Synthesis of Benzimidazoles by Phosphine-Mediated Reductive Cyclisation of ortho-Nitro-anilides

by Jan Duchek and Andrea Vasella*

Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli Strasse 10, CH-8093 Zürich (e-mail: vasella@org.chem.ethz.ch)

Heating *ortho*-nitro-anilides 1-3 and 2-methyl-*N*-(3-nitropyridin-2-yl)propanamide (5) with 4 equiv. of a phosphine led to the 2-substituted benzimidazoles 6-8 and to the imidazo[4,5-*b*]pyridine 10, respectively, in yields between 45 and 85%. Heating 1 with (EtO)₃P effected cyclisation and *N*-ethylation, leading to the 1-ethylbenzimidazole 6b. The slow cyclisation of the *N*-pivaloylnitroaniline 2b allowed isolation of the intermediate phosphine imide 11 that slowly transformed into the 1*H*-benzimidazole 7b. The structure of 11 was established by crystal-structure analysis. While the *N*-methylated *ortho*-nitroacetanilide 3 cyclised to the 1,2-dimethyl-1*H*-benzimidazole (8), the 2-methyl-propananilide 4 was transformed into 1-methyl-3-(1-methylethyl)-2*H*-benzimidazol-2-one (9).

Introduction. - The reductive cyclisation of 6-(acylamino)-5-nitrosopyrimidines using triaryl- or trialkylphosphines leads in high yields to 8-substituted guanines [1][2]. This robust method has, to the best of our knowledge, only be used for the cyclisation of the above mentioned nitrosopyrimidines [3]. We became interested in the analogous reductive cyclisation of N-acyl-2-nitroanilines and similar heteroaromatic compounds, considering the practically limited access to nitroso arenes [4][5] and the much easier synthesis of N-acyl-2-nitroanilines. The cyclisation is expected to lead to annulated imidazoles, and would be particularly attractive if phosphites could be used besides phosphines. We decided to test this reductive cyclisation by transforming a few orthonitro-anilides, notwithstanding the many known methods for the synthesis of benzimidazoles¹) [7]. The first synthesis of a benzimidazole was reported in 1872 by Hobrecker who treated 4-methyl-2'-nitroacetanilide with Sn/HCl and isolated 2,5dimethylbenzimidazole [8]. Since then, ortho-nitro-anilides were transformed to benzimidazoles in reducing media such as Zn/AcOH and Fe/HCl, by catalytic or electrochemical reduction, or by treatment with ferrous oxalate. Stepwise procedures, *i.e.*, cyclisation of intermediate ortho-amino-anilides or reduction of intermediate benzimidazole N-oxides are also well-known. All of the mentioned methods, as well as other ones used for the synthesis of benzimidazoles, were thoroughly reviewed [9-14].

Results and Discussion. – The starting known *ortho*-nitro-anilides 1-4 [15] were prepared from the commercially available 2-nitroaniline and *N*-methyl-2-nitroaniline. *N*-(3-Nitropyridin-2-yl)isobutyramide was prepared by acylating the commercially available 3-nitropyridin-2-amine with isobutyryl chloride in the presence of *Hünig*'s

¹) For selected recent syntheses, see [6].

^{© 2011} Verlag Helvetica Chimica Acta AG, Zürich

base at room temperature that resulted in a mixture of **5** (61%) and the *N*,*N*-diacylated product (35%). The ¹H-NMR spectra of the *N*-methyl anilides **3** and **4** in CDCl₃ display two sets of signals, evidencing a mixture of (*E*)- and (*Z*)-rotamers. Due to the deshielding by the C=O group, the *N*-Me group of the (*E*)-rotamer resonates at lower field than that of the (*Z*)-rotamer ($\Delta \delta = 0.2$ ppm). The nitro-anilides **1** and **2** and the pyridine-derived nitro-anilide **5** in CDCl₃ solution are (*E*)-configured single rotamers, due to the intramolecular H-bond between NH and the NO₂ group, as evidenced by the chemical shift of the N*H* signal (δ 10.27–11.36 for **1** and **2**, and 9.82 ppm for **5**)²).

The 6-(acylamino)-5-nitrosopyrimidines had been cyclised to guanines by treatment with 2 equiv. of Ph₃P in boiling xylene [1]. The *ortho*-nitro-anilides 1-3 and the pyridine derivative **5** were unreactive under these conditions, while cyclisation in the presence of 4 equiv. of Ph₃P in boiling decane (174°) effected the desired transformation. The expected 2-substituted benzimidazoles 6-8 (*Table*) and the imidazopyridine **10** were isolated in yields between 45 and 85% (*Entries 1, 4, 7, 8, 10, 12*, and *14*, in the *Table*).

A scouting experiment suggested that replacing Ph_3P by 1,2-bis(diphenylphosphino)ethane (DPPE) has only a small effect on yields [19].

Replacing xylene by *p*-cymene, 1,2-dichlorobenzene, ethoxybenzene, or diethyleneglycol diethyl ether provided the benzimidazoles in similar yields, while treating **5** with Ph₃P in boiling DMF led to a mixture of products. The reaction proceeded faster at the higher temperature of boiling diethylene glycol diethyl ether (190°), but yields were not improved (*Entries 2* and 5). Microwave heating of solutions in 1,2-dichlorobenzene/ DMF 10:1 to 250° in a sealed vessel (*Entries 6, 9,* and *11*) shortened the reaction time considerably. The cyclisations were completed within 30 min, with yields comparable to those resulting from conventional heating.

Heating **1** with $(EtO)_3P$ in decane (*Entry 3*) led to cyclisation and to *N*-ethylation, yielding 42% of the 1*H*-benzimidazole **6b**. *N*-Alkylation was also observed when $(BuO)_3P$ was used instead of $(EtO)_3P$. A scouting experiment showed that $(PhO)_3P$ transformed **1** slowly into **6a**, as inferred from TLC.

The reaction of the *N*-pivaloyl-2-nitroaniline (**2b**) in boiling decane proceeded more slowly than the one of the less bulky anilides, requiring several days to form **7b**. This allowed identifying an intermediate. Monitoring the reaction by TLC showed the initial appearance of a less polar compound that was slowly converted to **7b**. Interrupting the reaction after 12 h allowed isolation of the 1*H*-benzimidazole **7b** (15%) and a less polar intermediate (59%) that was identified as the phosphine imide **11** [34] by crystal-structure analysis³) (*Fig. 1*).

²⁾ A similar H-bond was observed between neighbouring C(O)NH and NO groups [2][16]. Its effect on the acylation of 2,4-diamino-5-nitrosopyrimidines and 2-amino-4-(methylamino)-5-nitrosopyrimidines was discussed [17]. NH of N-(pyridin-2-yl)isobutyramide in CDCl₃ solution resonates at δ 8.06 ppm [18].

³) The crystallographic data have been deposited with the *Cambridge Crystallographic Data Centre*, with deposition No. CCDC-807072 for **11** and CCDC-807073 for **9**. Copies of the data can be obtained free of charge *via* http://www.ccdc.cam.ac.uk/data_request/cif.

Table. Reductive Cyclisation of 2-Nitroanilides 1-4 and N-(3-Nitropyridin-2-yl) Amide 5 with
Phosphines or Phosphites

Entry	Starting material		Conditions")	Product		rield [%]
1	1	[20][15a]	A (12 h)	6a	[21][6q]	85
2	1		В	6a		70
3	1		С	6b	[22][6z][6aa][7b]	42
4	2a	[23][15a]	A (12 h)	7a	[24][25]	74
5	2a		В	7a		70
6	2a		D	7a		69
7	2b	[26][15a]	A (144 h)	7b	[27][61]	49
8	2c	[28][15b]	A (12 h)	7c	[21][6c]	62
9	2c		D	7c		76
10	2d	[29][15b]	A (12 h)	7d	[30][6b]	64
11	2d		D	7d		53
12	3	[31][15b]	A (12 h)	8	[32][33]	45
13	4	[15c]	A (12 h)	9		49
14	5	-	A (12 h)	10		63

^a) *A*: PPh₃, decane, reflux ($T_{reflux} = 168 - 178^{\circ}$); *B*: 1,2-bis(diphenylphosphino)ethane (DPPE), diethylene glycol diethyl ether, reflux ($T_{reflux} = 180 - 190^{\circ}$), 2 h; *C*: P(OEt)₃, decane, reflux, 12 h; *D*: PPh₃, 1,2dichlorobenzene/DMF, microwave irradiation, 250°, 1 bar, 30 min.

In the solid state of **11**, the acylamino group adopts the s-*cis*-configuration. The torsion angle C(1)-N(7)-C(8)-O(9) is -7.3° , with the C=O group turned away from to the phosphine imide moiety, the torsion angle C(8)-N(7)-C(1)-C(2) being -175.3° . In solution in CDCl₃, **11** forms an intramolecular NH····N=P H-bond, as evidenced by the chemical shift of the NH signal, resonating at 9.70 ppm. Although the position of the corresponding H-atom in the solid state of **11** could not be determined,

Fig. 1. Crystal structure of the phosphine imide 11

the distance $N(7) \cdots N(14)$ is 2.58 Å, with a calculated $N(7)H \cdots N(14)$ distance of *ca*. 2.16 Å. No intermolecular H-bonds are detectable in the solid state of **11**⁴).

Surprisingly, heating the *N*-methylated isobutyramide **4** and Ph_3P in boiling decane (*Entry 13*) led to a product (49%) that could not be the expected benzimidazole, the CH group of the isopropyl group resonating at an unexpectedly low field (4.74 ppm), and the IR spectrum showing a strong (C=O) band at 1688 cm⁻¹. The structure of the benzimidazolone **9** was established by crystal structure analysis³) (*Fig. 2*).

Fig. 2. Crystal structure of the rearrangement product 9

⁴) A considerable number of crystal structure analyses of phosphine imides were found in the *Cambridge Data File*, many of them as metal complexes. For representative references, see [35].

The formation of the phosphine imide 11 and, particularly, the contrast between the formation of the benzimidazole 8 from 3, but of the benzimidazolone 9 from 4, were surprising. We had expected the reaction mechanism for the cyclisation of the nitroanilides 1-4 to be similar to the one suggested for the cyclisation of 4-(acylamino)-5nitrosopyrimidines [1], *i.e.*, reduction of the NO₂ to the NO group, followed by addition of the phosphine to the NO group, and formation of an aza-Wittig reagent⁵) via a nitrene or nitrenoid intermediate. Surprisingly, however, no intermediate phosphine imide was observed during the formation, under milder reaction conditions, of an 8-(tert-butyl)guanine from a 4-(pivaloylamino)-5-nitrosopyrimidine [1]. The addition of a phosphine to the NO_2 group⁶) is thought to occur more slowly than that to the NO group, due to the different formal negative charge on the O-atoms [39], the relative stability of NO_2 and NO compounds, and – for nitrosopyrimidines – also to the effect of the electronegative properties of the heteroaromatic ring⁷). For the anilides 1 and 2, and for 5, the nucleophilic attack of the phosphine may also occur more readily than onto the N-alkylated nitro-anilide 3, on account of the intramolecular H-bond. This difference of reactivity of the nitro-anilides is, however, not expected to affect the outcome of the reaction, and the lower yields for the cyclisation of 3 to 8 must reflect the different reactivity of the bona fide NO intermediate, or one of the subsequently formed reactive intermediates.

A reaction mechanism rationalising the observations is depicted in the *Scheme 2*. Starting material (SM) for the discussion of the reaction mechanism are the *bona fide* intermediate nitrosoamides. Addition of Ph_3P to the nitrosoamides possessing an NH group is expected to lead to an intermediate **12**, which is stabilized by an intramolecular $NH \cdots N$ H-bond. Elimination of Ph_3PO then generates the H-bond-stabilised nitrenoid intermediate **13** [40]. Reaction with Ph_3P forms the phosphine imide **14**, which is also stabilized by an intramolecular H-bond. As a consequence of this H-bond, the phosphine imide moiety and the C=O group of **14** are too far away from each other to undergo an intramolecular aza-*Wittig* reaction⁸). However, at the high temperature of the reaction, conformers **14** and **15** will (partially) equilibrate. The ensuing aza-*Wittig* reaction of conformer **15** leads to the observed benzimidazoles **6** and **7**.

The aza-*Wittig* reaction of the pivaloyl amide is sufficiently slow to allow isolating the phosphine imide **11**, since addition of the phosphine imide moiety to the C=O group generates an intermediate with two adjacent tetrahedral centres.

In the absence of the NH group, elimination of Ph_3PO from the addition product **16** may lead to the nitrene **17**, as there is no configurational bias by a H-bond.

⁵) For the formation of indoles by intramolecular *Wittig* reaction, see [36]. For a review about phosphine imides in the synthesis of heterocycles, see [37].

⁶) A single-electron transfer (SET) to the NO_2 group cannot be excluded on the basis of our experiments. For a reaction of a phosphite anion that leads to a SET to a shielded NO_2 compound and to a nucleophilic attack on a less shielded analogue, see [38].

⁷⁾ The consequence, *i.e.*, the expectation that the cyclisation of *ortho*-nitro-anilides possessing acceptor substituents and of heteroaromatic analogues will give the best results, has not yet been checked.

⁸⁾ A similar effect of an intramolecular H-bond stabilizing the starting material was observed for the intramolecular [4+2] cycloaddition of 6-(dienoylamino)-5-nitrosopyrimidines [2][41] and for the nitroso-ene reaction of 4-(alkenoylamino)-5-nitrosopyrimidines [16].

Scheme. Reaction Mechanism Rationalising the Transformation of the Intermediate Nitrosoanilines (SM=Starting Material) to the Products 6–8 of Cyclisation and to the Rearrangement Product 9

Electrocyclisation of **17** forms **18** that may evolve towards the oxaziridine **19**. Oxaziridine intermediates were considered before as intermediates in related reactions [42]. The N–O bond of **19** may open either to generate the *N*-oxide **20** that will be deoxygenated by Ph₃P, leading to the dimethylbenzimidazole **8**, or to the *ortho*-diazaquinoid intermediate **21** that will generate the rearranged product **9** either by a [1,5] signatropic rearrangement [43], or by a 1,2 pinacol–pinacolone type migration of the i-Pr group. It is, however, not clear why there should be such a dichotomy in the opening of the oxaziridine substituted by either a Me, or an i-Pr group, so that one oxaziridine will react while maintaining the aromatic ring intact, and the other one lead to dearomatization. It is more likely that the isobutyrylamino group of **16** (R = 1-methylethyl = isopropyl) is more strongly turned out of the plane of the aromatic ring than the one of the analogous acetamido derivative, and directly attacked by the negatively charged N-centre to generate the phosphorane **22** and hence **21**, while the acetamido analogue may evolve *via* **17**–**20**, and result in the benzimidazole **8**.

Thus, *ortho*-nitro-anilides are converted by reaction with phosphines in one pot to form annulated imidazoles or imidazolones in non-optimized yields between 45 and 85%, with intramolecular H-bonds and conformational aspects strongly influencing the course of the transformation.

We thank the *Syngenta AG*, Basel, for generous support, Dr. *Bruno Bernet* for checking the experimental data, and Dr. *W. Bernd Schweizer* for determining the crystal structures.

Experimental Part

General. Solvents were distilled. Commercially available reagents were used as supplied. The reactions were carried out in oven-dried glassware, under N₂ or Ar, unless stated otherwise. Qual. TLC: precoated silica-gel plates (*Merck* silica gel 60 F_{254}); detection by UV. Flash chromatography (FC): silica gel *Fluka 60* (0.04–0.063 mm) or alumina under slightly elevated pressure (0.1–0.4 bar). M.p.: uncorrected. IR Spectra: *ca.* 2% soln. in CHCl₃; absorptions in cm⁻¹. NMR Spectra: chemical shifts δ in ppm rel. to TMS as external standard or to a solvent peak; multiplicities of ¹³C-signals determined by DEPT (distortionless enhancement of polarisation transfer). HR-MS-MALDI: in gentisic acid (=2,5-dihydroxybenzoic acid, DHB) or 3-hydroxypicolinic acid (3-HPA) matrix. For elemental analysis, samples were sublimed or dried for at least 3 d at <10⁻⁴ Torr.

General Procedure for the Synthesis of Anilides **1** and **2**. The acyl chloride (1.5 equiv.) was added over 30 min to a cold (4°) orange soln. of 2-nitroaniline (3–4 mmol) and DMAP (=4-(dimethylamino)pyridine; 0.03 equiv.) in a 1:1 mixture of pyridine (12–15 equiv.) and CH₂Cl₂. The mixture was stirred, until TLC indicated the disappearance of the starting material, diluted with CH₂Cl₂, washed with 2M HCl, sat. aq. NaHCO₃ soln., and brine, dried (MgSO₄), and evaporated. FC afforded the desired anilides.

General Procedure for the Synthesis of Anilides **3** and **4**. A dark ocre soln. of *N*-methyl-2-nitroaniline (4-5 mmol) in an acyl chloride (10-20 equiv.) was treated with Hünig's base (1.3-1.5 equiv.) at 25°. The mixture was stirred at the indicated temp., until TLC indicated the disappearance of the starting material, and poured into 10% aq. Na₂CO₃ soln. The mixture was vigorously stirred for 1 h and extracted with CH₂Cl₂. The combined org. layers were washed with brine, dried (MgSO₄), and evaporated. FC afforded the desired anilides.

General Procedure A for the Synthesis of Benzimidazoles. A soln. of an anilide (0.5 mmol) in decane (5 ml) was treated with Ph_3P (4 equiv.). The mixture was heated to reflux, until TLC indicated the disappearance of the starting material, left to reach 25°, diluted with CHCl₃, and purified by FC and/or crystallisation to obtain the desired benzimidazoles.

General Procedure B for the Synthesis of Benzimidazoles. A soln. of an anilide (0.1 mmol) in 1,2dichlorobenzene (1.5 ml) and DMF (0.15 ml) was treated with Ph_3P (4 equiv.). The mixture was heated to 250° at 1 bar in the microwave oven for 30 min. FC afforded the desired benzimidazoles.

Acylation of 3-Nitropyridin-2-amine. According to the general procedure for **3** and **4** at 25°. FC (silica gel, cyclohexane/AcOEt $6:1 \rightarrow 3:1 \rightarrow 1:1$) gave 61% of compound **5** and 35% of 2-methyl-*N*-(2-methylpropanoyl)-*N*-(3-nitropyridin-2-yl)propanamide.

2-*Methyl*-N-(*3-nitropyridin-2-yl*)*propanamide* (**5**). Yellow solid. M.p. 132–133.5°. $R_{\rm f}$ (cyclohexane/AcOEt 1:1) 0.28. ¹H-NMR (300 MHz, CDCl₃): 9.82 (br. *s*, exchange with D₂O, NH); 8.70 (*dd*, *J* = 4.7, 1.7, H–C(6')); 8.47 (*dd*, *J* = 8.2, 1.7, H–C(4')); 7.23 (*dd*, *J* = 8.2, 4.7, H–C(5')); 2.78 (*sept.*, *J* = 6.9, Me₂CH); 1.31 (*d*, *J* = 6.9, Me₂CH). HR-EI-MS: 209.0794 (8, M^+ , C₉H₁₁N₃O₃⁺; calc. 209.0800), 163.0865 (14, [$M - NO_2$]⁺, C₉H₁₁N₂O⁺; calc. 163.0871), 70.0331 (69), 43.0575 (100).

2-Methyl-N-(2-methylpropanoyl)-N-(3-nitropyridin-2-yl)propanamide. Ocre solid. M.p. 67.5–69.5°. $R_{\rm f}$ (cyclohexane/AcOEt 1 : 1) 0.53. ¹H-NMR (300 MHz, CDCl₃): 8.79 (*dd*, *J* = 4.8, 1.7, H–C(6')); 8.46 (*dd*, *J* = 8.2, 1.7, H–C(4')); 7.59 (*dd*, *J* = 8.2, 4.8, H–C(5')); 2.91 (*sept.*, *J* = 6.7, 2 Me₂CH); 1.20 (*d*, *J* = 6.7, 2 Me₂CH); 1.20 (*d* =

2-(1-Methylethyl)-3H-imidazo[4,5-b]pyridine (10). General procedure A (12 h at reflux). FC (silica gel; cyclohexane/AcOEt/MeOH 1:1:0→1:3:0→1:3:0.05), followed by FC (CHCl₃/AcOEt 2:1→1:4), gave 10 (63%). Colourless solid. M.p. 149–151.5° (sublimed). $R_{\rm f}$ (AcOEt) 0.21. IR (CHCl₃): 3451w, 3223m, 3154m, 3089s, 2972s, 2876m, 2776m, 2747m, 1924w, 1887w, 1851w, 1729w, 1615m, 1598m, 1520m, 1485w, 1460m, 1432s, 1418s, 1391m, 1305m, 1280m, 1264s, 1161w, 1115w, 1093m, 1066w, 1050w, 980w, 917w. ¹H-NMR (300 MHz, CDCl₃): 13.87 (br. *s*, exchange with D₂O, NH); 8.36 (*dd*, *J* = 5.0, 1.4, H–C(5)); 8.07 (br. *d*, *J* = 7.9, H–C(7)); 7.26 (*dd*, *J* = 8.0, 5.0, H–C(6)); 3.39 (sept., *J* = 7.0, Me₂CH); 1.58

*1,3-Dihydro-1-methyl-3-(1-methylethyl)-*2H-*benzimidazol-2-one* (**9**). General procedure *A*. FC (cyclohexane/AcOEt 1:1) gave **9** (49%). Colourless solid. M.p. $104-106^{\circ}$. $R_{\rm f}$ (cyclohexane/AcOEt 2:1) 0.32. IR (CHCl₃): 3067w, 3031w, 3007m, 2983m, 2938w, 2881w, 1916w, 1866w, 1812w, 1688s, 1620w, 1606w, 1496s, 1458w, 1436m, 1398m, 1390m, 1372w, 1362w, 1324w, 1218w, 1161w, 1129w, 1093w, 1084w, 1048w, 1021w, 951w, 910w. ¹H-NMR (300 MHz, CDCl₃): 7.16-6.94 (*m*, 4 arom. H); 4.74 (*sept.*, J = 7.0, Me₂CH); 3.40 (*s*, MeN); 1.53 (*d*, J = 7.0, Me₂CH). ¹³C-NMR (300 MHz, CDCl₃): 154.05 (*s*, C=O); 130.43, 128.39 (2*s*, C(3a), C(7a)); 120.98, 120.81 (2*d*, C(5), C(6)); 109.02, 107.56 (2*d*, C(4), C(7)); 45.18 (*d*, Me₂CH); 27.12 (*q*, MeN); 20.45 (*q*, Me₂CH). HR-EI-MS: 190.1097 (58, M^+ , C₁₁H₁₄N₂O⁺; calc. 190.1106), 175.0858 (27, $[M - Me]^+$, C₁₀H₁₁N₂O⁺; calc. 175.0871), 148.0630 (100, $[M - C_3H_6]^+$, C₈H₈N₂O⁺; calc. 148.0637). LR-ESI-MS: 213.2 (100, $[M + Na]^+$). Anal. calc. for C₁₁H₁₄N₂O · 1/8 H₂O (192.49): C 68.63, H 7.46, N 14.55; found: C 68.69, H 7.44, N 14.35.

Crystal Structure of **9**. $C_{11}H_{14}N_2O$ (190.246), Monoclinic P_{2_1}/n , a = 9.0169 (10) Å, b = 9.9103 (12), c = 12.030 (2) Å, $\beta = 105.013$ (7)°, V = 1038.3 (2) Å³, Z = 4, $D_{calc} = 1.217$ Mg/m³, F(000) = 408.0. The reflexions were measured on a *Bruker Nonius Kappa CCD* diffractometer with MoK_a radiation $\lambda = 0.71073$ at 223 K, θ range = $2.753 - 24.108^{\circ}$. Refinement on F^2 (full-matrix least-squares refinement), R(all) = 0.0809, R(gt) = 0.0563. All the calculations were performed using maXus. The programme SHELXS-97 was used to solve the structure, and the programme SHELXL-97 was used to refine the structure.

2,2-Dimethyl-N-{2-[(triphenylphosphoranylidene)amino]phenyl]propanamide (11). General procedure A (12 h at reflux). FC (alumina B, act. III; cyclohexane/AcOEt $5:1 \rightarrow 3:1$); gave 11 (59%) and 7b (15%).

Data of **11**. Colourless solid. M.p. 180 – 181.5° (Et₂O/hexane). R_f (cyclohexane/AcOEt 2:1) 0.45. IR (CHCl₃): 3336w, 3079w, 3061w, 3007m, 2965w, 2870w, 1983w, 1963w, 1916w, 1895w, 1818w, 1775w, 1655m, 1592m, 1574m, 1517s, 1483m, 1469m, 1446s, 1437s, 1398w, 1345s, 1309s, 1257w, 1162w, 1116s, 1050w, 1020m, 999w, 923w. ¹H-NMR (300 MHz, CDCl₃): 9.70 (br. *s*, exchange with CD₃OD, NH); 8.45 (*ddd*, J = 8.0, 2.7, 1.8, H-C(6)); 7.79 – 6.69 (*m*, 6 arom. H); 7.60 – 7.42 (*m*, 9 arom. H); 6.69 (*td*, J = 7.6, 1.3), 6.59 (*td*, J = 7.6, 1.8) (H−C(4), H−C(5)); 6.42 (*dt*, $J \approx 7.8, 1.3, H−C(3)$); 1.32 (*s*, *t*-Bu). ¹³C-NMR (CDCl₃, 75 MHz): 176.35 (*s*, C=O); 139.73 (*s*, C(2)); 133.25 (*d*, ³*J*(C,P) = 19.8, C(1)); 132.60 (*dd*, ²*J*(C,P) = 9.7, 3 C(2') and 3 C(6')); 132.14 (*dd*, ⁴*J*(C,P) = 2.7, 3 C(4')); 130.60 (*d*, ¹*J*(C,P) = 100.1, 3 C(1')); 128.86 (*dd*, ³*J*(C,P) ≈ ²*J*(C,P) ≈ 2.6, C(3) and C(4)); 40.09 (*s*, Me₃C); 28.06 (*q*, *Me*₃C). HR-MALDI-MS: 453.2097 (100, [*M* + H]⁺, C₂₉H₃₀N₂OP⁺; calc. 453.2096). Anal. calc. for C₂₉H₃₀N₂OP (752.53): C 76.80, H 6.67, N 6.18, P 6.83; found: C 76.54, H 6.63, N 6.24, P 6.81.

Crystal Structure of **11**. C₂₉H₂₉N₂OP (452.538), Monoclinic P₂₁/c, a = 9.0471 (2), b = 14.3479 (4), c = 19.6929 (5) Å, $\beta = 102.671$ (2)°, V = 2494.02 (11) Å³, Z = 4, $D_{calc} = 1.205$ Mg/m³, F(000) = 960.0. The reflexions were measured on a *Bruker Nonius Kappa CCD* diffractometer with MoK_a radiation $\lambda = 0.71073$ at 298 K, θ range = 2.425 – 27.485°. Refinement on F^2 (full-matrix least-squares refinement), R(all) = 0.1318, R(gt) = 0.0848. All calculations were performed using maXus. The programme SIR97 was used to solve the structure, and the programme SHELXL-97 was used to refine the structure.

REFERENCES

- [1] M. Xu, F. De Giacomo, D. E. Paterson, T. G. George, A. Vasella, Chem. Commun. 2003, 1452.
- [2] T. Steinlin, A. Vasella, Helv. Chim. Acta 2008, 91, 435.
- [3] T. G. George, P. Szolcsányi, S. G. Koenig, D. E. Paterson, Y. Isshiki, A. Vasella, *Helv. Chim. Acta* 2004, 87, 1287.
- [4] B. G. Gowenlock, G. B. Richter-Addo, Chem. Rev. 2004, 104, 3315.

- [5] B. C. Challis, R. J. Higgins, A. J. Lawson, J. Chem. Soc., Perkin Trans. 2 1972, 1831.
- [6] a) K. Bahrami, M. M. Khodaei, A. Nejati, Green Chem. 2010, 12, 1237; b) M. A. Chari, D. Shobha, E.-R. Kenawy, S. S. Al-Deyab, B. V. S. Reddy, Tetrahedron Lett. 2010, 51, 5195; c) S. Gupta, P. K. Agarwal, B. Kundu, Tetrahedron Lett. 2010, 51, 1887; d) Y. Shiraishi, Y. Sugano, S. Tanaka, T. Hirai, Angew. Chem., Int. Ed. 2010, 49, 1656; e) A. J. Blacker, M. M. Farah, M. I. Hall, S. P. Marsden, O. Saidi, J. M. J. Williams, Org. Lett. 2009, 11, 2039; f) H. Z. Boeini, K. H. Najafabadi, Eur. J. Org. Chem. 2009, 4926; g) E. C. Creencia, M. Kosaka, T. Muramatsu, M. Kobayashi, T. Iizuka, T. Horaguchi, J. Heterocycl. Chem. 2009, 46, 1309; h) X. Deng, H. McAllister, N. S. Mani, J. Org. Chem. 2009, 74, 5742; i) J. She, Z. Jiang, Y. Wang, Synlett 2009, 2023; j) Q. Xiao, W.-H. Wang, G. Liu, F.-K. Meng, J.-H. Chen, Z. Yang, Z.-J. Shi, Chem.-Eur. J. 2009, 15, 7292; k) O. Algul, A. Kaessler, Y. Apcin, A. Yilmaz, J. Jose, Molecules 2008, 13, 736; 1) G. Brasche, S. L. Buchwald, Angew. Chem., Int. Ed. 2008, 47, 1932; m) B. Das, B. S. Kanth, K. R. Reddy, A. S. Kumar, J. Heterocycl. Chem. 2008, 45, 1499; n) J. C. Lewis, A. M. Berman, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2008, 130, 2493; o) W. Shen, T. Kohn, Z. Fu, X. Jiao, S. Lai, M. Schmitt, Tetrahedron Lett. 2008, 49, 7284; p) Y. Yamamoto, T. Tsuritani, T. Mase, Tetrahedron Lett. 2008, 49, 876; q) D. Yang, H. Fu, L. Hu, Y. Jiang, Y. Zhao, J. Org. Chem. 2008, 73, 7841; r) J. W. Hubbart, A. M. Piegols, B. C. G. Söderberg, Tetrahedron 2007, 63, 7077; s) J. C. Lewis, J. Y. Wu, R. G. Bergman, J. A. Ellman, Angew. Chem., Int. Ed. 2006, 45, 1589; t) H. Ma, Y. Wang, A. Wang, Heterocycles 2006, 68, 1669; u) P. Sun, Z. Hu, J. Heterocycl. Chem. 2006, 43, 773; v) J. Charton, S. Girault-Mizzi, C. Sergheraert, Chem. Pharm. Bull. 2005, 53, 492; w) Z.-X. Wang, H.-L. Qin, J. Heterocycl. Chem. 2005, 42, 1001; x) D. Yang, D. Fokas, J. Li, L. Yu, C. M. Baldino, Synthesis 2005, 47; y) M. Curini, F. Epifano, F. Montanari, O. Rosati, S. Taccone, Synlett 2004, 1832; z) T. Itoh, K. Nagata, H. Ishikawa, A. Ohsawa, Heterocycles 2004, 63, 2769; aa) V. K. Tandon, M. Kumar, Tetrahedron Lett. 2004, 45, 4185.
- [7] a) A. B. Alloum, K. Bougrin, M. Soufiaoui, *Tetrahedron Lett.* 2003, *44*, 5935; b) C. T. Brain, J. T. Steer, *J. Org. Chem.* 2003, *68*, 6814; c) C. T. Brain, S. A. Brunton, *Tetrahedron Lett.* 2002, *43*, 1893; d) T. Fonseca, B. Gigante, T. L. Gilchrist, *Tetrahedron* 2001, *57*, 1793; e) A. Navarro-Ocaña, L. F. Olguín, H. Luna, M. Jiménez-Estrada, E. Bárzana, *J. Chem. Soc., Perkin Trans. 1* 2001, 2754.
- [8] F. Hobrecker, Ber. Dtsch. Chem. Ges. 1872, 5, 920.
- [9] M. R. Grimmett, 'Imidazole and Benzimidazole Synthesis', Academic Press, San Diego, 1997.
- [10] J. B. Wright, Chem. Rev. 1951, 48, 397.
- [11] P. N. Preston, Chem. Rev. 1974, 74, 279.
- [12] A. F. Pozharskii, A. D. Garnovskii, A. M. Simonov, Russ. Chem. Rev. (Engl. Transl.) 1966, 35, 122.
- [13] P. N. Preston, G. Tennant, Chem. Rev. 1972, 72, 627.
- [14] R. Rastogi, S. Sharma, Synthesis 1983, 861.
- [15] a) M. Miyashita, I. Shiina, T. Mukaiyama, Bull. Chem. Soc. Jpn. 1994, 67, 210; b) S. Darvesh, R. S. McDonald, K. V. Darvesh, D. Mataija, S. Mothana, H. Cook, K. M. Carneiro, N. Richard, R. Walsh, E. Martin, Bioorg. Med. Chem. 2006, 14, 4586; c) J. A. Murphy, S. J. Roome, J. Chem. Soc., Perkin Trans. 1 1995, 1349.
- [16] F.-L. Zhang, W. B. Schweizer, M. Xu, A. Vasella, Helv. Chim. Acta 2007, 90, 521.
- [17] T. Steinlin, A. Vasella, Helv. Chim. Acta 2009, 92, 588.
- [18] M. L. H. Mantel, A. T. Lindhardt, D. Lupp, T. Skrydstrup, Chem.-Eur. J. 2010, 16, 5437.
- [19] I. A. O'Neil, S. Thompson, C. L. Murray, S. B. Kalindjian, Tetrahedron Lett. 1998, 39, 7787.
- [20] W. Koerner, Gazz. Chim. Ital. 1874, 4, 305.
- [21] H. Hübner, Justus Liebigs Ann. Chem. 1881, 209, 339.
- [22] A. Hempel, J. Prakt. Chem. 1890, 41, 161.
- [23] E. Hayashi, Y. Miura, Yakugaku Zasshi 1967, 87, 648.
- [24] O. Hinsberg, F. Funcke, Ber. Dtsch. Chem. Ges. 1893, 26, 3092.
- [25] K. N. Zelenin, I. V. Ukraintsev, V. V. Alekseev, Chem. Heterocycl. Compd. 1998, 34, 329.
- [26] M. Miyashita, I. Shiina, T. Mukaiyama, Chem. Lett. 1993, 1053.
- [27] M. T. Davies, P. Mamalis, V. Petrow, B. Sturgeon, J. Pharm. Pharmacol. 1951, 3, 420.
- [28] H. Hübner, Justus Liebigs Ann. Chem. 1881, 208, 278.
- [29] G. Tennant, J. Chem. Soc. 1964, 2666.
- [30] R. Walther, T. von Pulawski, J. Prakt. Chem. 1899, 59, 249.

- [31] M. A. Phillips, J. Chem. Soc. 1929, 2820.
- [32] O. Fischer, Ber. Dtsch. Chem. Ges. 1892, 25, 2826.
- [33] A. Gazit, K. Yee, A. Uecker, F. D. Böhmer, T. Sjöblom, A. Östman, J. Waltenberger, G. Golomb, S. Banai, M. C. Heinrich, A. Levitzki, *Bioorg. Med. Chem.* 2003, 11, 2007.
- [34] A. W. Johnson, 'Iminophosphoranes and Related Compounds', in 'Ylides and Imines of Phosphorous', John Wiley & Sons, New York, 1993, p. 403-483.
- [35] a) A. L. Llamas-Saiz, C. Foces-Foces, J. Elguero, P. Molina, M. Alajarín, A. Vidal, J. Chem. Soc., Perkin Trans. 2 1991, 1667; b) A. L. Llamas-Saiz, C. Foces-Foces, J. Elguero, P. Molina, M. Alajarín, A. Vidal, Acta Crystallogr., Sect. C 1992, 48, 1940; c) S. Eguchi, K. Yamashita, Y. Matsushita, A. Kakehi, J. Org. Chem. 1995, 60, 4006; d) P. Molina, A. Tárraga, D. Curiel, Tetrahedron 1997, 53, 15895; e) G. C. Welch, W. E. Piers, M. Parvez, R. McDonald, Organometallics 2004, 23, 1811; f) J. D. Masuda, D. M. Walsh, P. Wei, D. W. Stephan, Organometallics 2004, 23, 1819; g) K. D. Conroy, W. E. Piers, M. Parvez, J. Organomet. Chem. 2008, 693, 834.
- [36] M. Le Corre, A. Hercouet, H. Le Baron, J. Chem. Soc., Chem. Commun. 1981, 14.
- [37] E. Zbiral, 'Transformations via Phosphorous-stabilized Anions 4: Heterocyclic Synthesis via Alkylidenephosphoranes, Iminophosphoranes, and Vinylphosphonium Salts', in 'Organophosphorous Reagents in Organic Synthesis', Ed. J. I. G. Cadogan, Academic Press, London, 1979, p. 223 – 268.
- [38] R. Meuwly, A. Vasella, Helv. Chim. Acta 1985, 68, 997.
- [39] G. H. Wagnière, 'Theoretical Aspects of the C–NO and C–NO₂ Bonds', in 'The Chemistry of the Nitro and Nitroso Groups', Ed. S. Patai, Interscience Publishers, New York, 1969, p. 1–77.
- [40] J. I. G. Cadogan, Synthesis 1969, 11; J. H. Boyer, 'Deoxygenation of Nitro and Nitroso Groups', in 'Nitrenes', Ed. W. Lwowski, John Wiley & Sons, New York, 1971, p. 163–184.
- [41] M. Xu, A. Vasella, Helv. Chim. Acta 2006, 89, 1140.
- [42] J. I. G. Cadogan, 'Deoxygenation via Phosphorous (III) Reagents 1: Heterocyclic Synthesis using Aromatic Nitro Compounds', in 'Organophosphorous Reagents in Organic Synthesis', Ed. J. I. G. Cadogan, Academic Press, London, 1979, p. 269–294 and refs. cit. therein.
- [43] C. W. Spangler, Chem. Rev. 1976, 76, 187.

Received March 22, 2011