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ABSTRACT: Reported herein is a palladium-catalyzed secondary
benzylic imidoylative Negishi reaction leveraging the sterically
bulky aromatic isocyanides as the imine source. This method allows
the facile access of alkyl-, (hetero)aryl-, and alkynylzinc reagents to
afford various α-substituted phenylacetone products under mild
acidic hydrolysis, which are ubiquitous motifs in many pharmaceuticals and biologically active compounds. The diastereoselective
reduction of imine can be accomplished to provide the expedient conversion of secondary benzylic halide into α-substituted
phenethylamine derivatives with high atom economy.

α-Substituted phenylacetones are a versatile array of building
blocks, ubiquitous in pharmaceutically active compounds,
natural products, and agrochemicals.1 The traditional synthetic
route largely relies on the Buchwald−Hartwig α-arylation of
ketone, which often suffers from selective enolate intermediate
formation, especially for unsymmetric alkylated ketones
substrates, thus requiring the additional preformation of silyl
enol ether.2 Recently, the cross-coupling of benzylic electro-
philes via synergistic Pd/NHC-catalyzed umpolung of acyl
anions3 and Ni-catalyzed reductive cross-coupling of acyl
chloride4 have emerged as alternative synthetic approaches;
however, both methods restrict incorporation of alkylated
carbonyls. Meanwhile, phenethylamine derivatives represent
one of the top five pharmaceutical scaffolds, present in a broad
class of hormones, neurotransmitters, and psychoactive drugs.5

Thus, their diastereoselective preparation has gained consid-
erable attraction from organic chemists over several decades.6

Therefore, a divergent synthesis of α-substituted phenyl-
acetone and phenethylamine derivatives from easily accessible
benzylic electrophiles with broad substrate scope would be of
great research value.
Transition-metal-catalyzed carbonylative cross-coupling has

been classified as a powerful and straightforward protocol for
ketone synthesis with two carbon−carbon bond formations in
a single transformation.7 The majority of benzylic carbon-
ylations are mainly centered on formation of primary benzyl
ketones,8 as substituted benzyl ketone are synthetically
challenging due to the slow oxidative addition caused by
steric obstruction of the secondary benzyl electrophiles, as well
as inhibiting competitive reactions caused by the following β-H
elimination.9 More recently, Zhang and co-workers achieved
the Ni-catalyzed secondary benzylic bromide with organo-
boron reagent under mild conditions; however, the nucleo-
philes largely relied on the aromatic boronic acid.10

Isocyanide, as an important C1 synthon,11 has been
implemented in transition-metal-catalyzed carbonylation for
ketone synthesis, although the atom economy requires further

improvement.12 We recently reported a Ni-catalyzed formal
aminocarbonylative reaction of secondary benzyl chloride
using tert-butyl isocyanide, in which we identified inhibition
of the rapid β-H elimination of imidoyl metal species as a
significant challenge in developing an efficient secondary
benzyl carbonylative cross-coupling reaction to forge C−C
bond formation.13 Instead, the rapid transmetalation of
organometallic reagent with metal imidoyl intermediate should
be a superior process which also avoids a direct coupling
reaction with benzylic electrophiles. The broad functional
group tolerating organozinc reagent would be an appropriate
candidate.14 In line with our research interest in practical
carbonylation,15 we describe a Pd-catalyzed imdoylative
Negishi cross coupling of secondary benzyl halide with
modified isocyanide to provide the α-substituted arylaceti-
mines, which overcome competitive β-H elimination and direct
Negishi cross-coupling side pathways. Moreover, a wide array
of organozinc reagents containing sp, sp2, sp3, and heterocyclic
organozinc reagents can be readily accessed. In addition, both
α-substituted of phenylacetone and phenethylamine derivatives
can be divergently obtained upon the different workup
protocols: the mild acidic hydrolysis would provide the
phenylacetones, and the phenethylamines are generated in
high diastereoselective reduction with 100% atom economy
(Scheme 1).16

We initiated our studies with commercially available 2-(1-
chloroethyl) naphthalene 1a as benzyl electrophile in Table 1,
and the imidoylative reaction proceeded with treatment of tert-
butyl isocyanide 2a (1.5 equiv), n-butyl zinc chloride 3a (1.5
equiv) as nucleophile, and Pd2dba3 (2 mol %) under 60 °C in
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DMF. Nevertheless, no desired imidoylative Negishi coupling
product was observed, while vinyl naphthalene was generated
as the main side product due to undesired β-H elimination.
The screening of another alkyl isocyanide (CyNC, 2b) also
failed to produce the desired product. Encouragingly, when
phenyl isocyanide (2c) was employed as the imidoyl
component, the desired product 4a was observed after 1.0 N
HCl workup, albeit with 16% GC yield. Varying the
substitution of aromatic isocyanide dramatically influenced
the efficiency of imidoylative Negishi coupling, and the
introduction of an o-methyl group at the phenyl isocyanide
(2d) greatly improved the yield to 72% presumably due to the
slow addition of isocyanide, which restricts the highly
coordinating nature of isocyanide.17 2-Ethylphenyl isocyanide
(2e) was proven as the best imidoyl source in this reaction,
resulting in a high GC yield of 80% with 78% isolated yield.
Exchanging the ethyl with an isopropyl group (2f) exhibits
similar reactivity. When the ortho-heteroatom substitution
(methoxyl 2g, methyl sufide 2h) was employed at the phenyl
group, the yield decreased to 57% and 33%, respectively. The
introduction of both a 2,6-diethyl group (2i) and a 2,6-
diisopropyl group (2j) on the phenyl ring resulted in a much
lower yield.

With the optimized conditions in hand, we next examined
the substrate scope and functional group tolerance of Pd-
catalyzed benzylic imidolyative Negishi coupling reaction using
secondary 2-(1-chloroethyl)naphthalene 1a as a benzylic
electrophile (Table 2). A wide array of organozinc reagents

containing sp, sp2, sp3, and heteroaryl zinc reagents can be
readily accessed. The scope of the sp3 zinc reagents was first
investigated. The isobutyl (4b) and 2-phenyl ethyl group (4c)
could be accessed in 61% and 76% isolated yield, respectively,
with acidic hydrolysis. Functional primary zinc reagents such as
(5-fluoropentyl)zinc bromide, (4-cyanobutyl)zinc bromide,
and (5-pivalatepentyl)zinc bromide can be successfully utilized
as the alkylated reagents to afford the corresponding ketone
products in moderate to good yield (4d−4f). It is worth noting
that the cyclic Negishi reagents such as cyclopentyl- and
cyclohexylzinc reagents worked well, furnishing 4g and 4h in
moderate yield. Next, we started to explore the substrate scope
of sp2 organozinc reagents. Coupling of 2-(1-chloroethyl)
naphthalene with phenylzinc reagents afforded the desired
product in 76% isolated yield (4l). The aryl nucleophiles
bearing electron-donating substituents such as methoxyl and
N,N-dimethyl furnished the corresponding ketones in high
yield (4i, 4j). Arylzinc reagents bearing electron-withdrawing

Scheme 1. General Strategy for Pd-Catalyzed Benzylic
Imidoylative Coupling of Carbon Fragments

Table 1. Optimization of Reaction Conditionsa

aReaction conditions: 1a (0.2 mmol), 2 (0.3 mmol, 1.5 equiv), 3a
(0.3 mmol, 1.5 equiv), Pd2dba3 (0.004 mmol, 2 mol %), DMF (2
mL), 60 °C, 2 h. The reaction was quenched with 1 N HCl (2 mL)
and stirred at 25 °C for 0.25 h. Corrected GC yield was reported.
bIsolated yield shown in parentheses.

Table 2. Substrate Scope of Zinc Reagentsa

aReaction conditions: 1a (1.0 equiv), 2e (1.5 equiv), 3 (1.5 equiv),
Pd2dba3 (2 mol %), DMF, 60−80 °C, 1−24 h. The reaction was
quenched with 1 N HCl and stirred at 25 °C for 0.25 h.
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substituents also worked well, including amide (4m),
trifluoromethyl group (4n), chloride (4o), fluoride (4p), and
cyanide (4k). Heteroarenes are among the most significant
structural backbones of pharmaceuticals. Pyridine (4q),
thiophene (4r), and benzothiophene (4s) are tolerated in
this imidoyl coupling chemistry. The protocol also extends to
sp zinc reagents. Both phenyl-substituted alkynylzinc reagents
and alkyl-substituted alkynylzinc reagents can be coupled and
obtain the product (4t, 4u). At the current stage, the
unactivated alkyl halide electrophiles were not suitable for
the Pd-catalyzed Negishi imidolylative reaction, and no
product could be observed in the reaction mixture, presumably
due to the challenge for oxidative addition for Pd(0) with alkyl
halides.
Next, we explored the scope of secondary benzyl chloride

(Table 3). Benzyl ketone products can also be obtained at a

good yield when methyl groups are replaced with other alkyl
groups including ethyl (4v, 4w), n-propyl (4x), and n-butyl
(4y). When a tether alkene group was incorporated in the
starting material, the reaction did not proceed via the
intramolecular migratory insertion yet provided the desired
product 4z in 63% isolated yield, demonstrating that the
intermolecular 1,1-insertion of aryl isocyanide is a superior
reaction pathway. The scope of benzylic electrophile was
extended to phenyl-substituted benzyl chlorides, which exhibit
slightly lower reactivity than the corresponding naphthalene
benzyl chloride. Installations of various substituted phenyl
benzyl chlorides containing both electron-donating and
-withdrawing groups on the aryl rings could be tolerated

(4aa−4ad). Notably, no significant steric hindrance was
observed, as the methyl group in the ortho position had little
effect on the yield of the reaction (4aa). Finally, the primary
benzyl chloride was also investigated. We use 1-(chlorometh-
yl)-4-methoxybenzene coupled with functional phenylzinc
reagents and various heteroarylzinc reagents including
thiophene, benzofuran, and pyrazole functionalities (4ae−4aj).
It was evident that this Pd-catalyzed benzylic imidoylative

reaction proceeds via an imine intermediate, instead of the
direct acidic hydrolysis, and we hypothesized that the
corresponding phenylethylamine and phenylethanol could be
obtained by diastereoselective reduction (Scheme 2). For-

tunately, the benzyl ketone product and imine intermediate
can smoothly convert to relevant phenyl ethanol (5a, 5b, 5c)
and phenylethylamine (6a, 6b, 6c) in high diastereoselectiv-
ities with LiAlH4 as reducing reagent. The relative stereo-
configuration of phenyl ethanol was trans, which was
confirmed via the Ns protection of 5a, and the structure of
derivative 7a was unambiguously assigned by single-crystal X-
ray analysis.
Considering the importance of phenethylamine derivatives

in the field of pharmaceutical chemistry, we further examined
the substrate scope of aromatic isocyanide (Table 4). It was
found that when various alkyl groups such as methyl, isopropyl,
n-butyl, and benzyl were introduced to the ortho-position of
aromatic rings, the corresponding phenethylamine derivatives
could be obtained with satisfactory yield and dr (6aa, 6ab, 6ac,
6ad, 6ae). Encouragingly, the chloride functionality on the
isocyanide moiety could also be tolerated under this Pd-
catalyzed imidoylative reaction, affording the amine 6af with
high diastereoselectivity. Notably, employing naphthyl iso-
cyanide can also obtain imine intermediate and achieve

Table 3. Substrate Scope of Benzyl Chloridesa

aReaction conditions: 1 (1.0 equiv), 2e (1.5 equiv), 3 (1.5 equiv),
Pd2dba3 (2 mol %), DMF, 60−100 °C, 6−12 h. The reaction was
quenched with 1 N HCl and stirred at 25 °C for 0.25 h.

Scheme 2. Derivatization of Imidoylative Reactiona

aReaction conditions: 1 (1.0 equiv), 2-ethylphenyl isocyanide (1.5
equiv), R′ZnCl (1.5 equiv), Pd2dba3 (0.02 equiv), DMF, 60 °C, 2 h.
Conditions A: 1 N HCl, 0.25 h, then LiAlH4 (2.0 equiv), THF, −78
to +25 °C, 4−12 h; Conditions B: aq NH4Cl, then LiAlH4 (5.0
equiv), THF, −78 to +25 °C, 12 h. bdr >20:1. cdr = 11:1. ddr = 5:1.
edr = 10:1.
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subsequent diastereoselective reduction but with lower yield
(6ag). Utilizing phenyl isocyanide with electron-withdrawing
substituents decreases both the yield and dr of the phenethyl-
amine (6ah). The product can also be obtained in good yield
by using tetrahydronaphthalene isocyanide (6ai).
A plausible reaction mechanism is proposed in Scheme 3:

the reaction is initiated by oxidative addition of secondary

benzyl chloride 1 with the palladium(0) to generate the
benzylic palladium(II) intermediate A. The selective mono-
migratory insertion of sterically bulky aryl isocyanide provides
benzyl imidoylpalladium intermediate B, which undergoes
transmetalation with Negishi reagents and subsequent
reductive elimination to produce the imine intermediate D.
The desired phenylacetone 4 could be obtained via the acidic
hydrolysis of the imine intermediate D.
In summary, we have demonstrated a Pd-catalyzed

imidoylative Negishi coupling with secondary benzyl chlorides.
Harnessing of sterically bulky aryl isocyanides as the imine

source allows the facile synthesis of α-substituted of phenyl-
acetones under mild acidic hydrolysis. The protocol demon-
strates a broad substrate scope and functional group tolerance
and enables a variety of carbon nucleophiles including sp3, sp2,
sp, and heteroaryl zinc reagents to be successfully incorporated.
Moreover, the highly diastereoselective reductive amination of
this imidoylative process enables the expedient construction of
phenethylamine derivatives with high atom economy.
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