SELECTIVE HYDROGENATION OF CARBON MONOXIDE ON SUPPORTED Rh CATALYSTS PREREDUCED IN SITU WITH H_2O AND CO OR H_2

Yasuhiro IWASAWA,^{*} Toshiaki HAYASAKA, and Sadao OGASAWARA Department of Applied Chemistry, Faculty of Engineering, Yokohama National University, Hodogaya-ku, Yokohama 240

Carbon monoxide was selectively converted to ethylene and propylene(>80 % of C_1-C_6 hydrocarbons produced) at 433-447 K over SiO₂-supported Rh catalysts prereduced in situ with a CO-H₂O mixture, while another Rh catalyst obtained by the pretreatment in situ with a H₂-H₂O mixture yielded ethanol and acetaldehyde at a higher selectivity by a factor of about 100 at 453 K than a usual Rh(0) catalyst reduced with H₂ alone.

The importance of controlling the selectivity in carbon monoxide hydrogenation¹⁾ prompted us to describe our results in this field. Rh^{III} ions are known to be reduced to Rh^I level with CO in aqueous solution²⁾ and Rh₄ or Rh₆ carbonyl clusters are conveniently synthesized from a Rh^I carbonyl compound under CO atmosphere in the presence of water.³⁾ The behaviours of Rh₆(CO)₁₆ on alumina⁴⁾ and zeolite⁵⁾, such as the reversible decarbonylation-recarbonylation and the fragmentation-clusterization(Rh⁰₆ \rightleftharpoons 6 Rh^I), have been demonstrated to depend upon the water content of the supports. These results seemed to us to suggest a new way of preparing supported Rh catalysts for the selective CO hydrogenation by reducing supported Rh^{III} ions in the presence of H₂O vapour. We wish to report the selective formations of ethylene and propylene, and ethanol and acetaldehyde from a CO/H₂ gas over the SiO₂-supported Rh catalysts pretreated in situ with H₂O and CO or H₂.

 Rh^{III} ions were supported on a silica using a methanol solution of $RhCl_3 \cdot 3H_2O$ (Soekawa Chemicals) without contacting air and moisture in a flow of high purity (99.9995 %) Ar followed by evacuation for 30 min at 293 K and for 1 h at 323 K; the SiO₂ obtained from Snowtex-O(Nissan Kagaku Inc.) was washed with a distilled water, dried at 393 K and heated at 473 K in air. Two types of Rh catalysts were

obtained by prereducing the supported Rh^{III} chloride in situ with a CO(200 Torr) - $H_2O(20$ Torr) mixture or with a $H_2(200$ Torr) - $H_2O(20$ Torr) mixture at 363 K for 15 h followed by evacuation for 1 h in a closed circulating system before catalytic reactions.

The supported Rh^{III} ions which exhibited a d-d transition band at 530 nm $\binom{5_{T_{2g}} \rightarrow {}^{5}E_{g}}{indicating}$ an octahedral coordination, were reduced with H₂, stepwisely Rh^{III} 328 K Rh^{II} 423 K Rh^{I} $\frac{773}{7}$ K Rh^{0} . The Fischer-Tropsch reactions over these catalysts involving Rh^{0} , Rh^{I} or Rh^{II} were carried out in a closed circulating system(200 cm³) with a liq.N₂ trap. The main product was always methane in the temperature range 413-573 K although the formations of C_2 - C_3 hydrocarbons were favoured by the Rh^{I} catalyst.

The UV absorption band of 530 nm almost disappeared by the CO-H₂O treatment, associated with a colour change from pale brick red to yellow, indicating the formation of a Rh(I) halodicarbonyl species on the SiO, surface. Two molecules of HCl evolved per a Rh atom also suggested univalent rhodium. Again the Rh species formed was characterized by the twin carbonyl peaks⁵⁾⁶⁾ at 2100 and 2025 cm⁻¹. These twin carbonyls were rapidly eliminated to evolve mainly carbon monoxide at 433 K, no carbonyl peaks being observed during catalytic CO hydrogenation. The catalytic activities gradually decreased during the first ~15 h of reactions and then attained constant activities; the data were taken there. The F-T syntheses over the Rh catalysts prereduced in situ with H2O and CO are listed in Table 1. The formation of methane was remarkably suppressed, resulting in the high selectivities(85 %) toward C_2-C_3 hydrocarbon formations at 433-447 K, where the C_2-C_3 selectivity(%) is defined as $100[C_2-C_3]/([C_1-C_5^+]+[oxygenated compounds]+[C0_2])$ on carbon base; C_5^+ includes n-pentane, 1- and 2-pentene, n-hexane and hexene isomers (not branched). The olefin fraction in the C_2-C_3 components was 89.1 % (ethylene/ propylene=16.5 %/72.6 %). When the catalyst was exposed to air at room temperature followed by reduction with H_2 at 473 K, the catalytic activity decreased but the ethylene/propylene ratio increased to 37.9 %/41.0 %. The structure, environment and chemical nature of active sites of the selective Rh catalyst showing a constant activity are not clear at this stage, but the catalyst precursor for the selective C2 -C3 formations may be a small surface Rh^I cluster, (RhCl(CO)2)n.

On the other hand the conventional catalyst made by an impregnation method using aqueous $RhCl_3$ solution in air did not exhibit such a selectivity by similar CO-H₂O pretreatments as given in Table 1 although the effect of the pretreatment

Selectivities of the "In Situ-Prereduced" Rh Catalysts and the Impregnation Catalyst in Carbon Monoxide Hydrogenation(catalysts=1 g, CO/H_2 = 1/4 (total P.=250 Torr, 433 & Table 1

453 K) or 1/2 (total P.=300 Torr, 493 & 523 K)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	pretreat- ments	Rh a 0 .N.	Rh Wt%	T/K	conv. ^b %	i,Li	selec./% ^c I.C. Ox.C	olefin fraction	ם סי		dist	പ്പ	%/suc	1	·		Ox.C. İstribu	tions/
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									പ		ບີ 'ບີ			ີ †	ۍ 5		A	e EA
		0	Ŋ	523	64.7	99.5	0.4	25.4	86.2				1			36.1	39.4	9.6
4453 0.5 96.8 0.0 86.3 45.8 2.9 13.1 3.2 25.8 1.3 7.9 0.0 0.0 0.0 1 433 3.5 93.9 4.3 81.4 377 8.2 28.6 2.2 8.4 1.0 12.1 1.8 2.2 86.3 5 433 2.5 4.0 87.8 5.3 4.2 15.0 5.7 65.9 0.8 1.2 1.9 3.9 78.1 5 447 3.0 89.0 5.6 6.4 14.3 3.5 65.9 1.3 2.6 0.4 5.9 79.1 5 447 3.0 89.0 5.6 6.4 14.3 3.5 65.9 1.3 2.0 0.0 0.0 0.0 6 447 3.0 89.6 2.9 78.5 6.8 8.9 34.2 10.2 37.0 0.8 2.0 0.0 0.0 0.0 0.0 4 453 12.0 68.0 31.5 79.5 6.8 8.9 34.2 10.2 37.0 0.8 2.0 0.0 0.0 0.0 0.0 0.0 4 453 12.0 68.0 31.5 79.1 4.3 1.3 1.4 5.9 79.1 4 493 13.3 89.4 10.2 79.7 4.3 1.3 1.3 1.2 79.2 4.0 0.1 1.9 5 433 9.2 94.9		г	г	433	2.7	89.1	6.8	74.8	63.6		•0	6 6	7 1.5	7.8		20.3	63.4	1 . 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ч	4	453	0.5	96.8	0.0	86.3	45.8		.1 3,	.2 25.	8 1.3	7.9	0.0	0.0		0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ı	ч	433		93.9	4.3	81.4	37.7	8.2 28		2 8.	4 1.0	12.1	1.8	2.2	1	11.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		г	Ŋ	433	2.5 *		4.0	87.8	5.3	4.2 15		.7 65.		1	1	3.9		18.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ч	Ŋ	447	3.0 *		3.0	88.0	5.6	6.4 14		.5 65.				5.9		13.8
4 453 12.0 * 68.0 31.5 72.5 79.6 4.0 6.0 1.1 4.5 0.4 2.1 2.5 41.7 45.8 4 493 13.3 89.4 10.2 78.7 71.4 3.7 4.3 1.3 10.7 0.4 6.1 2.1 69.0 19.9 5 433 9.2 94.9 4.6 75.9 48.9 6.6 9.4 3.8 17.3 1.1 7.3 5.6 2.0 88.4 3 453 1.3 93.6 4.2 89.4 83.9 0.9 2.8 0.6 7.3 0.2 4.1 0.1 8.4 87.0	_	1	ъ	433	0.75*		2.9	78.5	6.8	8.9 34	.2 10	.2 37.	°.			0.0		15.7
4 493 13.3 89.4 10.2 78.7 71.4 3.7 4.3 1.3 10.4 6.1 2.1 69.0 19.9 5 433 9.2 94.9 4.6 75.9 48.9 6.6 9.4 3.8 17.3 1.1 7.3 5.6 2.0 88.4 3 453 1.3 93.6 4.2 89.4 83.9 0.9 2.8 0.6 7.3 0.2 4.1 0.1 8.4 87.0		1.6	4	453	12.0 *	68.0	31.5	72.5	79.6	4.0 6	.0 1	1 4.	5 0.4		1	41.7	11	3.6
5 433 9.2 94.9 4.6 75.9 48.9 6.6 9.4 3.8 17.3 1.1 7.3 5.6 2.0 88.4 3 453 1.3 93.6 4.2 89.4 83.9 0.9 2.8 0.6 7.3 0.2 4.1 0.1 8.4 87.0		1.6	4	493	13.3		10.2	78.7		3.7 4	.3	3 10.			2.1	69.0	19.9	4.2
3 453 1.3 93.6 4.2 89.4 83.9 0.9 2.8 0.6 7.3 0.2 4.1 0.1 8.4 87.0		г	ъ	433	9.2	94.9	4.6	75.9	48.9	1	.4 3.	8 17.		7.3	5.6	2.0	88.4	0.0
		0	m	453	1.3	93.6	4.2	89.4	83.9	0.9 2	. 8	.6 7.3	3 0.2	4.1	0.1	8.4		0.0

supported Rh₆(OO)₁₆. j n-pentane, selectivities(\$) to hydrocarbons = 100[C₁-C₅⁺]/([C₁-C₅⁺]+[oxygenated E, ethanol; A, acetaldehyde; EA, ethyl acetate. Acetic acid was not produced . f conventional impregnation catalysts. selectivities(%) to oxygenated compounds such as ethanol, acetaldehyde, ethyl acetate, methanol, etc.,= 100 [oxygenated compounds] /([C₁-C₅⁺]+[oxygenated compounds]+[CO₂]). d olefin fractions(%) in the C₂-C₅⁺ components. ·H supported $Rh_2CL_2(CO)_4$. ч 1- and 2-pentene, n-hexane and hexene isomers(not branched). υ sample, exposed to air followed by reduction with H,. = $100([C_1-C_5^T]+[oxygenated compounds]+[CO_2])/[CO]_o$. $compounds] + [\infty_2]$). e σ

on the product distribution was observed; the $C_2^{=}-C_3^{=}$ components were 37 % of whole hydrocarbons produced. The supported Rh^{III} ions were reduced to Rh^I dicarbonyl species by treating with CO alone coinciding with the literatures⁶, but this surface species was catalytically unselective. Also Rh₂Cl₂(CO)₄ and Rh₆(CO)₁₆ supported on SiO₂ yielded ethylene and propylene as minor products.

The supported Rh(III) chloride was converted to another selective catalyst by prereduction in situ with a mixture of H_2 and H_2O . It was found in Table 1 that the Rh catalyst yielded oxygenated compounds at the selectivity of 31.5 % at 453 K under a reduced pressure. The C_2 fraction like ethanol and acetaldehyde was 87.5 % $(100([C_2H_5OH]+[CH_3CHO])/([C_2H_5OH]+[CH_3CHO]+[CH_3COOC_2H_5]+[CH_3OH]))$. A usual SiO₂supported Rh⁰ catalyst which was prepared by reducing the supported Rh^{III} ions with H_2 alone gave no significant amounts of C_2 -oxygenated compounds(0.3 % in selectivity) under similar reaction conditions. Thus the supported Rh catalyst obtained by the novel preparation method produced ethanol and acetaldehyde at a higher selectivity by a factor of about 100 than the usual Rh⁰ catalyst. References

- E.L.Kugler, Prep.Sym.Div.Petr.Chem.ACS., <u>25</u>(3), 564(1980). D.Commereuc, Y.Chauvin, F.Hughues, J.M.Basset and D.Olivier, J.C.S.Chem.Comm., 154(1980). I.Kojima, E. Miyazaki and I.Yasumori, ibid., 573(1980). D.Fraenkel and B.C.Gates, J.Am.Chem. Soc., <u>102</u>, 2478(1980). M.Ichikawa and K.Shikakura, Proc.7th Int.Congr.Catal.Tokyo (1980), Part B, p.925(1981). R.L.Pruett and W.E.Walker, US.3,833,634(1972).
- 2) R.Eisenberg and D.E.Hendriksen, Advan.Catal., <u>28</u>, 79(1979), Academic Press.
 B.R.James, G.L.Rempel and F.T.T.Ng, J.Chem.Soc.(A), 2454(1969). D.Forster, Inorg.
 Chem., <u>8</u>, 2556(1969).
- 3) P.Chini and S.Martinengo, Inorg.Chim.Acta, 3, 315(1969).
- A.K.Smith, F.Hugues, A.Theolier, J.M.Basset, R.Ugo, G.M.Zanderighi, J.L.Bilhou, V.Bilhou-Bougnol and W.F.Graydon, Inorg.Chem., <u>18</u>, 3104(1979). K.L.Watters, R.F.Howe, T.P.Chojnacki, C-M.Fu, R.L.Schneider and N-B.Wong, J.Catal., <u>66</u>, 424(1980).
- 5) P.Gelin, Y.B.Taarit and C.Naccache, ibid., 59, 357(1979).
- 6) H.Arai, M.Uchida and H.Tominaga, Shokubai, <u>20</u>, 242(1978). M.Primet, J.C.S. Faraday I, <u>74</u>, 2570(1978). R.M.Kroeker, W.C.Kaska and P.K.Hansma, J.Catal., <u>57</u>, 72(1979). K.Fujimoto, M.Kameyama and T.Kunugi, J.Jpn.Petrol.Inst., <u>21</u>, 405(1978).
- 7) M.S.Scurrell, J.Mol.Catal., <u>10</u>, 57(1981). J.A.McCleverty and G.Wilkinson, Inorg.Synth., <u>8</u>, 211(1966).