. For the sake of safety and environmental 348 

friendliness, EtOH was chosen as a desirable solvent for the reaction catalyzed by 349 

PACMX-Pd, and a remarkable yield of 70% could be achieved even if the reaction 350 

just proceeded for 1 h (Table 1, entry 9). EDAX-Pd also showed a good catalytic 351 

activity in EtOH and MeOH with yields of high up to 100% (Table 1, entries 10 and 352 

11). Compared with PACMX-Pd, EDAX-Pd showed a moderate catalytic activity in 353 

H2O with a yield of 80.3% (Table 1, entry 8 and 17) due to the hydrophilcity of 354 

EDAX-Pd. Among various solvents (Table 1, entries 10-17), EtOH was also selected 355 

as the optimal solvent for EDAX-Pd catalyzed Suzuki coupling reactions, and giving 356 

an impressive yield of 59.5% within 1 h (Table 1, entry 18). 357 

Table1. Effect of solvent on the Suzuki coupling reaction of 4-iodoanisole with phenylboronic 358 

acida. 359 

Entry Catalyst Solvent Yieldb /% 

1 PACMX-Pd EtOH 100 

2 PACMX-Pd MeOH 97.8 

3 PACMX-Pd CH3CN 100 

4 PACMX-Pd 1,4-dioxane 63 

5 PACMX-Pd hexane 49.5 

6 PACMX-Pd THF 47.2 

7 PACMX-Pd toluene 43.5 

8 PACMX-Pd H2O 16.3 
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9 PACMX-Pd EtOHc 70 

10 EDAX-Pd EtOH 100 

11 EDAX-Pd MeOH 100 

12 EDAX-Pd CH3CN 65.3 

13 EDAX-Pd 1,4-dioxane 15.5 

14 EDAX-Pd hexane 84.5 

15 EDAX-Pd THF 37.8 

16 EDAX-Pd toluene 87 

17 EDAX-Pd H2O 80.3 

18 EDAX-Pd EtOHd 59.5 

aReaction conditions: 4-iodoanisole (0.5 mmol), phenylboronic acid (0.6 mmol), K2CO3 (1 mmol), 360 

PACMX-Pd (23 mg, containing 1.5 mol% Pd), EDAX-Pd (4.3 mg, containing 0.26 mol% Pd), 361 

solvent (2 mL), at room temperature, 4 h. bIsolated yields (each experiment was repeated for 3 362 

times, and the final isolated yield was the average of 3 similar yields). c, d1 h. 363 

For screening desirable bases, the Suzuki reactions with various bases were 364 

evaluated in EtOH at room temperature. As shown in Table 2, both PACMX-Pd and 365 

EDAX-Pd didn’t proceed well with organic bases such as TEA and DBU (Table 2, 366 

entry 4-5 and 9-10). However, the inorganic bases (Table 2, entries 1-3 and 6-8) 367 

generally exhibited high efficiencies in the Suzuki coupling reaction of 4-iodoanisole 368 

with phenylboronic acid. Among the bases, K2CO3 showed the highest yield of 100%. 369 

Consequently, the following reactions were carried out using EtOH as a solvent and 370 

K2CO3 as a base to examine the effect of the Pd loading on the product yield (Table 3). 371 

As for PACMX-Pd, the yield was enhanced from 60% to 100% as the Pd content 372 

increased from 0.2 mol% to 1.5 mol%, while it remained almost unchanged after 373 

improved the dosage of Pd loading (Table 3, entries 1-6). In terms of EDAX-Pd, the 374 

yield was up to 100% when the Pd content reached to 0.26 mol% and being constant 375 

with further increasing the Pd loading (Table 3, entries 8-13). These results imply that 376 

PACMX-Pd and EDAX-Pd with less palladium exhibited excellent catalytic activity 377 

towards Suzuki reaction and the optimal Pd loading for PACMX-Pd and EDAX-Pd 378 
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was 1.5 mol% and 0.26 mol%, respectively. Control experiments indicated that there 379 

was no product acquired in the absence of Pd (Table 3, entries 7 and 14), suggesting 380 

that PACMX-Pd and EDAX-Pd could act as highly effective catalysts. In addition, the 381 

pure palladium acetate was also used for the reaction (Table 3, entry 15), and it was 382 

found that Pd(OAc)2 was not as effective as PACMX-Pd and EDAX-Pd. 383 

384 
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Table 2. Effect of base on the Suzuki coupling reaction of 4-iodoanisole with phenylboronic acida. 385 

Entry Catalyst Base Yieldb /% 

1        PACMX-Pd            K2CO3     100 

2        PACMX-Pd            Na2CO3      50.1 

3        PACMX-Pd            KOH     80 

4        PACMX-Pd           TEA     26 

5        PACMX-Pd            DBU     28 

6        EDAX-Pd            K2CO3     100 

7        EDAX-Pd            Na2CO3     67.5 

8        EDAX-Pd            KOH     52.8 

9        EDAX-Pd            TEA     47.3 

10        EDAX-Pd            DBU     56.8 

aReaction conditions: 4-iodoanisole (0.5 mmol), phenylboronic acid (0.6 mmol), various bases (1 386 

mmol), PACMX-Pd (23 mg, containing 1.5 mol% Pd), EDAX-Pd (4.3 mg, containing 0.26 mol% 387 

Pd), EtOH (2 mL), at room temperature, 4 h. bIsolated yields (each experiment was repeated for 3 388 

times, and the final isolated yield was the average of 3 similar yields). 389 

390 
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Table 3. Effect of Pd loading on the Suzuki coupling reaction of 4-iodoanisole with phenylboronic 391 

acida. 392 

Entry Catalyst Pd/mol% Yieldb/% 

1 PACMX-Pd 0.2 60 

2 PACMX-Pd 0.26 69 

3 PACMX-Pd 0.50 62 

4 PACMX-Pd 1.0 69 

5 PACMX-Pd 1.5 100 

6 PACMX-Pd 2.0 100 

7 PACMX-Pd 0 0 

8 EDAX-Pd 0.2 84 

9 EDAX-Pd 0.26 100 

10 EDAX-Pd 0.50 100 

11 EDAX-Pd 1.0 100 

12 EDAX-Pd 1.5 100 

13 EDAX-Pd 2.0 100 

14 EDAX-Pd 0 0 

15 Pd(OAc)2 3.38 90.1 

aReaction conditions: 4-iodoanisole (0.5 mmol), phenylboronic acid (0.6 mmol), K2CO3 (1 mmol). 393 

EtOH (2 mL), at room temperature, 4 h. bIsolated yields (each experiment was repeated for 3 times, 394 

and the final isolated yield was the average of 3 similar yields). 395 

The substrate scope of this Suzuki reaction between various aryl halides and 396 

arylboronic acids was investigated under the optimized reaction condition, and the 397 

results were summarized in Tables 4 and 5. For the both catalysts, electron-deficient 398 

aryl halides and electron-rich phenylboronic acid afforded higher coupling yields up 399 
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to 100%, especially aryl iodides containing methoxyl, nitro and ether group could 400 

smoothly reacted with phenylboronic acid (Table 4 and 5, entries 6, 8, and 11). 401 

However, deactivated aryl chlorides did not give good yields in the coupling reactions 402 

with phenylboronic acid (Tables 4 and 5, entries 5 and 10). Moreover, arylboronic 403 

acids with either electro-withdrawing or electro-donating groups on the phenyl ring 404 

was reacted with iodobenzene (Table 4 and 5, entries 1, 13 and 14), the yields of the 405 

products were good to excellent. It was reported that electron-rich ligands promoted 406 

the oxidative addition that is a crucial step for enhancing the catalytic activity of 407 

palladium catalyst in Suzuki coupling reaction (Cho et al., 2014). As a consequence, 408 

the high catalytic activities of PACMX-Pd and EDAX-Pd can be attributed to their 409 

electron-rich N bidentate ligand. Moreover, the TOF values were recorded up to 1540 410 

h-1 for PACMX-Pd, and the corresponding values were observed as high as 9626 h-1 411 

for EDAX-Pd (Luconi et al., 2018; Dong, Wu, Chen, & Wei, 2017). 412 

413 
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Table 4. The Suzuki coupling reactions of aryl halides and arylboronic acids catalyzed by 414 

PACMX-Pda. 415 

+

aryl halides
    0.5 eq.

boronic acid
    0.6 eq.

PACMX.Pd, K2CO3 (1 eq.)

EtOH, Room temperature, Air

biphenyls

R2(OH)2BR1 X R2R1

 

 

Entry X R
1
 R

2
 Time/h Yieldb/% TOF (h-1) 

1 I H H 8 92.6 713 

2 Br H H 12 49.2 252 

3 I CH3 H 8 60.5 466 

4 Br CH3 H 12 16.2 83 

5 Cl CH3 H 24 trace trace 

6 I OCH3 H 4 100 1540 

7 Br OCH3 H 8 48.9 376 

8 I O=CCH3 H 4 100 1540 

9 Br O=CCH3 H 4 100 1540 

10 Cl O=CCH3 H 8 24.5 189 

11 I NO2 H 4 96.3 1483 

12 Br NO2 H 4 82.2 1266 

13 I H OCH
3
 4 91.4 1407 

14 I H O=CCH
3
 8 71.1 547 

aReaction conditions: aryl halide (0.5 mmol), arylboronic acid (0.6 mmol), K2CO3 (1 mmol), 416 

PACMX-Pd (23 mg, containing 1.5 mol% Pd), EtOH (2 mL), at room temperature. bIsolated 417 

yields (each experiment was repeated for 3 times, and the final isolated yield was the average of 3 418 

similar yields). TOF: turnover frequency ((yield of product / per mol of Pd)/time of reaction)419 
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Table 5. The Suzuki coupling reactions of aryl halides and arylboronic acids catalyzed with 420 

EDAX-Pda. 421 

+

aryl halides
    0.5 eq.

boronic acid
    0.6 eq.

EDAX.Pd, K2CO3 (1 eq.)

EtOH, Room temperature, Air

biphenyls

R2(OH)2BR1 X R2R1

 

 

Entry X R
1
 R

2
 Time/h Yieldb/% TOF (h-1) 

1 I H H 8 70.3 3384 

2 Br H H 12 70.7 2269 

3 I CH3 H 24 69.2 1110 

4 Br CH3 H 24 68.6 1100 

5 Cl CH3 H 24 trace trace 

6 I OCH3 H 4 100 9626 

7 Br OCH3 H 8 57 2743 

8 I O=CCH3 H 4 100 9626 

9 Br O=CCH3 H 4 100 9626 

10 Cl O=CCH3 H 12 trace trace 

11 I NO2 H 4 100 9626 

12 Br NO2 H 4 80.7 7768 

13 I H OCH
3
 4 81.4 7835 

14 I H O=CCH
3
 8 76 3658 

aReaction conditions: aryl halide (0.5 mmol), arylboronic acid (0.6 mmol), K2CO3 (1 mmol), 422 

EDAX-Pd (4.3 mg, containing 0.26 mol% Pd), EtOH (2 mL), at room temperature. bIsolated yield 423 

(each experiment was repeated for 3 times, and the final isolated yield was the average of 3 similar 424 

yields). TOF: turnover frequency ((yield of product / per mol of Pd)/time of reaction) 425 

We compared the results achieved in this work with those catalyzed by other 426 
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catalysts reported recently for the Suzuki coupling reactions, and the results were 427 

listed in Supplementary data Table S1. Our catalysts showed superiority to some 428 

degree, such as lower reaction temperature, shorter reaction time, and higher yield.  429 

3.3. Recyclability of PACMX-Pd and EDAX-Pd  430 

The recyclability of the catalysts was examined for the Suzuki reaction between 431 

4-iodoanisole and phenylboronic acid under standard condition with 23 mg 432 

PACMX-Pd (containing 1.5 mol% Pd) and 4.3 mg EDAX-Pd (containing 0.26 mol% 433 

Pd), and the results were shown in Fig. 8. After the completion of the first cycle 434 

(100% yield), the catalysts were recovered by centrifugation and then vacuum dried. 435 

The recovered catalysts were directly used for the second run under the same reaction 436 

conditions. The yield of the product was decreased to 87.9% for PACMX-Pd catalysis 437 

in the fifth run, indicating that PACMX stabilized Pd NPs was highly stable and 438 

recyclable. However, it yielded only 57.4% in the fifth run for EDAX-Pd. The results 439 

indicate that the rigid ligand modified xylan (PACMX) is superior to the flexible 440 

ligand modified one (EDAX). Furthermore, the AAS measurement revealed that the 441 

loss concentration of Pd was less than 1 ppm after being used for five times, 442 

demonstrating PACMX and EDAX could act as good substrates to stabilize Pd NPs 443 

and the Pd leaching was negligible. According to the TEM analysis, the Pd 444 

nanocatalysts appeared a slight aggregation in the 5th cycle (especially the EDAX-Pd). 445 

Hence, the reduced catalytic activity in recycling can ascribed to the agglomeration of 446 

Pd nanocatalysts. 447 
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Fig. 8. Recyclability of PACMX-Pd and EDAX-Pd. 449 

3.4. Heterogeneity of PACMX-Pd and EDAX-Pd 450 

In order to explore the heterogeneity of the catalysts, the following experiments 451 

were conducted. After the typical Suzuki reactions proceeding for 1 h, the catalyst 452 

was quickly filtered off and the filtrate along with the fresh base was stirred for 453 

another 3 h at room temperature. Within 1 h of the reaction, the product yield was 454 

70% and 59.5% for PACMX-Pd and EDAX-Pd (Table 1, entries 9 and 18), 455 

respectively. However, the yield increased by only 1% and 3% for PACMX-Pd and 456 

EDAX-Pd in the following 3 h, indicating the reaction was inefficient in the absence 457 

of catalysts. Therefore, we can conclude that the catalysts were heterogeneous and 458 

efficient for the Suzuki reactions.  459 

 460 

4. Conclusions 461 

In summary, we synthesized N bidentate ligand functionalized xylan supported 462 

palladium composites and applied as heterogeneous catalysts for catalyzing Suzuki 463 

cross-coupling reaction. The palladium/xylan heterogeneous catalysts showed unique 464 

features, such as the good usability under air atmosphere, ease of separation, 465 
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providing high yield of products with a small amount of catalysts and no Pd leaching 466 

was occurred during the catalytic reaction. A series of aryl halides were effectively 467 

coupled with arylboronic acid under room temperature by the catalysis of PACMX-Pd 468 

and EDAX-Pd, and giving excellent TOF values up to 9626 h-1. Additionally, the 469 

catalysts can be reused for five times without considerable deactivation and the high 470 

stability of PACMX or EDAX indicating their potential for grafting various metal 471 

species as catalytic active centers for a wide range of metal-catalyzed reactions. The 472 

xylan-based complex may also open the pathway for other organic catalysis reactions 473 

in which Pd NPs are involved. 474 

475 
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