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Abstract: A new family of PDE4 inhibitors based on a benzimidazole framework is described. Several of these 
compounds are orally bioavailable and show efficacy in in vivo models of inflammatory disease. 
© 1998 Elsevier Science Ltd. All rights reserved. 

Cyclic nucleotide phosphodiesterases (PDE1-7) are a family of enzymes that degrade the intracellular 

secondary messengers cAMP and cGMP ~ thereby limiting a host cell's response to extracellular signals 

mediated by these carriers. In a number of immunological cell types, elevation of cAMP levels by PDE4 

inhibition z causes activation of negative feedback mechanisms resulting in suppression of the cell's 

inflammatory activities) In particular, this type of manipulation brings about a marked reduction in the release 

of the proinflammatory cytokine TNF-c~ into the blood. 4 These observations have generated considerable 

interest in the use of PDE4 inhibitors for the treatment of various immunological disorders, including asthma 

and rheumatoid arthritis. 5'6 
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The discovery of the first PDE4 selective inhibitor, rolipram (1), more than two decades ago 7 provided a 

benchmark for the development of more potent and selective analogues. Initially, the majority of research in this 

area focused on replacement of the pyrrolidinone of 1 with a wide range of other functionality, s In our 

laboratories, this approach led to the discovery of clinical candidate RP 73401 (2). 9 By contrast, modification of 

the 3,4-dialkoxyphenyl moiety of 1 (or its analogues) has been largely restricted to changes in the nature of the 

alkoxy substituents. The first example of a more radical alteration of the 4-methoxy-phenyl subunit of 1 was 

benzofuran 3? °~ In this paper, we report the synthesis and biological properties of a series of PDE4 inhibitors 
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repr~-nted by 4, in which the 3,4-dialkoxyphenyl group of 2 has been replaced with a 2-substituted-7-methoxy- 

benzimidnzole) °b" In implementing this modification, we hoped to retain the necessary recognition elements for 

enzyme inhibition while (a) reducing the susceptibility of the system to oxidative metabolism H (b) increasing 

water solubility by introduction of an additional heteroatom and (c) providing convenient attachment points 

(imidazole nitrogens) for the introduction of additional functionality to further probe and define the underlying 

pharmacophore. 

Chemistry 

The synthesis of the requisite benzimidazoles is illustrated in Schemes 1 and 2. Fusion of the appropriate 

nitrile (Scheme 1) with 3-amino-4-methoxy benzoic acid methyl ester 5, followed by oxidative cyclization of 

the intermediate amidine 6 furnished the benzimidazole framework 7) 2 After saponification of the ester group in 

7, the resulting acid 8 was activated (TBTU/DIEA) then coupled to 4-amino-3,5-dichloropyridine, using 

NaEt2AIH2, ~3 to give the target amide 4. Where desired, the pyridine nitrogen of 4 was oxidized to the 

corresponding N-oxide 9 using m-CPBA. 
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aReagents and Conditions: (i) R-CN/p-TSA/Heat (60-90%). (ii) aq NaOCI then NaHCO3/reflux (62-95%). (iii) 
aq NaOH, 50 °C (90-98%). (iv) TBTU/DIEA, rt then NaEt2A1HJ4-amino-3,5-dichloropyridine/toluene/THF 
(20--42% based on 8). (v) m-CPBA, rt. 

The N-methylated benzimidazoles 12 and 13 (Scheme 2) were prepared by alkylation of 7d to give 10 

and 11 as a 1/7 mixture which was separated by chromatography. Subsequent processing of 10 and 11 

individually, as described above, provided the target compounds 12 and 13. Structural assignment of the 

isomers was made on the basis of proton-carbon HETCOR analysis. 
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aReagents and Conditions: (i) NaH/MeI/DMF/4 °C, (89% combined). (ii) aq NaOH, 50 °C (95%). (iii) 
TBTU/DIEA, rt then NaEt2AIHJ4-amino-3,5-dichloropyridine/toluene/THF (12: 56%; 13: 43%). 

B i o l o g i c a l  R e s u l t s  

Table 1 summarizes the in vitro activity of a selection of benzimidazoles with respect to both inhibition 

of isolated guinea-pig macrophage PDE4 (IC50) ~4 and association with the high affinity rolipram binding site 

(K~). ~5 In general, inhibition of  PDE4 catalytic activity proved to be quite sensitive to side chain modifications at 

C-2 of the benzimidazole ring. The activities (IC50) of 4a-f  clearly establish that substituents at this position 

play a role in the binding interaction but that a small group, such as a cyclopropyl, provides a sufficient 

presence to attain high activity. Indeed, increasing the size of the C-2 substituent (4e-4f) resulted in a reduction 

in potency. Incorporation of an oxygen atom into the side chain (4g) was tolerated providing a useful 

opportunity for increasing the polarity of these lipophilic compounds (e.g., 4d, Clog P = 3.5 vs 4g, Clog P = 

1.5). Interestingly, the N-oxides 9c,g were found to be equipotent with the corresponding pyridines 4c,g. This 

observation would seem to argue against a direct H-bond between the pyridine ring of 4 and the enzyme and it 

may be that this interaction is, in fact, mediated by a water bridge. Alkylation of either nitrogen of the 

benzimidazole ring, as in 12 and 13, resulted in a significant loss of potency (relative to 4d). The loss in activity 

was most severe for 13, which, although steric effects cannot be ruled out, may well reflect the importance of 

having an H-bond acceptor at N-3 of the benzimidazole. 

Kinetic studies have shown that 1 binds to PDE4 in two distinct modes; ~6 the so called low affinity site, 

which is associated with inhibition of  catalytic activity and the high affinity site, the physiological significance 

of which remains unclear. 17 With respect to this discussion, the observation that the benzimidazoles in Table 1 
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inhibit catalytic activity and bind to the high affinity site, strongly supports the view that these compounds 

belong to the same pharmacophore family as 1. 

Compound R 

, , , , , 

1 (rolipram) 

2 (RP73401) 

4a 

4b 

4c 

4d 

4e 

4f 

4g 

9c 

9g 

12 a 

13 a 

CH 3 0 

Cyclopropyl 0 

lso-propyl 0 

Cyclopentyl 0 

PhCH 2 0 

PhCH2CH 2 0 

CH3OCH 2 0 

Iso-propyl 1 

CH3OCH 2 1 

~See Scheme 2 for structure 
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Several of the compounds from the benzimidazole series displayed good oral activity. Table 2 shows a 

selection of animal data for these compounds as measured by (a) inhibition of TNF-c~ release in mice upon 

lipopolysaccaride (LPS) challenge 18 (b) inhibition of streptococcal cell wall (SCW) induced arthritis in rats 19 and 

(c) oral bioavailability in mice. 

Compound R" n a 

Table 2 

T N F ~  Release EDso SCW-indueed Arthritis Bioavailabffity 
(mg/kg, PO) EDso (mg/kg, PO) Mouse ~ peA) 

10, tid 

5, bid 

4e (CHs)2CH 0 10 

4g CH3OCH 2 0 2 

9g CHsOCH2 1 7 

aRefers to the structure at the top of Table 1. 
bStudies were conducted on female Balb/c mice at a dose of 1 mg/Kg. 

16 

35 

87 
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All three compounds were effective in the TNF-ct release assay when dosed orally. Two of the 

compounds (4g and 9g) were sufficiently bioavailable to warrant further evaluation in the SCW arthritis model. 

Here again, both compounds were effective, although for optimum results, 4g required dosing three times a day, 

presumably due to its rapid clearance from plasma (4g T1/2 = 1:75 h cf9g Tin = 2.5 h). 

In conclusion, replacement of the 3,4-dialkoxyphenyl substructure of 2 with a 2-substituted-4- 

methoxybenzimidazole framework conserves the recognition elements that are required for inhibitory activity 

against PDE4. Furthermore, appropriate substitution at C-2 of these benzimdazoles results in compounds with 

good oral bioavailability suggesting that the benzimidazole system may be a useful alternative scaffold to 

consider when designing new classes of PDE4 inhibitor with improved pharmacokinetic profiles. 
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