ISSN 1070-4272, Russian Journal of Applied Chemistry, 2010, Vol. 83, No. 9, pp. 1666–1667. © Pleiades Publishing, Ltd., 2010. Original Russian Text © B.F. Kukharev, V.K. Stankevich, G.R. Klimenko, N.A. Lobanova, E.N. Kovalyuk, A.Yu. Negoda, V.V. Stankevich, E.V. Bragin, 2010, published in Zhurnal Prikladnoi Khimii, 2010, Vol. 83, No. 9, pp. 1570–1571.

> BRIEF COMMUNICATIONS

Anticorrosion Properties of Products of N-(2-Vinyloxyethyl)-1,2-ethylenediamine Condensation with Carbonyl Compounds

B. F. Kukharev, V. K. Stankevich, G. R. Klimenko, N. A. Lobanova, E. N. Kovalyuk, A. Yu. Negoda, V. V. Stankevich, and E. V. Bragin

Favorskii Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia

Received December 24, 2009

Abstract—*N*-(2-Vinyloxyethyl)-*N*'-cyclohexylidene-1,2-ethylenediamine and *N*,*N*',*N*"-tris-[2-(2-vinyloxyethyl)-aminoethyl]hexahydro-1,3,5-triazine were synthesized by reactions of *N*-(2-vinyloxyethyl)-1,2-ethylenediamine with cyclohexanone and formaldehyde with yields of 91 and 90%, respectively. The IR and ¹H and ¹³C NMR spectral data and the results of studying their anticorrosion properties are given.

DOI: 10.1134/S1070427210090302

Nitrous bases [1, 2], in particular some vinyl ethers of amino alcohols and their derivatives [3, 4], are known to exhibit anticorrosion properties.

To detect anticorrosion properties of vinyl ether *N*-(2-amino-ethyl)-1,2-aminoethanol (I) and its derivatives, in the present work we have carried out the condensation of this ether with carbonyl compounds, which are accessible large-tonnage products: cyclohexanone and formaldehyde (in the form of paraformaldehyde).

The condensation was carried out at boiling of an equimolar mixture of reagents in toluene with azeotropic distilling off water. As a result imine (IV) was obtained from cyclohexanone (II) and amine (I) with a yield of 91%. As it is known for imines, which are derivatives of formaldehyde [5], imine (V) formed intermediately in the reaction of formaldehyde (III) with amine (I) is trimerized into triazine (VI). The yield of triazine (VI) was 90%:

The trimeric structure of product VI is confirmed by the absence of signals of protons and of the carbon atom of the = CH_2 group from the ¹H and ¹³C NMR spectra, the presence of signals of protons and of the carbon atom of the NCH₂N group, and also by a high boiling point essentially exceeding the boiling point of imine **IV**.

To estimate inhibiting properties of initial vinvl ether of amino alcohol I and compounds IV and VI obtained from it, we have studied their effect on the corrosion of St.20 steel in 20% hydrochloric acid. The rate of metal dissolution was determined by a gravimetric method using 2×20×6 mm steel samples according to GOST 9.505-86 at 20°C and exposure time of 3 h. At the concentration of compounds I and IV 10^{-2} M and of compound VI 3.33×10^{-3} M the following protective effect Z (%) was obtained: 97.5 (IV), 94.4 (VI), and 34.9 (I). Thus, it has been shown that though N-(2-vinvloxvethyl)-1,2-ethylenediamine (I) itself does not inhibit the acid corrosion process, the products of its condensation with carbonyl compounds IV and VI possess a good protective effect. It shows searching for new corrosion inhibitors among such compounds is promising.

EXPERIMENTAL

Commercial paraformaldehyde (purity of 98.3%) and cyclohexanone purified by fractionation up to a base material content of no less than 99.8% were used for the synthesis. *N*-(2-Vinyloxyethyl)-1,2-ethylenediamine was obtained by a procedure described in [6].

N-(2-Vinyloxyethyl)-N'-cyclohexylidene-1,2-ethylenediamine (IV). A mixture of 26 g (0.2 mol) of N-(2-vinyloxyethyl)-1,2-ethylenediamine (I), 19.6 g (0.2 mol) of cyclohexanone, and 100 ml of toluene were boiled with a Dyne-Stark trap up to the termination of water separation. The reaction mixture was cooled and distilled. Yield of compound IV 38.2 g (91%), bp 119–121°C (3 mm Hg), n_D^{20} 1.500. IR spectrum, v, cm⁻¹: 1605, 1615, 1660, 3040, 3065, 3100, 3285. ¹H NMR spectrum, δ , ppm (J, Hz): 6.44 d.d (OCH=C, 1H, ³J_{cis} 6.7, ³J_{trans} 14.3), 4.13 d.d (trans-CH=C, 1H, ${}^{2}J_{hem}$ 1.8, ${}^{3}J_{trans}$ 14.3), 3.95 d.d (*cis*-CH=C, 1H, ${}^{2}J_{hem}$ 1.8, ${}^{3}J_{cis}$ 6.7), 3.73 t (OCH₂, 2H, ${}^{3}J$ 6.1), 3.25 br.s (NH, 1H), 3.01 t (=NCH₂, 2H, ³J 6.9), 2.86 t (=NCH₂CH₂, 2H, 3J 6.9), 2.75 t (OCH₂CH₂N, 2H, ³J 6.1), 1.30–1.80 m (C₅H₁₀, 10H). ¹³C NMR spectrum, δ , ppm: 172.92 (N=C), 153.13 (OCH=), 87.80 (=CH₂), 69.01 (OCH₂), 52.69 (CH₂N=), 49.88 (NHCH₂· CH₂N=), 49.39 (OCH₂CH₂NH), 32.81 (CH₂CH₂· CH₂CH₂CH₂), 28.35 (sin-CN=CCH₂CH₂), 27.45 (anti-CN=CCH₂CH₂), 25.11 (CH₂CH₂CH₂CH₂CH₂). Found, %: C 68.64, H 10.62, N 13.17. C₁₂H₂₂N₂O. Calculated, %: C 68.53, H 10.54, N 13.32.

N,N',N"-Tris-[2-(2-vinyloxyethyl)aminoethyl]hexahydro-1,3,5-triazine (VI). Similarly to the previous synthesis from 25.6 g (90%) of compound VI, bp 175–178°C (3 mm Hg), d_4^{20} 1.0218, n_D^{20} 4960, was obtained from 26 g (0.2 mol) of N-(2-vinyloxyethyl)-1,2-ethylenediaminea (I) and 6 g (0.2 mol) of paraformaldehyde (III). IR spectrum, v, cm^{-1} : 1605, 1625, 3025, 3075, 3110, 3280. ¹H NMR spectrum, δ , ppm (J, Hz): 6.43 d.d (OCH=C, 1H, ${}^{3}J_{cis}$ 6.9, ${}^{3}J_{trans}$ 14.3), 4.10 d.d (*trans*-CH=C, 1H, ${}^{2}J_{hem}$ 1.8, ${}^{3}J_{trans}$ 14.3), 3.93 d.d (*cis*-CH=C, 1H, ${}^{2}J_{hem}$ 1.8, ${}^{3}J_{cis}$ 6.9), 3.44 s(NCH₂N, 2H), 3.73 t (OCH₂, 2H, 3J 5.6), 3.01 t (NHCH₂CH₂N, 2H, ³J 7.1), 2.73 t (NHCH₂CH₂O, 2H, ³J 5.6), 2.62 t (NHCH₂CH₂N, 2H, ³J 7.1), 1.83 br.s (NH, 1H). ¹³C NMR spectrum, δ, ppm: 151.60 (OCH=), 86.34 (=CH₂), 75.32 (NCH₂N), 66.66 (OCH₂), 53.54 52.69 (NCH₂CH₂NH), (NCH_2CH_2NH) , 50.39 (NHCH2CH2O). Found, %: C 59.33, H 10.03, N 19.51. C₂₁H₄₂N₆O₃. Calculated, %: C 59.12, H 9.92, N 19.70.

CONCLUSIONS

(1) It has been shown that products of *N*-(2-vinyloxyethyl)-1,2-ethylenediamine condensation with cyclohexanone and formaldehyde have the imine and symmetrical triazine structures, respectively.

(2) In the case of steel acid corrosion the protective effect N-(2-vinyloxyethyl)-N-cyclohexylidene-1,2-ethyl-enediamine and N,N',N''-tris-[2-(2-vinyloxyethyl)amino-ethyl]hexahydro-1,3,5-triazine is 94.4–97.5%.

REFERENCES

- 1. Rozenfel'd, I.L., *Ingibitory korrozii* (Corrosion Inhibitor), Moscow: Chemistry, 1977.
- vanov, E.S., Ingibitory korrozii metallov v kislykh sredakh (Corrosion Inhibitors of Metals in Acid Media), Moscow: Metallurgiya, 1986.
- Kukharev, B.F., Stankevich, V.K., and Klimenko, G.R., Usp. Khim., 1995, vol. 64, no. 6, pp. 562–579.
- Kukharev, B.F., Stankevich, V.K., Klimenko, G.R., et al., *Zh. Prikl. Khim.*, 2000, vol. 73, pp. 161–163.
- 5. Riehl, M. and Laurent, P.A., *Bull. Soc. Chim. France*, 1969, no. 4, pp. 1223–1226.
- Kukharev, B.F., Stankevich, V.K., Lobanova, N.A., et al., *Zh. Org. Khim.*, 2007, vol. 43, no. 12, pp. 1872– 1873.