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Abstract: An efficient trans-diastereo- and enantioselective syn-
thesis of a-substituted b-formyl d-lactones 5 (de ≥98%, ee = 80 -
95%) is described, employing formaldehyde-SAMP-hydrazone (1)
as a neutral formyl anion equivalent. The new procedure involves
the Michael addition of 1 to 5,6-dihydro-2H-pyran-2-one (2) fol-
lowed by trans-selective a-alkylation and subsequent oxidative
cleavage of the auxiliary.
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Lactones1 and their derivatives feature as important sub-
units in many natural products, such as sesquiterpenes,2 a-
methylene lactones3 and macrolides.4 In addition, they
show various biological properties, such as in semiochem-
icals, flavours and fragances, antibiotics or cytostatics.
Therefore the efficient and flexible asymmetric synthesis
of lactone building blocks is of great interest.5 

The previously demonstrated utility of formaldehyde
SAMP-hydrazone (S)-1 as a neutral chiral formyl anion
and cyanide equivalent6 for nucleophilic additions to ni-
troalkenes,7 sugar aldehydes,8 a,b-unsaturated ketones9

and trifluoromethylketones10 should allow the introduc-
tion of the formyl group at the b-position of lactones via
1,4-addition. To the best of our knowledge, asymmetric
nucleophilic formylation of a,b-unsaturated lactones has
not been reported yet. Additionally, a subsequent alkyla-
tion should introduce further complexity at the a-centre.
Thus, the retrosynthetic analysis of the d-lactones A leads
to the synthons B and C and 2-pentenolide 2 as the
Michael acceptor (Figure).

Figure

We now describe the trans-diastereo- and enantioselec-
tive synthesis of the title a-substituted b-formyl d-lac-
tones via Michael addition of formaldehyde SAMP-
hydrazone (S)-1 to 2-pentenolide 2 as the key step. As is
depicted in the Scheme, it was necessary to use a Lewis

acid in order to activate the a,b-unsaturated lactone 2.
Various Lewis acids (AlCl3, BF3◊Et2O, TiCl4, ZnCl2, etc)
were tested, but as was previously observed with enones,9

only trialkylsilyl (TBS or TMS) triflates as promoters
gave rise to the formation of the desired Michael adduct
(S,R)-3 in acceptable yield (54%) and good diastereomer-
ic excess (de = 80%). It should be mentioned that attempts
to isolate the corresponding silylketene acetal were not
successful. The reaction was therefore quenched with pH
7 buffer or Et3N to neutralize the triflic acid generated.11

It was also observed that tetrahydrofuran instead of
dichloromethane as solvent gave rise to undesired byprod-
ucts. In addition, it was necessary to use dilute conditions
to avoid the byproducts resulting from both the electro-
philic and the nucleophilic nature of (S)-1. Initially, the re-
action is quite fast, but an optimum time is about 30 h after
which no improvement of the yield was observed. Related
1,4-additions of 1 to 2-butenolide gave poor yields but ex-
cellent diastereoselectivities.

Scheme

Unfortunately, the mixture of b-epimers 3 was only sepa-
rable by HPLC on chiral stationary phases and therefore
this mixture was directly used in the subsequent deproto-
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nation / a-alkylation step. After metalation of the lactone
3 with lithium diisopropylamide (LDA) at – 78 °C in
THF, HMPA (2.5 - 5 equivalents) and the requisite alkyl-
ating agents were added stepwise to afford the a-substitut-
ed lactone hydrazones 4 in medium to excellent yields (44
- 90%) and diastereomeric excesses of de = 80 – ≥98%
(Table 1).12 The optimum alkylating temperature concern-
ing yield and stereoselectivity turned out to be – 78 °C for
more reactive electrophiles and – 35 °C in the case of less
reactive halides.

a) Yield after flash chromatography. b) Determined by HPLC on chiral
stationary phases [ chiralpak AD (4.6 x 250 mm), (S,S)-Whelk-O 1
(4 x 250 mm), chiralcel OJ (4.6 x 250 mm)] after HPLC separation.
Figures in brackets refer to the de values of the alkylation reactions. c)

5a decomposes during ozonolysis. d) After flash chromatography. e)

Diastereoisomers were not separable by HPLC. f) Determined as de of
the corresponding acetal derived from (R,R)-2,3-butanediol by GC on
chiral stationary phases (Lipodex E 25m). g) Determined as de of the
corresponding acetal by HPLC on chiral stationary phases [(S,S)-
whelk-O 1 (4 x 250 mm)] h) Determined by shift experiments using
(R)-1-(9-anthryl)-2,2,2-trifluoroethanol as co-solvent. i) Determined
as de of the corresponding hydrazone 4.

The trans-configuration of the a,b-disubstituted d-lac-
tones 4 was determined by 1H NMR spectroscopy through
the trans-diaxial coupling constants (9.5 - 10.7 Hz) of the
methine hydrogens at the two new stereogenic centres.
NOE experiments on compound 4b (R = Me) confirmed
this relative configuration. The absolute configuration of
the minor diastereomer (R,R)-4b was determined by X-
ray structure analysis, the configuration of the major iso-
mer therefore being (3S,4R). In addition, we have recently
obtained the crystal structure of the major trans-diastere-
omer of (R,S)-4c.13 Assuming a uniform reaction pathway
for all cases, the relative topicity for the nucleophilic at-
tack of 1 to the a,b-unsaturated d-lactone 2 is the same as
previously reported for 1,4-additions to enones.9

In some cases the diastereomers of the d-lactones 4 were
separable by flash chromatography (4b) or by HPLC

(4c,d) and thus it was possible to use the diastereomerical-
ly enriched lactone hydrazones 4 in the following oxida-
tion step. This hydrazone cleavage to remove the auxi-
liary was carried out by ozonolysis14 at –78 °C in dichlo-
romethane affording the title aldehyde d-lactones (R,S)-5
in acceptable yields (50 - 70%) and high diastereo- and
enantiomeric excesses (de ≥98%, ee = 80 - 95%, Table 1).

The a-substituted b-formyl d-lactones 5 are not very sta-
ble and their purification required special silica gel (parti-
cle size 0.063 - 0.10 mm) to avoid partial decomposition.
Upon prolonged standing they tend to decompose and
should therefore be stored as their corresponding acetals15

or should be prepared directly before use in further reac-
tions.

In summary, our Michael addition / a-alkylation protocol
employing formaldehyde SAMP-hydrazone as a neutral
chiral formyl anion equivalent in the 1,4-addition to 2-
pentenolide opens a stereoselective entry to 3-substituted
2-oxo-tetrahydro-2H-4-pyrancarbaldehydes, which are
useful building blocks for the asymmetric synthesis of
bioactive compounds.
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