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Abstract: 

 

A palladium-catalyzed mono-selective C3-arylation of 2-oxindoles with aryl tosylates is 

described.  With the Pd/CM-phos catalyst system, the corresponding 3-arylated 

oxindoles can be obtained in good-to-excellent yields (up to 97%).  The reaction 

conditions are mild (using 0.5 mol% Pd in general and KF as base) and functional 

groups, such as methyl ester, NH amido and enolizable keto moieties are found 

compatible. 

 

Keywords:  oxindoles, heterocycles, palladium, arylation, cross-coupling 
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Oxindoles constitute an important heterocyclic subunit in various natural products 

and biologically active molecules.1  Particularly the C3 aryl-containing oxindoles are 

useful lead compounds in drug discovery, for instances, the anti-cancer agent, 2 

neuroprotective agent3 and potent growth hormone secretagogue (Figure 1).4  Synthetic 

methods for accessing this class of scaffold include nucleophilic substitution to isatins,5 

palladium6 and copper-mediated7 cyclization reaction, as well as the recently transition 

metal-free pathways.8  Indeed, it is of high significance to have an approach which 

allows the integration of two individual components for preparing a cross array of 

structurally similar yet diversified compounds.9  Thus, a versatile coupling of the already 

assembled oxindole core with arene is often desirable. 

 

Figure 1.  Examples of useful C3 aryl-containing oxindoles bioactive molecules 

 

In 2013, Feng and co-workers reported scandium(III)-catalyzed α-arylation of 

oxindoles with diaryliodonium salts (Scheme 1).10  The coupling of arylpivalates with 

oxindole catalyzed by Ni complex was disclosed by Yamaguchi and Itami recently 

(Scheme 1). 11   In 2015, Li described the Fe(III)-catalyzed cross-dehydrogenative 

arylation (CDA) between oxindoles and electron-rich arenes (Scheme 1). 12   The 

coupling of arylboronic acids with oxindoles was very recently found feasible.13  Apart 

from these complementary developments, the investigations on the palladium-catalyzed 

coupling of oxindole enolates with aryl halides remain the most extensive (Scheme 1).14  

In fact, aryl sulfonates are worthy alternatives to aryl halides as their available phenolic 

substitution pattern would be different from arenes coming from traditional 

halogenation.15  Nevertheless, the most reactive aryl triflates are easily decomposed 

when strong base and alcoholic solvent are used as the reaction medium.  To overcome 

this drawback, aryl tosylate is therefore a better alternative in terms of superior stability 

towards alkaline hydrolysis as well as high economic attractiveness.  Yet, this stable 

aryl tosylate leads to the requirement of using more active palladium complex to enable 
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the C(Ar)–O bond cleavage in the oxidative addition step.  Thus, it is of demanding to 

develop an effective system for this direct arylation reaction.  Herein, we report the first 

examples of α-arylation of oxindoles with aryl tosylates (Scheme 1).  This process 

generally requires 0.5 mol% of palladium loading. 

 

Scheme 1. Recent Pd-catalyzed and complementary methods for C3-aryloxindole 
synthesis from already assembled oxindoles and arenes 

 

We initially selected the oxindole 1a and non-activated aryl tosylate 2a for 

feasibility test.  Poor conversion was observed with XPhos, 16  whereas CataCXium 

PCy, 17  and Xantphos series did not promote this α-arylation.  SPhos16 gave the 

moderate product yield. In this ligand evaluation, CM-phos gave the best result and L1 

gave a slightly lower yield than CM-phos (Scheme 2). 
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Scheme 2.  Evaluation of ligand efficacy for palladium-catalyzed direct arylation of N-
methyloxindolea   

 

a
Reaction conditions: 1a (0.3 mmol), 2a (0.45 mmol), Pd(OAc)2 (0.5 mol%), L (1.0-2.0 mol%), KF (0.9 

mmol) and t-BuOH (1 mL) were stirred at 120 °C under nitrogen for 18 h.  Yields were determined by GC-

FID with dodecane as the internal standard. 
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 5

 
Scheme 3.  Palladium-catalyzed direct arylation of N-methyloxindole with ArOTsa 

 
a
Reaction conditions: 1a (0.3 mmol), ArOTs 2 (0.45 mmol), Pd(OAc)2 (0.5 mol%), CM-phos (2.0 mol%, 

Pd/L = 1:4), KF (0.9 mmol) and t-BuOH (1 mL) were stirred at 120 °C under nitrogen for 18 h. Isolated 

yields were reported.  Reaction times were not optimized for each substrate.  
b
1.0 mol% of Pd(OAc)2 was 

used.  
c
CsF was used instead of KF.  

d
2.0 mol% of Pd(OAc)2 was used.   

 

With the optimized reaction conditions in hand, the generality of the coupling 

reactions between oxindole 1a and aryl tosylates were investigated (Scheme 3).  To the 

best of our knowledge, there has been no successful example of aryl tosylates reported 

to-date in the direct arylation of oxindole derivatives. Aryl tosylates with different 

substitution patterns, in terms of electronic properties and substitution positions on the 

aromatic ring were tested.  The corresponding products were afforded in good-to-
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excellent yields.  Particular functional groups including methyl ester, NH amido and keto 

moieties (Scheme 3, products 3ab, 3ac and 3ah) remained intact under these reaction 

conditions.  However, this reaction system did not tolerate unprotected oxindole.  When 

4-fluorophenyl tosylate was applied as the coupling partner, only 41% yield was 

obtained (Scheme 3, product 3ad).  Heterocycles such as quinoline, pyrrole and 

thiazole were all compatible under this catalytic system (Scheme 3, products 3aj, 3ak, 

and 3al).   The coupling of oxindole with sterically congested substrates proceeded 

smoothly upon using a slightly higher catalyst loading (1-2 mol% of Pd; Scheme 3, 

products 3ap and 3aq).  Chloro group was found to react competitively (about 4 folds 

faster) than tosyloxy group as determined by GC analysis (Scheme 4, products 3aa and 

5).   

 

Scheme 4.  A competitive experiment between the reactivity of –Cl and –OTs groups in 

oxindole arylation 
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Scheme 5.  Palladium-catalyzed direct arylation of substituted oxindoles with ArOTsa 

 

a
Reaction conditions: oxindole 1 (0.3 mmol), aryl tosylate 2 (0.45 mmol), Pd(OAc)2 (0.5 mol%), CM-phos 

(2.0 mol%, Pd/L = 1:4), KF (0.9 mmol) and t-BuOH (1 mL) were stirred at 120 °C under nitrogen for 18 h. 

Isolated yields were reported.  Reaction times were not optimized for each substrate.  
b
1.0 mol% of 

Pd(OAc)2 was used. 

 

We next turned our attention to survey the scope of substituted oxindoles 

(Scheme 5).  When a fluoro-group was substituted at the C-5 position of the oxindole, 

good product yields were obtained (Scheme 5, products 3bm and 3bg).  When the 

fluoro-group was at C-7 position, a moderate product yield was afforded (Scheme 5, 

product 3ca).  Other N-substituted oxindoles proceeded smoothly to give the 

corresponding products in good yields (Scheme 5, products 3df and 3en).  N-

Aryloxindoles were also applicable substrates for this direct arylation (Scheme 5, 

products 3fa and 3fo).  1-(3-Methoxyphenyl)indolin-2-one afforded the coupling product 

in 73% yield (Scheme 5, product 3gi). 
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 8

was found to promote the reaction in general, and the corresponding C3-arylated 

oxindoles were obtained in good-to-excellent yields (up to 97%) with good functional 

group compatibility (e.g. methyl ester, NH amido, enolizable keto and etc.).  We believe 

this method is useful for a late-stage functionalization as the tosyloxy group is 

comparatively inert to other aryl sulfonates and would serve as a good protecting group 

at the beginning of the synthetic sequence. 

 

 

 

Experimental Section 

General Information.  Unless otherwise noted, all reagents were purchased from 

commercial suppliers and used without purification.  All the reactions were performed in 

Rotaflo®(England) re-sealable screw-cap Schlenk tube (approx. 20 mL volume) in the 

presence of Teflon coated magnetic stirrer bar (4 mm × 10 mm).  Dioxane and toluene 

were freshly distilled over sodium under nitrogen.19  t-BuOH was first distilled over 

sodium and stored with calcium hydride under nitrogen.  Thin layer chromatography 

was performed on precoated silica gel 60 F254 plates.  Silica gel (230-400 mesh) was 

used for column chromatography.  1H NMR spectra were recorded on a 400 MHz 

spectrometer.  Spectra were referenced internally to the residual proton resonance in 

CDCl3 (δ 7.26 ppm), or with TMS (δ 0.00 ppm) as the internal standard.  Chemical shifts 

(δ) were reported as part per million (ppm) in δ scale downfield from TMS.  13C NMR 

spectra were recorded on a 100 MHz spectrometer and the spectra were referenced to 

CDCl3 (δ 77.0 ppm, the middle peak).  Coupling constants (J) were reported in Hertz 

(Hz).  Mass spectra (EI-MS and ES-MS) were recorded on a Mass Spectrometer.  High-

resolution mass spectra (HRMS) were obtained on a Q-Exactive Hybrid Quadrupole-

Orbitrap Mass Spectrometer.  Products described in GC yield were accorded to the 

authentic samples/dodecane calibration standard from GC-FID system. 

 

General Procedures for Ligand and Reaction Condition Screenings 

Page 8 of 18

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 9

Palladium source (3.0 mol%), ligand (12.0 mol%), N-methyloxindole (1a) (44.1 mg, 0.3 

mmol), 4-tert-butylphenyl tosylate (2a) (136.8 mg, 0.45 mmol), and KF (0.9 mmol) were 

loaded into a Schlenk tube equipped with a Teflon-coated magnetic stir bar.  The tube 

was evacuated and flushed with nitrogen for three cycles.  Solvent (1.0 mL) was then 

added with stirring at room temperature for about 5 minutes. The tube was then placed 

into a preheated oil bath (120 °C) and stirred for 18 hours.  After completion of reaction, 

the reaction tube was allowed to reach room temperature.  Ethyl acetate (~10 mL), 

dodecane (68 µL, internal standard) and water (~3 ml) were added.  The organic layer 

was subjected to GC analysis.  The GC yield obtained was previously calibrated by 

authentic sample/dodecane calibration curve. 

 

General Procedures for Direct α-Arylation of Oxindoles with Aryl Tosylates 

A stock solution of Pd(OAc)2 (6.7 mg, 0.03 mmol) in freshly distilled dichloromethane 

(0.2 mL) was initially prepared with continuously stirring at room temperature with 5 

minutes in Schlenk tube.  10 µL (0.5 mol% of Pd loading indicated in Scheme 3, 4, or 5) 

or 20 µL (1.0 mol% of Pd loading indicated in Scheme 3 or 5) of the stock solution was 

transferred to another Schlenk tube equipped with a Teflon-coated magnetic stir bar via 

syringe.  The solvent was then evaporated under high vacuum.  CM-phos (2.0 mol% or 

4.0 mol%, Pd/L = 1:4), oxindoles 1 (0.3 mmol), aryl tosylates 2 (0.45 mmol) and KF (52 

mg, 0.9 mmol) were loaded into the tube.  The tube was evacuated and backfilled with 

nitrogen (3 cycles).  The solvent t-BuOH (1.0 mL) was then added with continuous 

stirring at room temperature for about 5 minutes.  The tube was then placed into a 

preheated oil bath (120 °C) and stirred for 18 hours.  After completion of reaction, the 

reaction tube was allowed to reach room temperature and quenched with water and 

diluted with ethyl acetate.  The organic layer was separated and the aqueous layer was 

washed with ethyl acetate.  The filtrate was concentrated under reduced pressure.  The 

crude product was purified by flash column chromatography on silica gel (230-400 mesh) 

to afford the desired product. 
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 10 

3-(4-(tert-Butyl)phenyl)-1-methylindolin-2-one (Table 1 and Scheme 3, compound 

3aa)13 

Yield: 95% (79 mg); viscous pale yellow oil; Rf = 0.4 (EA: Hexane = 1:5);  1H NMR (400 

MHz, CDCl3): δ 7.39-7.34 (m, 3H), 7.23 (d, J = 7.2 Hz,  1H), 7.18 (d, J = 8.4 Hz, 2H), 

7.09 (t, J = 7.2 Hz, 1H), 6.92 (d, J = 8.0 Hz, 1H), 4.62 (s, 1H), 3.27 (s, 3H), 1.33 (s, 9H); 

13C NMR (100 MHz, CDCl3): δ 176.2, 150.3, 144.5, 133.5, 128.9, 128.3, 128.0, 125.8, 

125.1, 122.6, 108.1, 51.5, 34.5, 31.3, 26.4; HRMS (ESI): m/z calcd for C19H22NO [M+H]+ 

280.1696, Found 280.1688. 

 

Methyl 4-(1-methyl-2-oxoindolin-3-yl)benzoate (Scheme 3, compound 3ab)11 

Yield: 93% (78 mg); white solid, m.p. = 108-109 °C; Rf = 0.3 (EA: Hexane = 1:4); 1H 

NMR (400 MHz, CDCl3): δ 8.02 (d, J = 8.4 Hz, 2H), 7.36 (t, J = 7.6 Hz, 1H), 7.31 (d, J = 

8.4 Hz,  2H), 7.16 (d, J = 7.6 Hz,  1H), 7.08 (t, J = 7.6 Hz, 1H), 6.93 (d, J = 7.6 Hz, 1H), 

4.67 (s, 1H), 3.90 (s, 3H), 3.26 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 175.1, 166.7, 

144.4, 141.8, 130.1, 129.4, 128.7, 128.5, 128.0, 125.0, 122.8, 108.3, 52.1, 51.9, 26.5; 

HRMS (ESI): m/z calcd for C17H16NO3 [M+H]+ 282.1125, Found 282.1119. 

 

3-(4-Benzoylphenyl)-1-methylindolin-2-one (Scheme 3, compound 3ac) 

Yield: 73% (72 mg); white solid, m.p. = 125-127 °C; Rf = 0.3 (EA: Hexane = 1:4); 1H 

NMR (400 MHz, CDCl3): δ 7.82-7.78 (m, 4H), 7.59 (t, J = 7.6 Hz, 1H), 7.50-7.46 (m, 2H), 

7.38-7.34 (m, 3H), 7.21-7.19 (m, 1H), 7.13-7.09 (m, 1H), 6.96 (d, J = 8.0Hz, 1H), 4.72 (s, 

1H), 3.29 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 196.1, 175.2, 144.4, 1412, 137.5, 

136.8, 132.4, 130.6, 130.3, 130.0, 128.8, 128.4, 128.2, 128.0, 125.0, 122.9, 108.4, 51.9, 

26.5; HRMS (ESI): m/z calcd for C22H18NO2 [M+H]+ 328.1332, Found 328.1327. 

 

3-(4-Fluorophenyl)-1-methylindolin-2-one (Scheme 3, compound 3ad)20 

Yield: 41% (29 mg); viscous pale yellow oil; Rf = 0.3 (EA: Hexane = 1:5); 1H NMR (400 

MHz, CDCl3): δ 7.37 (t, J = 7.6 Hz, 1H), 7.22-7.17 (m, 3H), 7.12-7.01 (m, 3H), 6.93 (d, J 

= 7.6 Hz, 1H), 4.61 (s, 1H), 3.27 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 175.8, 163.5 
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(JC-F = 244.5 Hz), 161.0, 144.4, 132.3 (JC-F = 2.3 Hz), 130.0 (JC-F = 8.7 Hz), 128.6, 128.5, 

125.0, 122.8, 115.8 (JC-F = 21.3 Hz), 108.2, 51.2, 26.4; HRMS (ESI): m/z calcd for 

C15H13FNO [M+H]+ 242.0976, Found 242.0972. 

 

3-(3,4-Dimethylphenyl)-1-methylindolin-2-one (Scheme 3, compound 3ae) 

Yield: 96% (72 mg); white solid, m.p. = 93-95 °C; Rf = 0.6 (EA: Hexane = 1:5); 1H NMR 

(400 MHz, CDCl3): δ 7.36 (t, J = 7.6 Hz, 1H), 7.21 (d, J = 7.2 Hz, 1H), 7.14-7.07 (m, 2H), 

7.01 (s, 1H), 6.97-6.92 (m, 2H), 4.58 (s, 1H), 3.29 (s, 3H), 2.27 (s, 6H); 13C NMR (100 

MHz, CDCl3): δ 176.3, 144.5, 137.1, 135.9, 134.0, 130.1, 129.6, 129.2, 128.3, 125.8, 

125.0, 122.7, 108.1, 51.8, 26.4, 19.8, 19.4; HRMS (ESI): m/z calcd for C17H18NO [M+H]+ 

252.1383, Found 252.1378. 

 

3-(3,5-Dimethylphenyl)-1-methylindolin-2-one (Scheme 3, compound 3af)11 

Yield: 97% (73 mg); white solid, m.p. = 87-89 °C; Rf = 0.6 (EA: Hexane = 1:5); 1H NMR 

(400 MHz, CDCl3): δ 7.37 (t, J = 7.6 Hz, 1H), 7.20 (d, J = 7.2 Hz, 1H), 7.10 (t, J = 7.6 Hz,  

1H), 6.96-6.93 (m, 2H), 6.84 (s, 2H), 4.56 (s, 1H), 3.30 (s, 3H), 2.32 (s, 6H); 13C NMR 

(100 MHz, CDCl3): δ 176.2, 144.4, 138.4, 136.5, 129.3, 129.2, 128.3, 126.2, 125.0, 

122.7, 108.1, 52.1, 26.4, 21.3; HRMS (ESI): m/z calcd for C17H18NO [M+H]+ 252.1383, 

Found 252.1378. 

 

3-(3-Methoxyphenyl)-1-methylindolin-2-one (Scheme 3, compound 3ag)21 

Yield: 81% (61 mg); pale yellow sticky oil; Rf = 0.3 (EA: Hexane = 1:4); 1H NMR (400 

MHz, CDCl3): δ 7.35 (t, J = 7.6 Hz, 1H), 7.29-7.25 (m, 1H), 7.20 (d, J = 7.2 Hz,  1H), 

7.08 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 7.6 Hz, 1H), 6.86-6.81 (m, 2H), 6.77 (s, 1H), 4.60 (s, 

1H), 3.79 (s, 3H), 3.27 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 175.8, 159.9, 144.4, 

138.0, 129.8, 128.7, 128.4, 125.0, 122.7, 120.7, 114.4, 112.8, 108.1, 55.2, 52.0, 26.4; 

HRMS (ESI): m/z calcd for C16H16NO2 [M+H]+ 254.1176, Found 254.1171. 

 

N-(3-(1-Methyl-2-oxoindolin-3-yl)phenyl)acetamide (Scheme 3, compound 3ah) 
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 12 

Yield: 84% (71 mg); white solid, m.p. = 112-114 °C;Rf = 0.2 (EA: Hexane = 1:1); 1H 

NMR (400 MHz, CDCl3): δ 8.19 (s, 1H), 7.38 (s, 2H), 7.33 (t, J = 8.0 Hz, 1H), 7.19-7.14 

(m, 2H), 7.08-7.04 (t, J = 7.2 Hz, 1H), 6.91 (d, J = 7.6 Hz, 1H), 6.81 (d, J = 7.2 Hz, 1H), 

4.56 (s, 1H), 3.24 (s, 3H), 2.02 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 176.3, 168.8, 

144.2, 138.9, 136.9, 129.3, 128.7, 128.5, 125.0, 123.5, 123.0, 120.0, 119.1, 108.3, 52.2, 

26.4, 24.2; HRMS (ESI): m/z calcd for C17H17N2O2 [M+H]+ 281.1290, Found 281.1285. 

 

1-Methyl-3-(naphthalen-2-yl)indolin-2-one (Scheme 3, compound 3ai)13 

Yield: 89% (73 mg); colorless oil; Rf = 0.4 (EA: Hexane = 1:4); 1H NMR (400 MHz, 

CDCl3): δ 7.85-7.81 (m, 3H), 7.75 (s, 1H), 7.51-7.47 (m, 2H), 7.39 (t, J = 7.6 Hz, 1H), 

7.31-7.28 (m, 1H), 7.23 (d, J = 7.2Hz, 1H), 7.11 (t, J = 7.2Hz, 1H), 6.97 (d, J = 7.6 Hz, 

1H), 4.81 (s, 1H), 3.32 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 176.0, 144.5, 134.1, 

133.5, 132.8, 128.9, 128.7, 128.5, 127.8, 127.6, 127.5, 126.2, 126.1, 126.0, 125.1, 

122.8, 108.2, 52.2, 26.5; HRMS (ESI): m/z calcd for C19H16NO [M+H]+ 274.1226, Found 

274.1221. 

 

1-Methyl-3-(quinolin-6-yl)indolin-2-one (Scheme 3, compound 3aj) 

Yield: 85% (70 mg); pale yellow sticky oil; Rf = 0.2 (EA: Hexane = 2:1); 1H NMR (400 

MHz, CDCl3): δ 8.89-8.88 (m, 1H), 8.09 (t, J = 9.2 Hz, 2H), 7.72-7.71 (m, 1H), 7.52-7.50 

(m, 1H), 7.39-7.35 (m, 2H), 7.20 (d, J = 7.2 Hz, 1H), 7.09 (t, J = 7.2 Hz, 1H), 6.96 (d, J = 

8.0 Hz, 1H), 4.81 (s, 1H), 3.29 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 175.6, 150.4, 

147.7, 144.5, 135.9, 134.9, 130.2, 129.7, 128.7, 128.4, 128.3, 127.4, 125.1, 122.9, 

121.3, 108.4, 51.9, 26.6; HRMS (ESI): m/z calcd for C18H15N2O [M+H]+ 275.1179, 

Found 275.1172. 

 

3-(3-(1H-Pyrrol-1-yl)phenyl)-1-methylindolin-2-one (Scheme 3, compound 3ak) 

Yield: 88% (76 mg); white solid, m.p. = 105-106 °C; Rf = 0.4 (EA: Hexane = 1:3); 1H 

NMR (400 MHz, CDCl3): δ 7.44-7.34 (m, 3H), 7.28-7.22 (m, 2H), 7.16-7.11 (m, 2H), 

7.09-7.08 (m, 2H), 6.97 (d, J = 8.0 Hz, 1H), 6.37-6.35 (m, 2H), 4.69 (s, 1H), 3.30 (s, 3H); 
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 13 

13C NMR (100 MHz, CDCl3): δ 175.5, 144.5, 141.2, 138.2, 130.0, 128.7, 128.2, 125.8, 

125.0, 122.9, 120.7, 119.8, 119.4, 110.4, 108.4, 51.8, 26.5; HRMS (ESI): m/z calcd for 

C19H17N2O [M+H]+ 289.1335, Found 289.1329. 

 

1-Methyl-3-(2-methylbenzo[d]thiazol-6-yl)indolin-2-one (Scheme 3, compound 3al) 

Yield: 62% (55 mg); white solid, m.p. = 84-86 °C; Rf = 0.4 (EA: Hexane = 1:3); 1H NMR 

(400 MHz, CDCl3): δ 7.80-7.75 (m, 2H), 7.35 (t, J = 7.6 Hz, 1H), 7.28-7.25 (m, 1H), 7.20 

(d, J = 7.6 Hz, 1H), 7.07 (t, J = 7.2 Hz, 1H), 6.93 (d, J = 7.6 Hz, 1H), 4.74 (s, 1H), 3.26 

(s, 3H), 2.81 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 175.8, 167.6, 153.7, 144.5, 134.9, 

134.8, 128.7, 128.6, 125.3, 125.1, 122.8, 122.0, 121.7, 108.2, 51.8, 26.4, 20.1; HRMS 

(ESI): m/z calcd for C17H15N2OS [M+H]+ 295.0899, Found 295.0892. 

 

3-(2,5-Dimethylphenyl)-1-methylindolin-2-one (Scheme 3, compound 3ap) 

Yield: 47% (35 mg); orange solid, m.p. = 133-135 °C; Rf = 0.45 (EA: Hexane = 1:3); 1H 

NMR (400 MHz, CDCl3): δ 7.33 (t, J = 7.6 Hz, 1H), 7.12-7.00 (m, 4H), 7.91 (d, J = 8.0 

Hz, 1H), 6.71 (bs, 1H), 4.80 (bs, 1H), 3.29 (s, 3H), 2.24 (bs, 6H); 13C NMR (100 MHz, 

CDCl3): δ 176.0, 144.0, 135.5, 135.0, 133.6, 130.6, 129.1, 128.1, 127.9, 124.2, 122.4, 

107.8, 50.1, 26.1, 20.6, 19.0;  HRMS (ESI): m/z calcd for C17H18NO [M+H]+ 252.1388, 

Found 252.1390. 

 

1-Methyl-3-(naphthalen-1-yl)indolin-2-one (Scheme 3, compound 3aq)22  
  

Yield: 80% (66 mg); pale yellow solid; Rf = 0.4 (EA: Hexane = 1:3); 1H NMR (400 MHz, 

CDCl3): δ 8.41 (bs, 1H), 7.91 (d, J = 6.8 Hz, 2H), 7.84-7.33 (m, 4H), 7.12-6.95 (m, 4H), 

5.51 (bs, 1H), 3.34 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 175.9, 144.1, 134.1, 129.3, 

128.7, 128.2, 126.3, 125.7, 125.3, 124.5, 123.9, 122.6, 108.1, 47.6, 26.3; HRMS (ESI): 

m/z calcd for C19H16NO [M+H]+ 274.1232, Found 274.1233. 

 

5-Fluoro-1-methyl-3-phenylindolin-2-one (Scheme 5, compound 3bm)23 
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Yield: 90% (65 mg); yellow oil; Rf = 0.4 (EA: Hexane = 1:5); 1H NMR (400 MHz, CDCl3): 

δ 7.38-7.31 (m, 3H), 7.22-7.20 (m, 2H), 7.08-7.03 (m, 1H), 6.95-6.93 (m, 1H), 6.85-6.82 

(m, 1H), 4.62 (s, 1H), 3.27 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 175.6, 160.5 (JC-F = 

238.9 Hz), 158.1, 140.4, 136.0, 130.4 (JC-F = 7.8 Hz), 129.0, 128.3, 127.7, 114.7 (JC-F = 

23.3 Hz), 113.2 (JC-F = 24.9 Hz), 108.6 (JC-F = 8.0 Hz), 52.3 (JC-F = 1.6 Hz), 26.6; HRMS 

(ESI): m/z calcd for C15H13FNO [M+H]+ 242.0976, Found 242.0971. 

 

5-Fluoro-3-(3-methoxyphenyl)-1-methylindolin-2-one (Scheme 5, compound 3bg) 

Yield: 86% (70 mg); yellow oil; Rf = 0.3 (EA: Hexane = 1:5); 1H NMR (400 MHz, CDCl3): 

1H NMR (400 MHz, CDCl3): δ 7.29-7.25 (m, 1H), 7.06-7.02 (m, 1H), 6.95-6.93 (m, 1H), 

6.86-6.78 (m, 3H), 6.74 (s, 1H), 4.58 (s, 1H), 3.79 (s, 3H), 3.25 (s, 3H); 13C NMR (100 

MHz, CDCl3): δ 175.4, 160.5 (JC-F = 239.1 Hz), 159.9, 158.1, 140.4 (JC-F = 2.5 Hz), 

137.4, 130.3 (JC-F = 8.4 Hz), 129.9, 120.6, 114.8 (JC-F = 23.4 Hz), 114.5, 113.2, 113.0, 

108.6 (JC-F = 7.8 Hz), 55.2, 52.2 (JC-F = 1.5 Hz), 26.6; HRMS (ESI): m/z calcd for 

C16H15FNO2 [M+H]+ 272.1081, Found 272.1076. 

 

3-(4-(tert-Butyl)phenyl)-7-fluoro-1-methylindolin-2-one (Scheme 5, compound 3ca) 

Yield: 71% (63 mg); pale yellow sticky oil; Rf = 0.4 (EA: Hexane = 1:5); 1H NMR (400 

MHz, CDCl3): δ 7.39 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 7.10-6.98 (m, 3H), 

4.62 (s, 1H), 3.49 (d, J = 2.8 Hz, 3H), 1.32 (s, 9H); 13C NMR (100 MHz, CDCl3): δ 175.7, 

150.5, 148.8 (JC-F = 241.4 Hz), 146.4, 133.0, 131.7 (JC-F = 3.0 Hz), 131.1 (JC-F = 7.5 Hz), 

127.9, 125.9, 123.1 (JC-F = 6.6 Hz), 121.0 (JC-F = 3.7 Hz), 116.3 (JC-F = 18.7Hz), 51.7 

(JC-F = 1.7 Hz), 34.5, 31.3, 28.9 (JC-F = 5.9 Hz); HRMS (ESI): m/z calcd for C19H21FNO 

[M+H]+ 298.1602, Found 298.1596. 

 

1-Benzyl-3-(3,5-dimethylphenyl)indolin-2-one (Scheme 5, compound 3df) 

Yield: 72% (71 mg); yellow oil; Rf = 0.4 (EA: Hexane = 1:5); 1H NMR (400 MHz, CDCl3): 

δ 7.39-7.28 (m, 5H), 7.26-7.18 (m, 2H), 7.07-7.03 (m, 1H), 6.97 (s, 1H), 6.86-6.83 (m, 

3H), 5.06-4.94 (dd, J = 33.2, 15.2 Hz, 2H), 4.66 (s, 1H), 2.33 (s, 6H); 13C NMR (100 
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MHz, CDCl3): δ 176.4, 143.5, 138.4, 136.6, 136.0, 135.9, 129.4, 129.3, 128.7, 128.5, 

128.4, 128.2, 127.6, 127.4, 127.1, 126.2, 125.1, 122.7, 109.1, 52.1, 44.1, 43.9, 21.5, 

21.3; HRMS (ESI): m/z calcd for C23H22NO [M+H]+ 328.1696, Found 328.1688. 

 

3-(Benzo[d][1,3]dioxol-5-yl)-1-ethylindolin-2-one (Scheme 5, compound 3en) 

Yield: 92% (77 mg); pale yellow sticky oil; Rf = 0.4 (EA: Hexane = 1:3); 1H NMR (400 

MHz, CDCl3): δ 7.33 (t, J = 7.6 Hz, 1H), 7.19 (d, J = 7.2 Hz, 1H), 7.06 (t, J = 7.2 Hz, 1H), 

6.94 (d, J = 8.0 Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H), 6.73-6.71 (m, 1H), 6.63 (d, J = 1.6 Hz, 

1H), 5.93 (s, 2H), 4.51 (s, 1H), 3.82 (q, J = 7.2 Hz, 2H), 1.31 (t, J = 7.2 Hz, 3H); 13C 

NMR (100 MHz, CDCl3): δ 175.6, 148.0, 147.1, 143.4, 130.4, 129.2, 128.4, 125.1, 122.5, 

121.9, 108.6, 108.5, 108.3, 101.1, 51.7, 34.8, 12.7; HRMS (ESI): m/z calcd for 

C17H16NO3 [M+H]+ 282.1125, Found 282.1119. 

 

3-(4-(tert-Butyl)phenyl)-1-phenylindolin-2-one (Scheme 5, compound 3fa) 

Yield: 97% (99 mg); white solid, m.p. = 117-119 °C; Rf = 0.5 (EA: Hexane = 1:5); 1H 

NMR (400 MHz, CDCl3): δ 7.59-7.55 (m, 2H), 7.52 (d, J =7.2 Hz, 2H), 7.47-7.43 (m, 3H), 

7.32 (d, J = 8.0 Hz, 4H), 7.15 (t, J = 7.2 Hz, 1H), 6.96 (d, J = 7.6 Hz, 1H), 4.84 (s, 1H), 

1.39 (s, 9H); 13C NMR (100 MHz, CDCl3): δ 175.5, 150.5, 144.4, 134.7, 133.7, 129.6, 

128.8, 128.2, 128.1, 128.0, 126.6, 125.9, 125.5, 123.1, 109.5, 51.7, 34.5, 31.4; HRMS 

(ESI): m/z calcd for C24H24NO [M+H]+ 342.1852, Found 342.1847. 

 

3-(3-Acetylphenyl)-1-phenylindolin-2-one (Scheme 5, compound 3fo) 

Yield: 86% (84 mg); white solid, m.p. = 103-104 °C; Rf = 0.4 (EA: Hexane = 1:3); 1H 

NMR (400 MHz, CDCl3): δ 7.97 (s, 1H), 7.93 (d, J = 7.6 Hz, 1H), 7.56-7.41 (m, 7H), 

7.31-7.27 (m, 1H), 7.24 (d, J = 7.2 Hz, 1H), 7.13 (t, J = 7.2 Hz, 1H), 6.94 (d, J = 8.0 Hz, 

1H), 4.89 (s, 1H), 2.61 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 197.8, 174.8, 144.4, 

137.7, 137.4, 134.4, 133.1, 129.6, 129.2, 128.6, 128.4, 128.2, 127.9, 127.8, 126.6, 

125.3, 123.4, 109.7, 51.9, 26.7; HRMS (ESI): m/z calcd for C22H18NO2 [M+H]+ 328.1332, 

Found 328.1324. 
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1-(3-Methoxyphenyl)-3-(naphthalen-2-yl)indolin-2-one (Scheme 5, compound 3gi) 

Yield: 73% (80 mg); white solid, m.p. = 115-117 °C; Rf = 0.4 (EA: Hexane = 1:5); 1H 

NMR (400 MHz, CDCl3): δ 7.89-7.84 (m, 4H), 7.54-7.45 (m, 3H), 7.43-7.40 (m, 1H), 

7.34-7.28 (m, 2H), 7.16-7.06 (m, 3H), 7.02 (d, J = 8.0 Hz, 2H), 5.00 (s, 1H), 3.87 (s, 3H); 

13C NMR (100 MHz, CDCl3): δ 175.2, 160.6, 144.4, 135.6, 134.1, 133.5, 132.9, 130.3, 

128.8, 128.7, 128.4, 127.8, 127.7, 127.7, 126.3, 126.2, 126.0, 125.5, 123.2, 118.7, 

114.1, 112.3, 109.7, 55.5, 52.4; HRMS (ESI): m/z calcd for C25H20NO2 [M+H]+ 366.1489, 

Found 366.1483. 
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