
Zethrenes
DOI: 10.1002/anie.201001929

Synthesis, Structure, and Photophysical Properties of Dibenzo-
[de,mn]naphthacenes**
Tsun-Cheng Wu, Chia-Hua Chen, Daijiro Hibi, Akihiro Shimizu, Yoshito Tobe, and
Yao-Ting Wu*

Dibenzo[de,mn]naphthacene (zethrene, 1a, R = H) is a
member of the benzenoid hydrocarbon family,[1] and has an
interesting structure with respect to the formal definitions of
aromaticity. The central two six-membered rings in zethrene

(1a) cannot present aromaticity associated with the Kekul�
structure. Based on Clar�s aromatic sextet theory,[2] the p-
electron sextets of the two periphery naphthalenes and the
central butadiene moiety (i.e. C7, C7a, C14, and C14a) can be
identified as “essential”[3] (benzene-like) and “fixed”[2] (local-
ized) carbon–carbon double bonds, respectively.[4] Therefore,
the p-electrons in the central two six-membered rings are
localized and their index of local aromaticity[5] and induced p-
electron currents[6] are much lower than those of a normal
aromatic ring. However, no direct experimental evidence,
such as an X-ray structure, is currently available to confirm
the computational results. Although it can be viewed as
weakly coupled double naphthalene units,[5c] zethrene and its

derivatives exhibit interesting physical properties, which may
have potential applications as organic materials, including
electroluminescent devices[7] and organic transistors.[8] Theo-
retical investigations demonstrate that zethrene (1a) has
singlet biradical character[9b] and is also a suitable building
block for nonlinear optical materials[9] and near-infrared
absorbing pigments.[10] These versatile physical properties
have yet to be extensively explored because of the difficulty
involved in synthesizing these molecules.

Zethrene (1a) was first prepared from chrysene through
an inefficient route by Clar et al. in 1955.[11] Other synthetic
approaches involving several steps have been also elucidated.
Their key steps mainly involve either the transannular
reaction of cyclodeca[1,2,3-de :6,7,8-d’e’]dinaphthalene (2)[12]

and 7,8,15,16-tetradehydrocyclodeca[1,2,3-de :6,7,8-d’e’]di-
naphthalene (3),[13] or the cyclization of 7H,9H,16H,18H-
dinaphtho[1,8-cd :1’,8’-ij][1,7]dithiacyclododecane (4).[14]

However, preparation of functionalized zethrenes using
these protocols is inconvenient. Hence, the development of
an efficient synthetic method is necessary. Numerous poly-
aromatic hydrocarbons can be accessed by metal-catalyzed
annulation of haloarenes.[15] Accordingly, we observed that
zethrenes 1 can be obtained from 1-ethynyl-8-iodonaphtha-
lenes 5[16] in the presence of Pd catalysts.

The synthesis of zethrene 1b (R = Ph) from 1-iodo-8-
(phenylethynyl)naphthalene (5b) was explored under several
reaction conditions. The catalytic systems for the generation
of dibenzo[a,e]pentalenes by the cyclodimerization of 1-
ethynyl-2-halobenzenes[15f,g] are not efficient for producing
1b. Therefore, reaction conditions for metal-catalyzed anne-
lation[15a–e] or dimerization[17] of iodoarenes were utilized and
it was determined that condition F is more effective than A–E
(Table 1). Under condition E, 5b gave an acetonitrile-
mediated cycloadduct 6 as the major product (entry 5 in

Table 1).[18] Fine-tuning condition F by varying the Pd
catalyst, phosphine ligand, and solvent did not increase the
yield of 1b (entries 6–11 in Table 1). Under the best
condition, the desired product 1b was obtained in 73%
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yield (entry 7 in Table 1). Notably, reactions in acetonitrile
under either condition C or F gave a mixture of 1b and 11-
phenylbenzo[a]naphtha[2,1,8-cde]perylene (7),[16, 19] which
was observed as the minor product and whose structure was
verified by the X-ray crystal analysis. Compound 7 should be
generated from 1b by the cyclodehydrogenation.[20]

The reactivity of several alkynes 5 for the preparation of
zethrenes 1 was investigated under the optimized conditions
described above (condition F). Most of them are less reactive
than 5b (Table 2). It was necessary to increase the amount of
silver carbonate and/or Pd catalysts (10 mol%) to ensure
complete consumption of the starting material. Aryl-substi-
tuted reactants are more appropriate than alkyl and phenyl-
ethynyl analogues in this reaction. The steric congestion and
the electronic properties of the substituents strongly affect the
yield. The electron-deficient aryl substituent increased the
reaction efficiency relative to the electron-rich moiety
(entries 2–8, Table 2). As expected, bulky groups, such as
mesityl, 9-anthracenyl, and 2,6-dichlorophenyl, gave unsat-
isfactory results, and tert-butyl-substituted alkyne 5s did not
undergo the cyclodimerization (entries 9, 11, 14, and 18,
Table 2). 1-Iodo-8-(trimethylsilylethynyl)naphthalene (5q)
formed zethrene (1a) in low yield through the in situ
desilylation of 7,14-bis(trimethylsilyl)zethrene (entry 16,
Table 2).[21] Cycloadducts 1 cannot be obtained in good
yields for two possible reasons: 1) The structure is signifi-
cantly out-of-plane and 2) zethrenes are unstable and they
significantly decompose in solution after a few days.[16, 22]

Additionally, 5-bromo-6-(phenylethynyl)acenaphthene did
not give the corresponding cycloadduct. The crossed cyclo-
addition between 5b and 1,2-diphenylacetylene was ineffi-
cient and only 1b was obtained.

X-ray-quality crystals of 1a, 1b, 1 l, and 1r were obtained
by slow evaporation of the CH2Cl2/MeOH solvent mixture at
4 8C.[16, 19] To the best of our knowledge, these are the first

examples of crystal structures of this compound class.
Zethrene (1a) is planar, whereas 7,14-disubstituted zethrenes
1b, 1 l, and 1r deviate significantly from planarity (approx-
imately 458)[16] because they contain two substructures of 4-
substituted phenanthrene (Figure 1).[23] The central two six-
membered rings in both planar and twisted zethrenes 1
exhibit remarkable bond alternation with a range of 0.070–
0.116 �,[16, 24] and, accordingly, they lack aromaticity.

The character of two fixed double bonds in 1 was
examined by Pd-catalyzed hydrogenation under ambient
pressure (condition I, Scheme 1), and tetrahydrozethrenes 8
are the expected products. However, compound 1a generated
a complex mixture, and hexahydrozethrene was identified to
be the major product based on GC–MS analysis. After careful
purification of the product, the structure was determined to

Table 1: Optimization of reaction conditions for preparation of 1b.[a]

Entry Condition Ligand ([mol %]) Solvent Yield [%]

1 A – p-xylene 34, traces[b]

2 B – DMF 38
3 C – CH3CN 32[c]

4 D – 2-pentanone <37[d,e]

5 E – CH3CN 3[f]

6 F – o-xylene 14
7 F P(2-furyl)3 (15) o-xylene 73
8 F P(2-furyl)3 (15) CH3CN 26[c]

9 F PPh3 (15) o-xylene 29
10 F PCy3 (15) o-xylene 45
11 F P(2-furyl)3 (15) o-xylene <37[e,g]

[a] Amounts of catalysts and additives relative to alkyne 5b (0.5 mmol):
Condition A: Pd(OAc)2 (5 mol%), AgOAc (1 equiv), 110 8C, 36 h.[15a] B:
Pd(OAc)2 (5 mol%), K2CO3 (4 equiv), nBu4NBr (2 equiv), 130 8C,
20 h.[15b] C: Pd(OAc)2 (5 mol%), K2CO3 (2.4 equiv), 120 8C, 36 h.[18] D:
Pd(OAc)2 (5 mol%), NaOAc·H2O (2 equiv), LiCl (0.5 equiv), 130 8C,
40 h.[15d] E: [NiBr2(dppe)] (5 mol%), Zn (3 equiv), 110 8C, 12 h.[15e] F:
Pd(OAc)2 (5 mol%), Ag2CO3 (1 equiv), 130 8C, 36 h.[15c] [b] AgOAc
(2 equiv) was used. [c] A mixture of 1b and 7 was obtained. [d] 5b
(63%) remained. [e] Yield according to NMR spectroscopy. [f ] 6 (84%)
was obtained. [g] [Pd2(dba)3] (2.5 mol%; dba= trans,trans-dibenzylide-
neacetone) was used. 5b (63%) remained.

Table 2: Preparation of compounds 1 from alkynes 5.[a]

Entry Alkyne R Product Yield [%]

1 5b Ph 1b 73
2 5c 4-FC6H4 1c 56[b]

3 5d 4-ClC6H4 1d 36[b]

4 5e 4-BrC6H4 1e 24[b]

5 5 f 4-CH3C6H4 1 f 46,[c] 35[b]

6 5g 4-CF3C6H4 1g 59[b]

7 5h 4-OCH3C6H4 1h 22,[b] 61[d]

8 5 i 4-CO2CH3C6H4 1 i 40
9 5 j 2,6-Cl2C6H3 1 j 26[d]

10 5k 3,5-(CH3)2C6H3 1k 34[b]

11 5 l 2,4,6-(CH3)3C6H2 1 l 24,[b] 26[d]

12 5m 3,4,5-F3C6H2 1m 51[b]

13 5n 1n 44[d]

14 5o 9-anthracenyl 1o 14[d]

15 5p 1p 16

16 5q Si(CH3)3 1a 20
17 5r nC4H9 1r 20
18 5s, 5 t tC4H9, C�CPh 1s, 1 t 0

[a] Reaction was conducted with alkyne 5 (0.5 mmol) in o-xylene
(condition F). [b] Ag2CO3 (1.5 equiv) was used. [c] 5 f (33%) was
recovered. [d] Pd(OAc)2 (10 mol%), Ag2CO3 (1.5 equiv), and P(2-furyl)3

(30 mol%) were used.

Figure 1. Molecular structure of 1 l as a space-filling model.
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be 4,5,6,11,12,13-hexahydrozethrene (9a, R = H), which was
verified by X-ray crystal analysis.[19] In addition, 9 a was
predicated to be the final hydrogenation product of zethrene
(1a) almost 60 years ago.[4b] Although the mechanism of the
formation of 9a is not clear, Coulson et al. suggested that 9a is
formed via 8a (R = H) through hydrogenation and hydrogen
shift.[4b] Alternatively, the singlet biradical property of
zethrene (1a), as shown by the structure 1a’,[9b] also provides
the possibility to generate 9a by hydrogenation. In contrast,
when compound 1b was conducted under conditions either I
or II, it remained unchanged. This is perhaps caused by the
crowdedness in central butadiene moiety and the twisted
structure, which could decrease the biradical property.

The photophysical properties of zethrenes are strongly
influenced by the conformation and substituents (Table 3).
The twisted backbone would cause the absorption and

emission band to shift hypsochromically, and this prediction
is verified by comparing compounds 1a and 1r. In contrast to
its diaryl and dialkyl analogues, 7,14-bis(phenylethynyl)zeth-
rene (1t) displays significantly red-shifted absorption and
emission bands, and the more-extended p system should be
responsible for this phenomenon (entries 2–10 in Table 3). In
the subclass of the diaryl-substituted zethrenes, the effects of
aryl moieties should not be important because the X-ray
structures demonstrate that two aryl rings are twisted from
the zethrene core (entries 2–9 in Table 3). Accordingly, their
photophysical properties are very similar.

In conclusion, this investigation developed a simple
method for synthesizing zethrenes. The central two six-
membered rings of zethrenes are confirmed to lack aroma-
ticity. Further studies of their physical properties and their
applications as organic materials are in progress.

Experimental Section
Preparation of 1b : A mixture of alkyne 5b (177 mg, 0.50 mmol), P(2-
furyl)3 (18.0 mg, 77.6 mmol), Ag2CO3 (138 mg, 0.50 mmol), Pd(OAc)2

(5.60 mg, 25.0 mmol), and o-xylene (5 mL) in a thick-walled pyrex
tube was purged with nitrogen for 5 min. The sealed tube was kept in
an oil bath at 130 8C for 36 h. The mixture was cooled to room
temperature and filtered over celite, and the solvent of the filtrate was
removed under reduced pressure. The residue was subjected to
chromatography on silica gel; eluting with hexane/CH2Cl2 (4:1)
afforded 1b (83.0 mg, 73%) as red solids. A suitable crystal of 1b
[m.p. 331–3328C (dec.)] for the X-ray diffraction analysis was grown
from degassed CH2Cl2/MeOH at 4 8C. 1H NMR (300 mhz, CDCl3):
d = 6.98–7.04 (br s, 4H), 7.27–7.32 (m, 8H), 7.40 ppm (brs, 10H).
1H NMR (300 mhz, C6D6): d = 7.02 (t, 3J = 7.8 Hz, 2H), 7.14 (t, 3J =
7.7 Hz, 2H), 7.21 (br s, 4H), 7.25 (br s, 6H), 7.26 (d, 3J = 7.7 Hz, 2H),
7.42–7.49 ppm (m, 6H). 13C NMR (75.5 mhz, C6D6, plus DEPT): d =

124.8 (CH), 125.6 (CH), 126.4 (CH), 127.1 (CH), 127.3 (CH), 127.9
(CH), 129.5 (CH), 129.9 (CH), 130.0 (Cquat), 131.7 (Cquat), 132.0 (CH),
132.7 (Cquat), 133.3 (Cquat), 135.0 (Cquat), 137.4 (Cquat), 140.7 ppm
(Cquat). EI MS (70 eV), m/z (%): 454 (100) [M+], 422 (34), 328 (29), 57
(39). HRMS (EI) calcd for C36H22: 454.1722; found: 454.1728.
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