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An Octanuclear Alkoxy-polyoxomolybdate. The Crystal and Molecular Structure of 
[(n-C4H~)4Nl~[Mos0,,(OMe)4{ MeC(CH20l3 j21 
Lidun Ma,a Shuncheng Liu,b and Jon Zubietab 
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Department of Chemistry, State University of New York at Albany, Albany, New York 12222, U.S.A. 

Reaction of [ (  n-C4H9)4N]2[Mo207] with 2-hydroxymethyl-2-methylpropane-l,3-diol yields 
[(C4H,)4N]2[Mo,02,(OMe)4{ MeC( Me0)3}2] ( l ) ,  an alkoxypolyoxomolybdate consisting of two tetranuclear 
[ M 0 ~ 0 ~ ~ ( 0 M e ) ~ {  MeC(CH20)3}]- moieties, composed of edge-sharing Moos octahedra, which are connected via two 
corner-sharing interactions through bridging oxo-groups; thermal degradation of (1) yields dimethyl ether, 
formaldehyde, methanol, and water as gaseous products. 

Although molybdenum oxides display a remarkable variety of 
applications as heterogeneous catalysts for organic trans- 
formations,1--3 the intimate details of the chemistry on the 
molecular level remain exceedingly difficult to elucidate. In 
view of this lack of structural information for surface-bound 
intermediates, the co-ordination chemistry of poly- 
oxomolybdates and related polyoxoanion derivatives incor- 
porating organic substrate molecules has received consider- 
able attention in recent years.4.5 Examples of structurally 
characterized polyoxomolybdate co-ordination complexes 
containing organic moieties related to surface intermediates in 
heterogeneous systems include [ (HCO&( Mo8O2,)I6- ,, 

[ M 0 ~ 0 ~ ~ ( 0 M e ) ~ ] 4 -  ,9 and [ M O ~ O ~ ~ ~ ( O C H ~ ) ~ ] * -  . I ( )  Further- 
more, chemical systems based on [Nb2W4019R]3- 1 1  and 
[(P309)Mo03R]2- 12 have been demonstrated to provide 
solution pathways for incorporating organic substrates into 
polyoxoanions. 

In the course of our investigations of the co-ordination 
chemistry of organic solvent-soluble polyoxomolybdates, 13 we 
have noted dramatic influences of reaction conditions and of 
polyoxoanion precursor on the structures of poly- 
oxomolybdate-ligand complex products. Thus, although the 
reactions of 2-hydroxymethyl-2-methylpropane-l,3-dIol 
(H3hmmp) with M o o 3  and its derivatives yield 
[MoO2(Hhmrnp)],14 [M~~O~(OCH~Me)~(hmmp)~],ls and 

[ C H 2 M o 4 o I 5 ~ l 3 -  [MO~~~(~CH~M~)~{M~C(CH~O)~}~I ,8 

0(1 la) 
O(9a) n 

Figure 1. ORTEP view of the structure of [Mo,O,,,(OMe),{MeC- 
(CH20)R}2]2-, showing the atom-labelling scheme. Selected bond 
lengths (A) and angles (") Mo-O,, 1.697(7) average; Mo(1)-O(l), 
1.946(7) ; M0(2)-0( 1) , 1.883(6) ; Mo( 1)-0(8), 2.248(6) ; Mo(3)-0(8), 
1.765(6) ; M0(2)-0(6), 2.379(7) ; Mo( 3)-0(6), 2.164( 7) ; M0(4)-0(6), 
2.225(7) ; Mo( 1)-0(3), 2.304(6) ; M0(2)-0(3), 2.266(6); M0(3)-0(3), 

0 (7) ,  1.87 1 (6). O( l)-Mo( 1)-0(2), 150.8(3) ; 0(3)-M0( 1 )-O( 1 1) , 
161.3( 3) ; O( ~)-Mo( l)-O( 9), 159.7( 3) ; O( l)-Mo( 2)-O( 4), 125 .O( 2) ; 
O( 3)-Mo( 2)-0 ( 12), 158.2( 3) ; O( 6)-Mo( 2)-O( lo), 160.3( 3) ; O( 3)- 
Mo( 3)-O( 13), 164.9(3); 0(5)-M0(4)-0(7), 153.4(3); O( 4)-M0(4)- 
O( 15). 161.3( 3) ; O( 5)-Mo( 4)-O( 7), 153.8( 3) ; O( 6)-Mo( 4)-O( 14), 

2.250(6); Mo(1)-0(2), 2.021(6); Mo(3)-0(2a), 1.788(6); MO(4)- 

154.8( 3). 
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Figure 2. Idealized polyhedral models and schematic representations of the structures of [Mo4010(OM-e),j2-- and 
[ M O ~ O ~ ~ ( O M ~ ) , {  MeC(CH20),},]2-, illustrating the construction of the octanuclear unit from corner-sharing tetranuclear cores. 

[ M 0 ~ 0 ~ ( 0 C H ~ M e ) ( h m m p ) ~ ]  ,X exploitation of the organic- 
soluble precursors [ (C4H9)4N]2[Mo207] 16 and a- 
[ (C4H9),N],[ M o ~ O ~ ~ ]  l7 produces a novel trinuclear poly- 
oxomolybdate [Mo307(hmmp)2]2- 18 and the octanuclear 
species [ ( C4Hc))4N)]2[Mo8020( OMe)4( h m m ~ ) ~ ]  , whose struc- 
ture we report here. 

The reaction of [(C4H9)4N]2[Mo207] with (H3hmmp) (1.34 
equiv.) and triethylamine (8.00 equiv.) in methanol followed 
by removal of solvent and recrystallization from methanol/ 
ether afforded [(C4H9)4N]Mo8020(OMe)4{ MeC(CH20)3}2] 
(1) in 30% yield.? X-Ray structural analysis of (1)$ revealed 
the presence of the octanuclear anionic cluster illustrated in 
Figure 1. The discrete octanuclear molecular anion consists of 
two tetranuclear [ M 0 ~ 0 ~ ~ ( 0 M e ) ~ (  hmmp)]l- moieties related 
by a centre symmetry located at the midpoint of the 
0(8)-0(8a) vector and connected by two corner-sharing 
interactions at O(2) and 0(2a) ,  as shown in Figure 2. 

The molybdenum centres display the usual pseudo-octa- 
hedral [MOO,] geometry, although the detailed co-ordination 
about each of the four crystallographically independent 
molybdenum sites is unique. Two of the alkoxy groups of the 
(hmmp) ligands are doubly-bridging [0(4)  and 0(5)], while 
the third is triply-bridging. The methoxy groups are terminal, 

t Satisfactory elemental analyses. i.r. (KBr, cm-1): v(C-H, methoxy) 
2955(m), v,(Mo-O,) 945(s), vd(Mo-0,) 905(s), v(Mo-0-Mo) 765(m). 

'f Crystal data: C46H,01N2070M08, monoclinic, space group P2,/n, a = 
10.079(3), b, = 25.369(4), c = 13.915(4) A,  fi = 90.50(1)", V = 
3557.1(11) A3, Z = 2; D, = 1.80 g cm-?; p(Mo-K,) = 13.79 cm-I; 
4270 unique data having 20 5 45.0" were collected on a Nicolet R3mlV 
diffractometer using graphite monochromated Mo-K, radiation ( h  = 
0.71073 A) and coupled 0(crystal)-20(counter) scan mode. The 
structure was solved by direct methods, and structural parameters 
refined using full-matrix least squares techniques to R = 0.031 and R, 
= 0.032 for 2745 reflections having F ,  2 6a(Fo). These refinement 
cycles employed aniwtropic thermal parameters for all non-hydrogen 
atoms of the anion. Calculated H atom positions were introduced in 
the final cycles of refinement, with the C-H bond distances set to 0.96 
A. Atomic co-ordinates, bond lengths and angles, and thermal 
parameters have been deposited at the Cambridge Crystallographic 
Data Centre. See Notice to Authors, Issue No. 1. 

to Mo(4) and Mo(4a), and triply-bridging to the Mo(2)- 
Mo(3)-Mo(4) faces. The 0x0 groups which connect the 
tetranuclear [ M ~ ~ O ~ ~ ~ ( O M e ) ~ ( h m m p ) ] -  units adopt un- 
symmetrical bridge geometry with Mo(1)-O(2) at 2.021(6) A 
and Mo(3)-0(2a) at 1.788(6) A.  Unsymmetrical bridging is 
even more pronounced at 0(8) with Mo( 1)-0(8) and Mo(3)- 
O(8) distances of 2.248(6) and 1.765(6) A,  respectively. 
Although the Mo(3) site exhibits a single terminal 0x0 
interaction to 0(13) ,  the Mo(3)-0(2a) and Mo(3)-O(8) bond 
lengths are exceedingly short for Mov*-doubly bridging 9x0 
group distances, which normally average 1.88 to 1.92 A.19 
This observation suggests that the Mo(3) site adopts the 
characteristics of a M o o 3  unit with two quasi-terminal 0x0 
groups20 and co-ordinated to three bridging alkoxy oxygen 
donors, a structural feature which may be related to the ready 
isolation of a co-ordinated M o o 3  moiety in 
[M0~0, (hmmp)2]~- . l~  

The overall geometry of the tetranuclear 
[M0~0~0(OMe)~(hmmp)] -  units from which (1) may be 
constructed is similar to that of the structural prototypes 
[ M 0 ~ 0 ~ ( 0 C H ~ M e ) ~ ( h r n m p ) ~ ]  and [ M O ~ O ~ ~ ~ ( O M ~ ) ~ ] ~ -  and 
consists of a compact edge-sharing [MOO,] polyhedral array, 
illustrated in Figure 2. Whereas condensation of two 
[MO4Ol0( OMe)6I2- units involves either sharing of four edges 
to yield ( 3 - [ M 0 ~ 0 ~ ~ ] 4 -  or  sharing of two edges to give 
[ M 0 ~ 0 ~ ~ ( 0 M e ) ~ ] 4 - ,  lo the tetranuclear units of (1) adopt a 
corner-sharing geometry with relatively weak bridging 
interactions. 

As suggested by these weak bridging interactions between 
the tetranuclear units of (I) ,  the cluster dissociates readily 
under appropriate conditions. Reaction of (1) with 
chloroacetic acid and excess of H3hmmp yields 
[M0~0,(hmrnp)~]2- (2), a complex incorporating a reactive 
Moo3 unit. Treatment of (2) with Me1 yields 

Thermal degradation of (1) at 150 "C yields formaldehyde, 
methanol, dimethyl ether, and water as gaseous products,§ a 

[Mo306(0Me)(hmmp),l- (3). lX 

0 The gaseous products are isolated in the ratio 
methanol : formaldehyde : dimethyl ether : water of 7 : 7 : 1 : 0.5.  
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process which may involve a cyclic, heterolytic pathway, a 
mechanism similar to that invoked for heterogeneous oxida- 
tion of methanol to formaldehyde over Moo3 catalyst. We are 
currently investigating the photochemical degradation of (1) 
and (3) and the decomposition reactions of the analogous 
ethoxy complex [ M O ~ O ~ ~ (  0Et2),(hmmp)2]2-. 

This research was supported by a grant from the National 
Science Foundation (CHE8514634). 

Received, 31st August 1988; Corn. 8103491E 
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